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1. Introduction: horizons and branes

One of the greatest paradigm shifts introduced by string theory is that one can understand
black holes with the dynamics of the branes. The key point is that branes source both gravitational
and gauge fields. When one combines different types of branes in different configurations, the
gravitational field can be superposed, and the resulting geometry is described by the metric, in the
asymptotic observer’s coordinates, of a black hole.

A very familiar example is the D1-D5-P system. In this system, the D1 and D5 branes wrap
a common compact direction, 𝑆1, and the D5 brane wraps in addition a four-dimensional compact
manifold, for instance 𝑇4 or 𝐾3. In addition, this system contains gravitational waves propagating
in one of the directions of the circle 𝑆1. See Table 1.
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𝑡 R4 𝑆1
𝑦 𝑇4

D5 − • − −
D1 − • − ∼
P − • → ∼

Table 1: Brane configuration of the D1-D5-P system. Here, we use the convention where − indicates that
the brane/string is extended in the given dimension(s), • indicates that it is pointlike, and ∼ indicates that the
brane is smeared in the given dimension(s). The arrow → indicates that the gravitational wave P is moving
in one of the directions (left or right) of the circle, 𝑆1

𝑦 .

The supergravity solution coming from the brane system at Table 1 is determined through the
harmonic-function rules:

𝑑𝑠2 =
1

√
𝐻1𝐻5

[
−𝑑𝑡2 + 𝑑𝑦2 + (𝐻𝑃 − 1) (𝑑𝑡 + 𝑑𝑦)2] + √︁

𝐻1𝐻5 𝑑𝑠
2
R4 + (𝐻1𝐻5)−1/2𝑑𝑠2

𝑇4 , (1)

𝑒2𝜙 =
𝐻1
𝐻5

, (2)

where

𝐻1,5,𝑃 = 1 +
𝑄1,5,𝑃

𝑟2 , 𝑟 ≡ 𝑟R4 . (3)

The supergravity charges can be expressed in terms of the number of branes and momentum quanta:

𝑄1 =
𝑔𝑠𝛼

′

𝑣
𝑁1 , 𝑄5 = 𝑔𝑠𝛼

′ 𝑁5 , 𝑄𝑃 =
(𝑔𝑠)2𝛼′

𝑣𝜌2
𝑦

𝑁𝑃 , (4)

where 𝑣 ≡ 𝑉4
(2𝜋 )4𝛼′2 is the volume of the four-torus 𝑇4 measured in units of 2𝜋𝑙𝑠 and 𝜌𝑦 ≡ 𝑅𝑦

𝑙𝑠
is the

radius of the 𝑦 circle measured in units of 𝑙𝑠.
It is important to stress here that harmonic-function rule that determined the metric (1) uses

the fact that the D1 branes and the momentum quanta are smeared on the 𝑇4: The D1 branes (and
the momenta quanta) are in principle points in the 𝑇4 directions, but when they form a regular and
densely packed array in 𝑇4, one can approximate the array by an uniform distribution of D1 branes
(and momenta quanta) along the 𝑇4.1 For more detail, see for example [2] and references therein.
The point is that when the D1 branes are smeared along the 𝑇4 directions, one does not know where
exactly they are localised in the 𝑇4.

The solution (1), (2) can be reduced to a 5-dimensional metric in the Einstein frame:

𝑑𝑠2 = (𝐻1𝐻5𝐻𝑃)−2/3 𝑑𝑡2 + (𝐻1𝐻5𝐻𝑃)1/3 [
𝑑𝑟2 + 𝑟2𝑑Ω2

3
]
. (6)

1Without smearing, D1 branes in a R8,1 × 𝑆1 topology sources the string-frame metric

𝑑𝑠2 = 𝐻1 (𝑟)−1/2 (𝑑𝑡2 + 𝑑𝑦2) + 𝐻1 (𝑟)1/2𝑑𝑠2R8 , 𝐻1 (𝑟) = 1 +
𝑄′

1
𝑟6 , (5)

where 𝑟 measures the distance to the D1-brane source in R8. One can apply the harmonic-function rule to get (1) only
with the smeared harmonic functions (3) which all behave as 1

𝑟2 and only depend on the overall transverse coordinates,
R4.
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This is the metric of a 5-dimensional black hole. The horizon, determined by the equation 𝑔𝑟𝑟 = 0,
lies at 𝑟 = 0. The area of the horizon, measured in the five-dimensional Einstein frame, is determined
by the number of branes and momenta quanta:

𝐴(5) =

∫
𝑑Ω3 𝑟

3 (𝐻1𝐻5𝐻𝑃)3/6 ∝
√︁
𝑄1𝑄5𝑄𝑃 ∝ 𝑔2

𝑠 (𝑙𝑠)3
√︁
𝑁1𝑁5𝑁𝑃 . (7)

The near-horizon geometry has an AdS2 × 𝑆3 geometry.
Actually, a crucial step in the equation (7) is that the harmonic functions have the form 𝐻𝑖 ∼ 𝑄𝑖

𝑟2

in the region 𝑟 ≪ 𝑄𝑖 . If the harmonic functions had a different behaviour close to 𝑟 = 0, say
𝐻𝑖 ∼ 1

𝑟
, one would get 𝐴(5) = 0.

1.1 Local supersymmetry enhancement: a first example

The lesson we learn from the Introduction is that for brane/strings/momenta that are compatible
for their supersymmetry, one can apply the harmonic-function rule. For a 1/8-BPS system (like the
D1-D5-P system), this rule gives a black-hole solution in supergravity, with a macroscopic horizon,
whose area is determined by the asymptotic supergravity charges (4).

A possible conclusion that could be drawn from these lessons is that:

The asymptotic charges and supersymmetries of the branes/stings/momenta seem to control the
near-horizon geometry, all the way to the horizon. Therefore, whatever the microscopics of the
brane system that could be distinguished at weak coupling (𝑔𝑠𝑁 ≪ 1), one always ends up with the
same horizon in the supergravity (𝑔𝑠𝑁 ≫ 1, 𝑔𝑠 ≪ 1) regime. To have access the information about
the microstates however, one would need to un-smear the brane system at 𝑔𝑠𝑁 ≪ 1 and localise
the momentum carriers; in the regime of gravity, because all microstates behave the same at the
horizon region, it could only mean to probe the region near the singularity (string scale away from
the singularity) – and this region is precisely where supergravity breaks down. Therefore, it seems
impossible that supergravity is able to probe the physics of black-hole microstates.

But are we sure that if one un-smears the momentum carriers in the open-string regime
(𝑔𝑠𝑁 ≪ 1), one gets the same horizon in the supergravity regime? The reasoning rests on the
standard lore saying that the only way to get a supergravity solution is to use the harmonic-function
rule, which relies on the compatibility of supersymmetries. However, there is a more general notion
that enable the use of the harmonic-function rule: local supersymmetries.

The archetypical example of local supersymmetries is that of the F1-P system. Consider the
combination of a fundamental string F1 wrapped along a compact direction, 𝑦, and a momentum
P along the same direction. Alone, the string F1(𝑦) preserves 16 real supercharges, and so does
the momentum P(𝑦). But the supercharges they preserve are not all the same, and 8 of the 16
supercharges are still preserved by F1(𝑦) and P(𝑦). One can thus apply the harmonic-function rule
to the F1-P system and get a metric that depends on the overall orthogonal directions, R8.

However from the microscopic point of view, the only way for a string to carry momentum
is to have transverse oscillations. The classical picture of this microscopic realisation is that the
string carries longitudinal momentum by having a profile in its orthogonal directions, in R8. To
be more precise, the oscillations move at the speed of light along 𝑦 and thus carry momentum, as
the profile is independent from one of the two null-like coordinates on the circle 𝑆1

𝑦 , that we call 𝑢.
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The profile varies along the string’s worldline, 𝜁 , and can be parameterised by an angle, 𝛼(𝜁). See
Fig. 1. The F1-P profile preserves the same eight global supersymmetries as those preserved by the
F1(𝑦) and P(𝑦). But locally, the F1-P profile is a piece of a fundamental string along a direction
�̂�, boosted along an orthogonal direction, �̂�⊥; this local boosted fundamental string preserves 16
supersymmetries.

F1(y) P(y)

y

z1

(F1-P) (y, z1)

α(ζ) F1(ζ)

P(ζ ): e3 I
I

"
I

Figure 1: Schematic depiction of the combination of F1(𝑦) with P(𝑦) (left) and that of a string carrying
momentum through its transverse oscillations (right). The string worldline, along 𝜁 , makes an angle 𝛼(𝜁)
with the direction 𝑦.

In a nutshell, given the F1(𝑦) and P(𝑦) charges which preserve 8 supersymmetries together,
there is a way to realise this system microscopically as a string carrying momentum by having
orthogonal oscillations, so that the number of local supersymmetries is enhanced to 16. To have 16
local supersymmetries is a sign that the degrees of freedom involved in the microscopic resolution
of the F1-P system by the transverse oscillations are fundamental degrees of freedom in string
theory. And the crux of the matter is that one can apply the harmonic-function rule for a local piece
of this boosted fundamental string which has 16 supersymmetries and get a supergravity solution
for a given global profile.

The remaining of the proceeding organises as follows. In Section 2, we first develop the general
formalism for local supersymmetries. We then illustrate it with the example of the F1-P system,
and discuss its microscopic realisation as microstate geometries. We then review the logic behind
the construction of microstate geometries for three-charge black holes. In Section 3, we find the
local supersymmetries for the F1-NS5-P or M2-M5-P system, and explain what it implies at the
level of the microstates. We conclude in Section 4. Finally, in Section 5, we identify a list of future
directions in a “Q & A” session.

2. Global and local supersymmetries

2.1 The general formalism

Type II String Theory vacua preserve 32 supersymmetries. Adding excitations such as strings,
branes or momentum waves decreases the number of preserved supersymmetries. Indeed, one can
derive, using the BPS equations, that the presence of branes imposes a constraint on the Killing
spinor 𝜖 :

𝑃 𝜖 = − 𝜖 , or equivalently Π 𝜖 ≡ 1
2
(1 + 𝑃) 𝜖 = 0 , (8)

5
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where 𝑃 is a traceless involution (𝑃2 = 1), typically a product of gamma matrices and Pauli matrices,
that depend on the exact type and orientation of the object considered. Equivalently, Π defined
in (8) is a projector, verifying Π2 = Π. A list of the involutions corresponding to branes, strings,
solitons and momentum waves is given in Appendix A. The constraint (8) divides the number of
preserved global supersymmetries by two.2

If one considers configurations with several types of branes whose supersymmetries are com-
patible, the constraints add up. For example, for a two-charge system, the Killing spinor must
respect

Π1 𝜖 = 0 , and Π2 𝜖 = 0 . (9)

Thus, the Killing spinor must lie in the intersection of the kernels of Π1 and Π2. And the dimension
of this intersection is the number of preserved global supersymmetries (for the F1-P system, it is 8).

More generally, let’s combine 𝑘 different excitations. Then

𝜖 ∈ ker(Π1) ∩ . . . ∩ ker(Π𝑘) . (10)

Now, let us consider other excitations, corresponding to involutions (𝑃𝑘+1, . . . , 𝑃𝑛), and a set of
weights 𝛼1, . . . , 𝛼𝑛 > 0 such that 𝛼1 + . . . + 𝛼𝑛 = 1. Consider the matrix

Π̂ ≡ 1
2
(1 + 𝛼1𝑃1 + · · · + 𝛼𝑛𝑃𝑛) = 0 . (11)

For each species of excitation, 𝑖, the coefficient 𝛼𝑖 is the ratio between the charge density corre-
sponding to this brane, 𝑄𝑖 ,3 and the mass density of the full bound state, 𝑀:

𝛼𝑖 ≡
𝑄𝑖

𝑀
. (12)

Hence, the projector can be written as

Π̂ =
1

2𝑀
(𝑀 +𝑄1𝑃1 + . . . +𝑄𝑛𝑃𝑛) . (13)

The matrix Π̂ represents a mix of a set of 𝑛 different types of excitations. The overall mass of the
mix is 𝑀 and each type of excitation contributes to a charge 𝑄𝑖 .

Π̂ is not necessarily a projector. But Π̂ is a projector if and only if the mix of excitations defined
by it is a bound state (a state with 16 supersymmetries). Note that one does not necessarily need to
enhance to 16 supersymmetries: One can, for example, enhance the supersymmetries from 4 to 8.

So, the procedure to enhance the supersymmetries of the original excitations (𝑖 ∈ {1, . . . , 𝑘})
is to: (1) consider in addition some auxiliary excitations (𝑖 ∈ {𝑘 + 1, . . . , 𝑛}) and then (2) find the
charge-to-mass ratios 𝛼𝑖 so that Π̂’s eigenvalue 1 gets more degeneracy. This is supersymmetry
enhancement. But what is local supersymmetry enhancement?

Given the involutions 𝑃𝑖 (𝑖 ∈ {1, . . . , 𝑛}), the set of solutions {𝛼𝑖} is not unique. Therefore,
they can depend on spacetime coordinates, 𝑥: {𝛼𝑖 (𝑥)}. Since this formalism – at the level of
projectors corresponding to the branes, strings, etc. – corresponds to reading off the leading order

2𝑃2 = 1, and tr(𝑃) = 0, so half of 𝑃’s eigenvalues are +1, half of them are −1.
3Note that the dependence in the string coupling, 𝑔𝑠 , enters in the 𝑄𝑖’s.
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of the Killing spinor equations in orthogonal coordinates to the bound state, 𝑥 here can only label
coordinates on the brane bound state.4

Now, we are looking for solutions 𝜖 (𝑥) to the equation

Π̂(𝑥) 𝜖 (𝑥) = 0 , ∀𝑥 . (14)

At a given 𝑥, 𝜖 (𝑥) is an element of ker(Π̂(𝑥)), whose dimension gives the number of local
supersymmetries.

But globally, a Killing spinor 𝜖0 preserved by all local pieces of the bound state should satisfy

𝜖 ∈
⋂
𝑥

ker
(
Π̂(𝑥)

)
. (15)

The last vector space is required to match ker(Π1) ∩ . . . ∩ ker(Π𝑘), so that one finds the original
global supersymmetries one started with. This is ensured by writing the projector Π̂ in the form

Π̂(𝑥) = 𝑓1(𝑥) Π1 + . . . + 𝑓𝑘 (𝑥) Π𝑘 , (16)

where Π1, . . . ,Π𝑘 are the commuting projectors we started with, and 𝑓1, . . . , 𝑓𝑘 can be any matrix-
valued functions. Then, satisfying (14) is equivalent to

Π1 𝜖 = . . . = Π𝑘 𝜖 = 0 , (17)

At a given point 𝑥1, ker
(
Π̂(𝑥1)

)
⊃ ⋂

𝑥 ker
(
Π̂(𝑥)

)
, so we immediately deduce that the number

of local supersymmetries (at 𝑥1) is greater that the number of global supersymmetries. This is local
supersymmetry enhancement.

In a nutshell, the idea of local supersymmetry enhancement is that: Given a set of global su-
persymmetries, there sometimes exists a whole moduli space of brane/string systems, parametrised
by {𝛼𝑖 (𝑥)}, preserving those same global supersymmetries, but whose number of local supersym-
metries is enhanced. The procedure of local supersymmetry enhancement (to an object with 16
local supersymmetries) is a two-step procedure consisting in:

1. identify the additional excitations (that we will refer to as “glues”) to make a bound state;

2. determine the charge-to-mass ratios {𝛼𝑖 (𝑥)}.

To our understanding, the presence of a non-vanishing charge-to-mass ratio for a given type of
branes/strings indicates the presence of brane/string charges along the bound-state worldvolume,
and does not necessarily imply the physical existence the said brane/string wrapping the indicated
directions. When it is the case however, there are requirements in order for the global solution to be
consistent. For instance, one has to constrain the 𝛼𝑖’s so that that the charge of some brane/strings
wrapping some cycles be constant along the cycle. Note also that the choice of the glues is not
necessarily unique. For example the supersymmetries of NS5(𝑦1234) and F1(𝑦) in Type IIB can
be locally enhanced by the pair of glues D5(𝑦1234)–D1(𝑦) or KKM(1234𝜓; 𝑦)–P(𝜓).

4For the F1-P bound state for example, the coordinate 𝑥 labels the ‘spatial’ part of the wiggling string’s worldline.
For a NS5-F1 bound state, 𝑥 labels a five-dimensional spatial worldvolume coordinates.
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2.2 Local supersymmetries of the F1-P system

Let us go back to our example of F1-P system. In Section 1.1, we have identified the dipole
charges we need to add in order to locally enhance the supersymmetries of F1(𝑦) and P(𝑦): the
“glues” we want are of the form F1(1) and P(1), where 1 denotes a direction orthogonal to 𝑦. Let
us denote this local supersymmetry enhancement (LSE) by[

F1(𝑦)
P(𝑦)

]
−→ ( F1(1), P(1) ) . (18)

Thus, the candidate projector is of the form:

Π̂F1−P =
1
2

(
1 + 𝛼1𝑃F1(𝑦) + 𝛼2𝑃P(𝑦) + 𝛼3𝑃F1(1) + 𝛼4𝑃P(1)

)
. (19)

We now wish to determine constraints on the coefficients 𝛼1, . . . , 𝛼4. First, we compute Π̂2
F1−P

and impose it to be equal to Π̂F1−P:

Π̂2
F1−P =

1
4

[
1 + 𝛼2

1 + 𝛼
2
2 + 𝛼

2
3 + 𝛼

2
4 + 2

(
𝛼1𝑃F1(𝑦) + 𝛼2𝑃P(𝑦) + 𝛼3𝑃F1(1) + 𝛼4𝑃P(1)

)
+

∑︁
𝑖≠ 𝑗

𝛼𝑖𝛼 𝑗𝑃𝑖𝑃 𝑗

]
. (20)

Reading off the coefficients in front of the identity imposes

𝛼2
1 + 𝛼

2
2 + 𝛼

2
3 + 𝛼

2
4 = 1 . (21)

In addition, we also need that the second line of (20) vanish. The involutions that anti-commute do
not contribute in the sum, while those which commute (here those of F1(𝑦) with P(𝑦), and F1(1)
with P(1)) lead to the constraint

𝛼1𝛼2 + 𝛼3𝛼4 = 0 . (22)

Besides, the condition (16) is written here as:

Π̂F1-P = 𝑓1ΠF1(𝑦) + 𝑓2ΠP(𝑦) . (23)

One needs to ‘factorise’ the projector in (19) by the involutions of the main excitations, 𝑃F1(𝑦) and
𝑃P(𝑦) . We can write for instance

𝑃F1(1) = (−Γ𝑦1) 𝑃F1(𝑦) , 𝑃P(1) = (−Γ𝑦1) 𝑃P(𝑦) (24)

so that Π̂F1−P in (19) is rewritten as

Π̂F1−P =

(
𝛼1 − 𝛼3Γ

𝑦1
)
ΠF1(𝑦) +

(
𝛼2 − 𝛼4Γ

𝑦1
)
ΠP(𝑦)

+ 1
2
− 1

2

(
𝛼1 − 𝛼3Γ

𝑦1
)
− 1

2

(
𝛼2 − 𝛼4Γ

𝑦1
)
. (25)

In order to satisfy (23), one possible solution is

𝑓1 = 𝛼1 − 𝛼3Γ
𝑦1 , 𝑓2 = 𝛼2 − 𝛼4Γ

𝑦1 , (26)

8
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so that
𝛼1 + 𝛼2 = 1 , 𝛼3 + 𝛼4 = 0 . (27)

The first equation in (27) is the BPS condition, 𝑄1 +𝑄2 = 𝑀 , and the second one equates the local
charge of the glues.

Note that instead of (24), one can also choose to write

𝑃P(1) = (−Γ𝑦1𝜎3) 𝑃F1(𝑦) , 𝑃F1(1) = (−Γ𝑦1𝜎3) 𝑃P(𝑦) (28)

which implies another choice of 𝑓1, 𝑓2

𝑓1 = 𝛼1 − 𝛼4Γ
𝑦1𝜎3 , 𝑓2 = 𝛼2 − 𝛼3Γ

𝑦1𝜎3 , (29)

but imposes the same constraints (27): Although the choice of 𝑓1 and 𝑓2 is not unique, when one
has chosen the consistent glues, the constraints on the charge-to-mass ratios are the same.

The solution to (21), (22) and (27), assuming that we choose the orientation of space such that
the brane charges 𝑄1 and 𝑄2 are positive, can be parameterised by

𝛼1 = cos2 𝛼 , 𝛼2 = sin2 𝛼 , 𝛼3 = cos𝛼 sin𝛼 , 𝛼4 = − cos𝛼 sin𝛼 . (30)

We can thus rewrite (19) as:

Π̂F1−P =
1
2

[
1 + 𝑐𝑃F1(𝜁 ) + 𝑠𝑃P(𝜁 ⊥ )

]
=

1
2

[
1 + 𝑐

(
𝑐Γ0𝑦𝜎3 + 𝑠Γ01𝜎3

)
+ 𝑠

(
𝑠Γ0𝑦𝜎3 − 𝑐Γ01𝜎3

)]
, (31)

where 𝑐 = cos𝛼 and 𝑠 = sin𝛼. Equation (31) indicates that the centre-of-mass energy of the string
is distributed between a piece of string extending along the direction 𝜁 and its momentum along
its orthogonal direction, 𝜁⊥. Therefore, geometrically, the angle 𝛼(𝑦) corresponds to the local
inclination of the string in the (𝑦, 𝑥1) plane, and depends on the coordinate 𝑦. See Fig. 1. The
projector (31) interpolates between that of a pure F1 along 𝑦 (𝛼 = 0) and that of a pure momentum
wave along 𝑦 (𝛼 = ±𝜋/2).

2.3 Microstate geometries of the F1-P black hole

If one applied the harmonic-function rule to the 1/4-BPS F1-P system in a R4,1 × 𝑆1
𝑦 × 𝑇4

topology, one would find the metric (in string frame) and the dilaton5

𝑑𝑠2 =
1
𝐻1

[
−𝑑𝑡2 + 𝑑𝑦2 + (𝐻𝑃 − 1) (𝑑𝑡 + 𝑑𝑦)2] + 𝑑𝑠2

R4 + 𝑑𝑠2𝑇4

=
1
𝐻1

[
−𝑑𝑢 𝑑𝑣 + (𝐻𝑃 − 1) 𝑑𝑣2] + 𝑑𝑠2

R4 + 𝑑𝑠2𝑇4 , (32)

𝑒2𝜙 =
1
𝐻1

, (33)

5For the expression of the Kalb-Ramond field, see e.g. [3].
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where we defined the null-like coordinates 𝑢 ≡ 𝑡 + 𝑦, 𝑣 ≡ 𝑡 − 𝑦. The harmonic functions 𝐻1 and
𝐻𝑃 are of the form in (4) (but the supergravity charges, 𝑄𝐼 , are expressed differently in terms of
the integer charges). The metric (32) is that of a black-hole solution in 4+1 dimensions (or black
string in 5+1 dimensions), with a horizon at 𝑟 = 0.

On the other hand, applying the harmonic-function rule locally to the string carrying transverse
oscillations would give a metric and dilaton (see e.g. [3] and references therein)

𝑑𝑠2 =
1
𝐻1

[
−𝑑𝑢 𝑑𝑣 + (𝐻𝑃 − 1) 𝑑𝑣2 + 2𝐴𝑖 𝑑𝑥𝑖𝑑𝑣

]
+ 𝑑𝑠2

R4 + 𝑑𝑠2𝑇4 , (34)

𝑒2𝜙 =
1
𝐻1

, (35)

which depend on the transverse displacement profile of the string, ®𝐹 (𝑣), in R4

𝐻1 = 1 + 𝑄1
𝐿𝑇

∫ 𝐿𝑇

0

𝑑𝑣

| ®𝑥 − ®𝐹 (𝑣) |2
, (36)

𝐻𝑃 = 1 + 𝑄1
𝐿𝑇

∫ 𝐿𝑇

0

( ¤𝐹 (𝑣))2

| ®𝑥 − ®𝐹 (𝑣) |2
𝑑𝑣 , (37)

𝐴𝑖 = −𝑄1
𝐿𝑇

∫ 𝐿𝑇

0

¤𝐹𝑖 (𝑣)
|®𝑥 − ®𝐹 (𝑣) |2

𝑑𝑣 . (38)

Here the string winds 𝑁1 times the circle 𝑆1
𝑦 , so that its total length is 𝐿𝑇 = 2𝜋𝑅𝑦𝑁1. The metric

is smooth, and instead of a horizon lying at the bottom of an infinite throat for the black hole,
such a geometry caps off at the end of a finite throat [3–5]. They are denoted as the Lunin-Mathur
geometries in the literature.

Of course, such a profile is a classical profile, since the displacement of the string is a classical
function, ®𝐹 (𝑣). But where does the ‘quantumness’ come from then? There are two ways to
see it. The first way is that the Fourier coefficients of the classical profile ®𝐹 (𝑣) in the non-
compact dimensions are actually mapped to the number of quantum momentum excitations of the
fundamental string (see e.g. [6]). The second way to see the quantumness is to consider the phase
space defined by classical profiles; measuring the volume of this phase space through geometric
quantization gives the number of quantum states in the phase space. It turns out this number, once
fermionic excitations are taken into account [7], matches the entropy of the two-charge black hole
[8]:

𝑆 = 2𝜋
√︁
𝑁1𝑁𝑃 . (39)

Therefore, although the Lunin-Mathur solutions are characterised by classical profiles which
are expected to be produced by a coherent state of string oscillators, the important lesson is that
the “glues” in the LSE formalism reveal which kind of excitations are relevant at the quantum level
in a given background. In the F1-P background, these are the string oscillators, 𝑋 𝐼 ; in the D5-D1
frame, the (non-internal) excitations are those of a profile indicating the locus of a Kaluza-Klein
monopole in R4, stabilised by an angular momentum along that profile.

However, the solutions described above are microstate geometries of a two-charge black hole,
for which the horizon and the black-hole singularity are located both at 𝑟 = 0 (without taking into
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account higher-curvature corrections) [9–11]. Therefore, one does not know if the stringy structure
resolves the horizon or the singularity at this level.

On the other hand, for three-charge black holes, the horizon and black-hole singularity are
separated, even without 𝛼′ corrections. Understanding whether horizonless geometries can account
for the entropy of three-charge black holes will indicate whether the geometries resolve the horizon
or the black-hole singularity. Besides, the typical microstates of a two-charge black hole are expected
to have a high curvature, and so the supergravity description is expected to fail [12]. However, it
is possible that this is an artefact of two-charge black holes, due to the proximity of the black-hole
singularity with the horizon.

We will thus see how one could apply local supersymmetry enhancement to three-charge brane
systems in the following sections.

2.4 The supertube transition and three-charge systems

In order to perform the local supersymmetry enhancement (LSE) for three-charge black holes,
the microstate geometries has long used the ‘supertube transition trick’ [13–15]. This trick consists
in that, for the D1-D5 or D1-D5-P brane system, one can enhance the local supersymmetries of the
D1(𝑦) with the D5(𝑦1234) by adding dipole charges of KKM(1234𝜓; 𝑦)6 and P(𝜓):[

D5(𝑦1234)
D1(𝑦)

]
−→ ( KKM(1234𝜓; 𝑦), P(𝜓) ) , (40)

where the coordinate 𝜓 parameterises a closed and non self-intersecting curve in the non-compact
spatial dimensions, R4. The same type of supertube transition can be performed for a NS5-F1
system: [

NS5(𝑦1234)
F1(𝑦)

]
−→ ( KKM(1234𝜓; 𝑦), P(𝜓) ) . (41)

The key point is that the D1-D5 system (or the F1-NS5 system), through the appearance of
the KKM dipole, gains a dimension in the non-compact dimensions; it develops a size, which
is stabilised by the presence of the momentum dipole, P(𝜓). This trick has the key effect of
delocalising the singular brane charges in R4, from 𝑟 = 0 to the supertube locus (the closed curve
parametrised by 𝜓). See Fig. 2.

This is quite analogous, in electromagnetism, to delocalising a delta-function electric charge
in a ring with the same electric charge. In 3+1 dimensions, the electric field sourced by the singular
charge is of the form 𝑄

𝑟2 ; for the ring of radius 𝑅 with the same electric charge 𝑄, the electric field
asymptotes to ∼ 𝑄

𝑟2 at large 𝑟, but behaves like ∼ 𝑄/(2𝜋𝑅)
Σ

near the ring, where Σ is the distance in
R3 to the ring.

Now let us recall that in the computation of the black-hole area at eq. (7), we used that the
harmonic functions behave as 𝐻𝑖 ∼ 𝑄𝑖

𝑟2 in the near-horizon region. The presence of the KKM
desingularises the brane system which was defined at 𝑟 = 0, the metric sourced by the new brane
system is less singular; this is a general philosophy of the Fuzzball programme to find horizonless
geometries with the same asymptotic mass and charges as the black hole.

6Here 𝑦 is the special direction of the Kaluza-Klein monopole.
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4D base 
space

y

ao

Figure 2: Schematic picture of D1-D5 supertube of a circular shape in the base space, here R4. As one
includes the direction of the 𝑦 circle, the supertube locus corresponds to a cylinder. For the black hole, the
brane system lies instead on a straight line along 𝑦.

Concerning three-charge black holes, one needs to find a way to consistently add the momentum
P(𝑦) such that the momentum carriers still have 16 local supersymmetries. Without entering into
the details, this has been done in the literature [13]; and one possibility to have 1/2-BPS momentum
carriers is to take the shape modes of the supertube profile along the 𝑆1

𝑦 circle. Indeed, locally, the
system is a piece of Kaluza-Klein monopole oriented along some direction, boosted by a momentum
orthogonal to its surface; it preserves therefore 16 local supersymmetries. However, on the global
scale, the 16 local supersymmetries are not the same as one moves along the spatial dimensions of
the system, and only 4 supersymmetries are preserved.

Supergravity solutions of a D1-D5-P system blown up by a KKM dipole have been constructed
[16, 17]: these are the “superstrata”. Superstrata approximate the black-hole solution, they have the
same charges, asymptotics, and the same near-horizon throat as the black hole. However, instead
of the extremal black hole’s throat of infinite length, the supertratum’s throats caps off smoothly,
without the presence of a horizon.

These solutions seem to support the Fuzzball hypothesis [18], according to which individual
black-hole microstates should differ from the black-hole solution already at the horizon scale (and
not only at the scale of the singularity). In particular, there should be a basis of the Hilbert space
of black-hole microstates with horizonless microstates.

Nevertheless, it has been shown that the geometric quantization of the superstrata that have
been constructed give an entropy that is parametrically smaller than that of the black hole [19, 20]:

𝑆superstrata ∼ 2𝜋
√︁
𝑁1𝑁5𝑁

1/4
𝑃
, (42)

which is parametrically smaller than the black-hole entropy, 𝑆 ∼ 2𝜋
√
𝑁1𝑁5𝑁𝑃.7

Besides, the superstrata have a non-vanishing angular momentum inR4 through the appearance
of the KKM and angular momentum dipoles, whereas the black-hole solution (the pure D1-D5-P
system) has no such angular momentum. If the black-hole horizon’s spherical symmetry is broken
by a KKM whose supertube locus is at a macroscopic scale, this could be a sign that the superstrata
are atypical microstates (in the grand-canonical ensemble) of the D1-D5-P black hole (or, they

7Note, however, that the above formula (42) counts the number of superstrata that have been constructed in supergravity
with [16, 17], and not the shape-mode superstrata predicted by [13], which could be in principle more numerous [21].
See also [22].
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could be microstates of another black hole, with non-vanishing angular momentum in R4). (See
also [23] for discussion about exact spherical symmetry.)

One may argue that, similar to what happens in [24–26], once one takes into account the
gravitational backreaction, making the supertube profile smaller and smaller in coordinate space
in R4 corresponds to making the superstratum’s throat deeper and deeper, while the geometry of
the cap remains fixed, and does not create singularity at the supergravity level. And thus the KKM
and corresponding angular momentum can be arbitrarily small, so that the superstrata are more
and more typical microstates. One could be worried, however, that the microstate then degenerates
into a black hole; but the quantization of the angular momentum prevents the throat to become
infinitely deep and the superstratum to degenerate into the black-hole solution. Nevertheless, one
could expect in this case that the quantum corrections over the supergravity solutions to be too large,
in the same spirit of [25, 27].

A possible way out of this problem has been studied in [28]. We studied the possibility that the
deep-throat limit of superstrata reaches actually solutions with internal momentum carriers, in the
NS5-F1-P frame in Type IIA. Nevertheless, the momentum carriers, consisting of D0-D4 density
modes inside the NS5 and moving along the 𝑦 direction, preserve only 8 supersymmetries, instead
of 16. This particular feature implied that their supergravity description exhibits a horizon of zero
area (before higher-order corrections). Therefore, they cannot be pure black-hole microstates. In
the next section, we will construct momentum carriers with 16 local supersymmetries, as pure
microstates of the NS5-F1-P (IIA) or M5-M2-P black hole.

3. Local supersymmetries with internal excitations

In this Section, we take a different path from the historical approach that lead to the discovery
of most fuzzball solutions, like the superstrata. Namely, our aim will be to find microstates with
16 local supersymmetries with pure internal excitations. We focus on the NS5-F1-P system. In the
next subsection, we first identify the local supersymmetry enhancement (LSE) between the 1/4-BPS
F1-P, NS5-P and F1-NS5 systems.

3.1 Two-charge systems

The local supersymmetric enhancement of the F1-P system has already been done in Sec. 2.2:[
F1(𝑦)
P(𝑦)

]
−→ ( F1(1), P(1) ) . (43)

Here since we want the excitation to be purely internal, we choose the coordinate 𝑥1 to be a
coordinate of 𝑇4.

The same exercise can be done for the NS5-P system in type IIA. We start with NS5 branes
extending along the directions 𝑦, 𝑥1, . . . , 𝑥4, and momentum along 𝑦. The involutions associated to
them are:

𝑃NS5(𝑦1234) = Γ0𝑦1234 , 𝑃P(𝑦) = Γ0𝑦 . (44)

These involutions commute, and the configuration preserves 8 supersymmetries. What are the glues
to make a configuration with 16 local supersymmetries? Like the F1-P system, one could consider
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NS5(𝜓) and P(𝜓) as glues, where 𝜓 is a coordinate in R4. This corresponds to bending the NS5 in
the transverse directions and let it wiggle. Contrary to the fundamental string, the NS5-brane does
not need to bend in the transverse directions to carry momentum. To make a bound state, one other
possibility is to use internal dipolar D4 branes (extending along the directions 𝑥1, . . . , 𝑥4) and D0
branes [28]: [

NS5(𝑦1234)
P(𝑦)

]
−→ ( D4(1234), D0 ) . (45)

The advantage of using the D4-D0 glue is that the momentum carriers are purely internal excitations,
i.e. point-like in the non-compact spatial dimensions. The candidate projector is of the form

Π̂NS5-P =
1
2

(
1 + 𝛼1𝑃NS5(𝑦1234) + 𝛼2𝑃P(𝑦) + 𝛼3𝑃D4(1234) + 𝛼4𝑃D0

)
(46)

= 𝑓1ΠNS5(𝑦1234) + 𝑓2ΠP(𝑦) , (47)

and the solution is found to be of the form

Π̂NS5-P =
1
2

[
1 + 𝑐2𝑃NS5(𝑦1234) + 𝑠2𝑃P(𝑦) − 𝑐𝑠𝑃D4(1234) + 𝑐𝑠𝑃D0

]
. (48)

Here 𝑐 = cos𝛼 and 𝑠 = sin𝛼. The bound state can be understood geometrically from the M-theory
perspective, as a M5 brane along (𝑦1234) with transverse oscillations along the M-theory direction,
𝑥11 ≡ 𝑧. The angle 𝛼 is then the angle that the M5 brane makes locally with the 𝑦 direction in the
(𝑦, 𝑧) plane.

Concerning the combination between F1 and NS5, a choice of glues that are purely internal
excitations is: [

NS5(𝑦1234)
F1(𝑦)

]
−→ ( D4(𝑦234), D2(𝑦1) ) . (49)

The projector is found to be:

Π̂NS5-F1 =
1
2

[
1 + 𝑐2𝑃NS5(𝑦1234) + 𝑠2𝑃F1(𝑦) + 𝑐𝑠𝑃D4(𝑦234) + 𝑐𝑠𝑃D2(𝑦1)

]
, (50)

with 𝑐 = cos 𝛽 and 𝑠 = sin 𝛽, and 𝛽 depends in principle on the coordinates (𝑦, 1, 2, 3, 4). The uplift
in M theory of the projector (50) is

ΠM5−M2 =
1
2

[
1 + 𝑐2𝑃M5(𝑦1234) + 𝑠2𝑃M2(𝑦𝑧) − 𝑐𝑠𝑃M5(𝑦234𝑧) + 𝑐𝑠𝑃M2(𝑦1)

]
=

1
2

[
1 + 𝑐

(
𝑐𝑃M5(𝑦1234) + 𝑠𝑃M5(𝑦𝑧234)

)
+ 𝑠

(
𝑐𝑃M2(𝑦1) + 𝑠𝑃M2(𝑦𝑧)

) ]
. (51)

The bound state can be understood geometrically from the M-theory perspective. The original
brane system consists of a M2 brane extended along (𝑦, 𝑧) ending on a M5 brane extended along
(𝑦, 1, 2, 3, 4). The M2 brane pulls the M5 brane towards the direction it extends, 𝑧; this is similar to
the Callan-Maldacena effect [29], where a F1 ending orthogonally on a D3 brane pulls the pulls the
D3 brane towards itself. This pulling effect happens along all the M5-M2 common direction, 𝑦, and
so the bound state looks like a furrow along 𝑦. See Fig. 3. The angle 𝛽 in (51) interpolates between
the projector of a pure M5 brane along (𝑦1234) and that of a M2 brane along (𝑦𝑧). Geometrically,
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y

M5-M2 (y, z, x1)

x1

z

Figure 3: The backreaction of the M5-M2 bound state, projected onto the space (𝑦, 𝑥1, 𝑧). The M2-branes
pull the M5-branes, forming a furrow. The mechanism is similar to the formation of a Callan-Madacena
spike in the D3-F1 brane system.

𝛽 is the angle the M2-M5 bound state makes with the 𝑥1 direction in the (𝑥1, 𝑧) plane. As the angle
of the bending, 𝛽, increases, the charge of the M2 increases as well. The interpolation between the
M5-brane charge and the M2-brane charge is reminiscent of dyonic M2/M5 brane [30]. But here,
the proportion between the M2 and M5 charges depends also on the orientation, 𝛽, of the piece of
the furrow. The best-fitted supergravity solution to this system is perhaps given in [31].

3.2 The projector for binding NS5, F1 and P all together

In the previous subsection, we have worked out the local supersymmetry enhancement (LSE)
in order to construct bound states of the F1-P, NS5-P and NS5-F1 systems: In particular, we have
determined the pairs of glues (or dipoles) one needs to add to the system to complete the LSE.
Such bound states involve only dipoles that exhibit a spherical symmetry in the non-compact spatial
dimension. In order to make a bound state of the F1-NS5-P system, an intuitive guess is to combine
all the two-by-two glues together, and check if the projector conditions are satisfied. The list of
dipoles is summarised in Table 2. The projector for such bound state is then written in the form

NS5(𝑦1234) F1(𝑦) P(𝑦) D4(𝑦234) D2(𝑦1) D4(1234) D0 F(1) P(1)⊗ ⊗
× ×⊗ ⊗

× ×⊗ ⊗
× ×

Table 2: Each line describes a two-charge bound state whose charges are two of the three charges of the
NS5-F1-P brane systems (denoted by

⊗
). Each bound state contains two more dipole charges, denoted by

×. We attempt to construct a three-charge bound state with NS5-F1-P and all six dipole charges.

15



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
7
5

Local supersymmetries and three-charge black holes Yixuan Li

Π̂NS5-F1-P =
1
2

[
1 + 𝛼1𝑃NS5(𝑦1234) + 𝛼2𝑃F1(𝑦) + 𝛼3𝑃P(𝑦)

+ 𝛼4𝑃D4(𝑦234) + 𝛼5𝑃D2(𝑦1) + 𝛼6𝑃P(1) + 𝛼7𝑃F1(1) + 𝛼8𝑃D4(1234) + 𝛼9𝑃D0

]
.

(52)

In addition to the condition that Π̂NS5-F1-P should be a projector, we further impose Π̂NS5-F1-P to be
written of the form (16):

Π̂NS5-F1-P = 𝑓1ΠNS5(𝑦1234) + 𝑓2ΠF1(𝑦) + 𝑓3ΠP(𝑦) . (53)

The solution to these equations is shown to be parameterised by three real numbers (𝑎, 𝑏, 𝑐)
satisfying the constraint 𝑎2 + 𝑏2 + 𝑐2 = 1:

Π̂NS5-F1-P =
1
2

[
1 + 𝑎2𝑃NS5(𝑦1234) + 𝑏2𝑃F1(𝑦) + 𝑐2𝑃P(𝑦)

+ 𝑎𝑏
(
𝑃D4(𝑦234) + 𝑃D2(𝑦1)

)
+ 𝑏𝑐

(
𝑃P(1) − 𝑃F1(1)

)
− 𝑎𝑐

(
𝑃D4(1234) − 𝑃D0

) ]
.

(54)
In terms of M-theory ingredients, the projector is written as:

Π̂NS5−F1−P =
1
2

[
1 + 𝑎�̂�M5 + 𝑏�̂�M2 + 𝑐�̂�P

]
, (55)

where

�̂�M5 ≡ 𝑎𝑃M5(𝑦1 234) + 𝑏𝑃M5(𝑦𝑧 234) + 𝑐𝑃M5(𝑧1 234) , (56)
�̂�M2 ≡ 𝑎𝑃M2(𝑦1) + 𝑏𝑃M2(𝑦 𝑧) + 𝑐𝑃M2(𝑧1) , (57)
�̂�P ≡ 𝑎𝑃P(𝑧) + 𝑏𝑃P(1) + 𝑐𝑃P(𝑦) , (58)

and the brane involutions are given in Appendix A.
The (local) geometric interpretation of the bound state is as follows. We can span the (𝑦, 𝑧, 1)

space using orthonormal vectors (𝑢𝑦 , 𝑢𝑧 , 𝑢1). Let 𝑢⊥M5 be the unit vector orthogonal to the two-
dimensional M5-brane surface in the (𝑦, 𝑧, 1) space. Let 𝑢⊥M2 be its equivalent for the M2-brane,
and 𝑢P the unit vector along the direction of the momentum P. Then, by choosing the orientation
signs appropriately, one can show that the equations (56), (57) and (58) imply successively

𝑎 = 𝑢⊥M5 · 𝑢𝑧 , 𝑏 = 𝑢⊥M5 · 𝑢1 , 𝑐 = 𝑢⊥M5 · 𝑢𝑦 , (59)
𝑎 = 𝑢⊥M2 · 𝑢𝑧 , 𝑏 = 𝑢⊥M2 · 𝑢1 , 𝑐 = 𝑢⊥M2 · 𝑢𝑦 , (60)
𝑎 = 𝑢P · 𝑢𝑧 , 𝑏 = 𝑢P · 𝑢1 , 𝑐 = 𝑢P · 𝑢𝑦 . (61)

Hence, these equations simply imply that:

𝑢⊥M5 = 𝑢⊥M2 = 𝑢P = 𝑎 𝑢𝑧 + 𝑏 𝑢1 + 𝑐 𝑢𝑦 . (62)

Therefore, the M5 brane is parallel to the M2 brane, and the momentum P is orthogonal to both of
them. This is why there are locally 16 supersymmetries.
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Thus, the coefficients (𝑎, 𝑏, 𝑐) have two physical roles. On the one hand, equation (55) tell that
the bound state is a mix of M5, M2 and P along some directions, and (𝑎, 𝑏, 𝑐) specify the relative
charge between each ingredient (M5, M2 and P) in the mix. On the other hand, in (62), (𝑎, 𝑏, 𝑐)
specify the orientation of the local piece of the M5-M2-P bound state, made of a parallel M5-M2
that is boosted orthogonally along its surface. In other words, the local orientation of the bound
state determines the relative charges and vice-versa.

At a larger scale, the M5-M2-P bound state consists of a piece of M5-M2 furrow (of the
previous subsection) carrying momentum along 𝑦 by having oscillations transverse to its surface.
See Fig. 4.

(y, z)

(y, x1)

M5-M2-P (y, z, x1)

z
y

x1

Figure 4: Schematic picture of the M5-M2-P bound state, at the scale of the M5-M2 furrow.

When 𝑎 = 0, the M5-M2-P system becomes an M2-P system. The M2 wraps the direction 𝑧
and carries a momentum wave in the 𝑦 direction, which causes it to wiggles in the (𝑦, 1) plane.
Locally, the slope of the wiggling M2 brane is parameterized by an angle, 𝛼, that the M2 brane in
(𝑦, 1) plane the makes with the 𝑦 direction.

When 𝑏 = 0, the M5-M2-P system becomes an M5-P system. The M5 wraps the directions
(1, 2, 3, 4) and a one-dimensional line profile in the (𝑦, 𝑧) plane. The M5 carries a momentum wave
in the 𝑦 direction, which causes the line profile to wiggles along a linear profile in the (𝑦, 𝑧) plane.
Locally, the slope of the wiggling M5 brane is parameterized by an angle, 𝛼, that the M5 brane line
in (𝑦, 𝑧) plane the makes with the 𝑦 direction.

Finally, when 𝑐 = 0, M5-M2-P system becomes an M5-M2 system. The brane configuration
describes a piece of an M2-M5 furrow that is independent on 𝑦 and has no momentum in the
𝑦 direction. As we explained in the previous subsection, this furrow comes from the Callan-
Maldacena-like interaction [29] between a ‘horizontal’ M5-brane wrapping (𝑦, 1) and a ‘vertical’
M2-brane wrapping (𝑦, 𝑧). Locally, a piece of this furrow is characterized by an angle 𝛽 with
respect to the direction 1 in the (1, 𝑧) plane.
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Generically, when neither of 𝑎, 𝑏, or 𝑐 vanish, the M5-M2-P system describes a piece of the
two-dimensional M5-M2 furrow surface, making an angle 𝛽 with the direction 1 in the (1, 𝑧) plane,
wiggling along its orthogonal direction in the (1, 𝑧) plane, and thus carrying momentum along the
𝑦 direction.

3.3 The supermaze

In the previous subsection, we described how the geometry of the M5-M2-P bound state at the
most local scale (eq. (62)) and at the scale of the M5-M2 furrow (Fig. 3). What happens at the
scale of the entire microstate, which extends on the whole 𝑇4 and M-theory circle, 𝑆1

𝑧?
For a M5-M2 system that is made of 𝑁5 M5 branes wrapping (𝑦1234) and 𝑁1 M2 branes

wrapping (𝑦𝑧), there is no force separating the M2 branes into 𝑁1𝑁5 strips of M2 branes ending
on the M5 branes, see Fig. 5. These 𝑁1𝑁5 strips of M2 branes are numerous, so the dimension
of the moduli space associated to their degrees of freedom is large. For the M5-M2-P black hole,
these strips can carry momentum by their transverse oscillations in the 𝑇4. Each strip carries 4
bosonic degrees of freedom (for the 4 spatial dimensions in 𝑇4), so overall the system has 4𝑁1𝑁5

independent bosonic degrees of freedom.

M5

M5

M5x11

M2 M2

y

x1

Figure 5: Cross-section of 𝑁1 = 2 M2 branes splitting into strips between 𝑁5 = 3 M5 branes. The vertical
axis is the M-theory direction, and the horizontal axis represents one of the internal directions of the M5
branes, 𝑥1. The strips can carry momentum along the 𝑦-circle, which is common to the M2 and M5 branes.

Reducing to Type IIA, the M2-M5-P black hole becomes a F1-NS5-P black hole. And the
fractionated M2 strips become little strings, fractionated by the presence of the NS5 branes and living
in their worldvolume [32, 33]. Again, they are numerous and act as 𝑁1×𝑁5 independent momentum
carriers. In the Cardy limit, the entropy of these oscillations and of their fermionic superpartners

is 𝑆little strings = 2𝜋
√︃
(4 + 2) 𝑁1𝑁5𝑁𝑝

6 , reproducing precisely the entropy of the F1-NS5-P black
hole. We will refer to these microstates as the “Dĳkgraaf-Verlinde-Verlinde-Maldacena (DVVM)
microstates” [34, 35] or “little-string microstates."
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The results in the previous subsection about local supersymmetry enhancement of the M2-
M5-P bound state tell about another perspective on the DVVM microstates and how they carry
momentum. The local transition from a pair of orthogonal M2-M5 branes into a M2-M5 furrow
(Fig. 3 implies that at a global scale, a DVVM microstate transitions into a kind of labyrinth, or
maze, that we call ‘supermaze’. See Fig. 6.

M2

M5

M5

M2

M5

M5

M5

M5

M2

Figure 6: The fractionation of M2 branes into strips and the super-maze: Before the fractionation (left panel)
the M2 brane does not interact with the M5 branes, and can be freely taken away. After the fractionation,
each strip of the M2 branes can move independently, giving the naïve configuration in the middle panel.
However, the M2 strips pull on the M5 brane, creating the supermaze depicted in the right panel.

Now, let us look back to the projector (54) and (55).
Because of the constraint 𝑎2 + 𝑏2 + 𝑐2 = 1, there are three obvious ways to parameterise the

coefficients (𝑎, 𝑏, 𝑐) in terms of the M5-M2 bending angle, 𝛽, and of the wiggle angle, 𝛼.
A first solution is ©«

𝑎

𝑏

𝑐

ª®®¬ =
©«

cos 𝛽
cos𝛼 sin 𝛽
sin𝛼 sin 𝛽

ª®®¬ . (63)

This solution corresponds to the furrow generalisation of a M2 strip carrying momentum through its
transverse motion, in the four-torus, represented here by the direction of 𝑥1. The angle 𝛽 interpolates
between an immobile M5-brane (𝛽 = 0) and a wiggling M2-strip (𝛽 = 𝜋/2).

A second solution is ©«
𝑎

𝑏

𝑐

ª®®¬ =
©«
cos𝛼 cos 𝛽

sin 𝛽
sin𝛼 cos 𝛽

ª®®¬ . (64)

This solution corresponds to the furrow generalisation of a M5-brane carrying momentum through
its transverse motion, in the eleventh dimension, 𝑧. The angle 𝛽 interpolates between a wiggling
M5-brane (𝛽 = 0) and an immobile M2-strip (𝛽 = 𝜋/2).

A third solution is ©«
𝑎

𝑏

𝑐

ª®®¬ =
©«
cos𝛼 cos 𝛽
cos𝛼 sin 𝛽

sin𝛼

ª®®¬ . (65)

This solution corresponds to coupling of the M5-motion mode and the M2-motion mode. The angle
𝛽 interpolates between a wiggling M5-brane (𝛽 = 0) and a wiggling M2-strip (𝛽 = 𝜋/2). This is
momentum mode that is represented in Figure 4.

As the entropy of the NS5-F1-P black hole to come from the fractionated M2-strips, one expects
that the mode (63) is the most entropic mode.
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4. Conclusion

In string theory, the historical answer to the question “What are the black-hole microstates?”
has been, in the D1-D5-P black hole context, to specify, in the open-string regime (𝑔𝑠𝑁 ≪ 1), what
the momentum carriers are and how the momentum is distributed. For the D1-D5-P black hole, the
fact that the momentum is mostly carried by the 1-5 open strings (in the regime 𝑔𝑠𝑁 ≪ 1) make it
difficult to track these degrees of freedom in a regime where 𝑔𝑠 becomes bigger, all the way to the
supergravity scale (𝑔𝑠𝑁 ≫ 1, 𝑔𝑠 ≪ 1).

But in the F1-NS5-P frame, the momentum is known to be carried by the transverse motion (in
𝑇4) of the fractionated/little strings; equivalently, for the M2-M5-P black hole, the bosonic part of the
entropy (which contributes to

√︃
4
6 of the total entropy of the black hole) comes from the transverse

motion in 𝑇4 of the 𝑁2𝑁5 fractionated M2 strips between the M5 branes – in this proceeding we
called them the Dĳkgraaf-Verlinde-Verlinde-Maldacena (DVVM) microstates [34, 35]. We argue
that these momentum carriers admit a natural local supersymmetry enhancement (LSE), and that
at the scale of the 𝑇4, the DVVM microstates backreact into a maze-like brane system, dubbed
the supermaze. The LSE of M2 and M5 corresponds to a Callan-Maldacena-spike (or BIon)
effect [29] to the M2 strips ending on M5 branes, forming a “furrow” along the common M2-M5
direction. Then, the simultaneous LSE of M2, M5 and P corresponds, for the M2-M5 furrow, to
carry momentum by having ripples that are orthogonal to its surface. The amplitudes of the ripples
can be turned off at the loci where the M5 charge is maximal (and the M2 charge is vanishing),
and turned on when the M2 charge non-vanishing. Such a form of the ripples corresponds to the
motion of the M2 strips alone (in the regime where the branes were not interacting): Therefore, the
supermazes account for

√︃
4
6 of the total entropy of the black hole as well.

Historically, the Microstate Geometries programme has endeavoured to find supergravity so-
lutions whose corresponding brane description is based on the desingularization of the D1-D5-P
brane system into a KKM-P dipole, and where the momentum is carried by the shape modes of this
KKM-P dipole (see Section 2.4). These momentum carriers may lead to atypical microstates of the
D1-D5-P or F1-NS5-P black hole. And instead, we have found for the first time microstates with
16 local supersymmetries which carry the momentum through their motion in the internal/compact
dimension [1].

The LSE of the DVVM microstates of the F1-NS5-P black hole reveal how the microstates
behave as one tunes the string coupling constant, 𝑔𝑠, to greater values and the branes start interacting.

In a simplified model in which the M5-M2 furrow is smeared along 3 directions of the 𝑇4,
the supermaze becomes a string web made of M5 branes with M2 flux on it [1], see Fig. 7.
These M5 branes wrap non-trivial cycles, so the backreaction of these simplified supermaze, after
geometric transition, will involve topologically non-trivial bubbles in the compact dimensions.
Therefore, at the supergravity regime, while the mechanism that stabilises the superstrata’s throat is
the quantization of the angular momentum in the non-compact dimensions (see Section 2.4), for the
supermaze, one expects that the microstates do not degenerate into the black-hole solution thanks
to the non-trivial topological bubbles all along the 𝑥11 and 𝑇4 directions.
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x1

z

M2

M5

M5

M2

M2

M2

M5-M2
bound state

M5-M2
bound state

M5-M2
bound state

M5-M2
bound state

2 M5

M2

M2

Figure 7: A super-maze made of 2 M5 branes and a single M2 brane which is smeared along three of the
M5 brane worldvolume directions. Before the fractionation the M2 brane does not pull on the M5 branes,
and can be freely taken away. After the fractionation (middle panel), each strip of the M2 branes deforms the
M5 brane in its vicinity. As the branes move, the web depicted in the middle panel can also transform in the
web depicted in the right panel, which has regions of coincident un-fluxed M5 branes.

5. Questions, answers, and future directions

5.1 How does the super-maze evade horizon formation through the attractor mechanism?

In supergravity, the fact that the asymptotic charges and global supersymmetries impose the
near-horizon geometry is implemented by the attractor mechanism (see e.g. [36]). However, the
attractor mechanism follows an Ansatz which assumes two important hypotheses:

1. The solution is spherically symmetric in the external (i.e. non-compact) spatial dimensions.8

2. The solution is a warped product between the external and internal manifolds, but the warping
depends only on the coordinates of the external dimensions, and not on the internal ones.

For most of microstate geometries families constructed in the literature – for instance multi-
centered/bubbling solutions and superstrata – , the solutions evade the attractor mechanism by
breaking the hypothesis 1, that is to say the spherical symmetry.

If the supermaze admit a supergravity description, the way the supergravity solution would
evade the attractor mechanism is probably by breaking the second hypothesis of the Ansatz. Indeed,
before full reaction, locally at the scale of a M2-M5 furrow, the metric depends on the internal
coordinates, in particular on the M-theory direction, 𝑧; see the solution in [31].

5.2 Could the supermaze describe more entropy than that of the black hole?

It seems from Fig. 4 that a piece of M2-M5-P furrow has more degrees of freedom than a
single strip of M2 brane ending on a M5 brane. Could the supermaze describe more entropy than
the DVVM microstates, and thus have more entropy than the black hole?

First, the description in which one specifies the location of the wiggling furrow in the (𝑦, 𝑧, 1)
space gives a classical profile upon which one should in fine apply geometric quantisation. Therefore,

8Actually, the horizon does not need to have the geometry of a sphere; there can be attractor mechanisms for horizons
with the geometry of a Riemann surface [37]. In such situations, the metric takes an Ansatz that preserves the symmetries
of the Riemann surface as one moves away from the horizon. This is what really matters in the remaining of the discussion.
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any additional degree of freedom the supermaze seems to have with respect to the DVVM microstates
may not be independent from the ‘pure DVVM’ degrees of freedom. Besides, there is the possibility
that the fermionic degrees of freedom of the DVVM microstates could be described in terms of
some bosonic degrees of freedom of the supermaze that do not correspond to the motion of the M2
strips in the 𝑇4.

Second, the projector only reveals what happens at a very local scale. There are additional
constraints at the scale of the entire supermaze and at the scale of the M2/M5 furrow/spike.

At the scale of the supermaze, take, for instance, the mode (65), depicted in Fig. 4. One has
to imagine this mode with a spherical symmetry in the 𝑇4 directions, so that the mode corresponds
to a M2 spike that becomes bigger and smaller, but at the same time the M5 brane has to move up
and down. One has to check that the motion of the M5 brane is consistent with the motion of all
the M2 strips that end on it, which reduces the number of degrees of freedom by a factor of 𝑁5.

At the scale of the furrow/spike, one may think there is a characteristic size corresponding to
the size of the base of the M2-M5 spike/furrow. But actually this size is controlled by the radius of
the circle, 𝑆1

𝑦 , the same way the typical size of a Callan-Maldacena spike is controlled by the string
coupling, 𝑔𝑠. Below we write their connection through dualities.

Consider a D4-brane in the directions 1234, and a F1-string along the direction 𝑦, ending on
the D4-brane orthogonally. This picture is valid when 𝑔𝑠 ≪ 1. As one increases 𝑔𝑠, this system
backreacts and undergoes the Callan-Maldacena effect: namely, the string pulls the world-volume
of the D4-brane, thus forming a spike.

The M5-M2 bound state is dual to the D4-F1 Callan-Maldacena spike, after 11-dimensional
uplift along 𝑧, and a flip in the coordinates (𝑦, 𝑧), in the following fashion:(

D4(𝑥1𝑥2𝑥3𝑥4)
F1(𝑦)

)
IIA

uplift on 𝑧
−−−−−−−−−→

(
M5(𝑧, 𝑥1𝑥2𝑥3𝑥4)

M2(𝑧, 𝑦)

)
M

(𝑧,𝑦)-flip
−−−−−−−−→

(
M5(𝑦, 𝑥1𝑥2𝑥3𝑥4)

M2(𝑦, 𝑧)

)
M

. (66)

At fixed number of branes and strings, the parameter that controls the backreaction of the
Callan-Maldacena spike is the string coupling, 𝑔𝑠. From the duality chain (66), for a M5-M2 bound
state, the transition between orthogonal M5-M2 branes into the M5-M2 furrow happens as the
radius, 𝑅𝑦 , of their common direction, 𝑦, increases. The backreaction parameter of the M5-M2
furrow, 𝑅𝑦 , is linked with that of the D4-F1 Callan-Maldacena spike, 𝑔𝑠 by

𝑅𝑦 = 𝑔𝑠
√
𝛼′ , 𝑔𝑠 = (𝑅𝑦/𝑙11)3/2 , (67)

where 𝑙11 is the eleven-dimensional Planck length.
In Type IIA string theory, as 𝑔𝑠 increases, the Callan-Maldacena spike grows in size in the

directions of the D4, (𝑥1, 𝑥2, 𝑥3, 𝑥4). From equation (67), as the radius 𝑅𝑦 increases (in units of the
eleven-dimensional Planck length), the M5-M2 furrow gains more and more width – that is to say,
size in the 𝑇4 directions.

For models of two-charge M5-M2 black holes, as well of three-charge M5-M2-P black holes,
the radius of the common direction, 𝑅𝑦 , is assumed to be important with respect to other compact
directions, the torus 𝑇4 and the M-theory circle 𝑆𝑧 . This determines a large coupling constant,
𝑔𝑠, in Type IIA string theory, which implies an important pulling effect of the Callan-Maldacena
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spike. Therefore, one expects the M5-M2 furrow to be thick, and that the effect of the bound-state
transition quite important for microstates of the M5-M2(-P) black hole.

In a nutshell, there is a more global condition that fixes the size of the furrow at its base –
the size is controlled by 𝑔𝑠. Therefore, we think it is incorrect to interpret that the supermaze has
degrees of freedom in addition of those of the DVVM microstates (at least not at the leading order
in the entropy). Instead, the most natural interpretation should be that the DVVM microstates give
a picture of the microstates at 𝑔𝑠 = 0, and so they are an approximation of the supermaze, the
same way the open string ending orthogonally on a D3 brane is the 𝑔𝑠 = 0 approximation of the
Callan-Maldacena spike.

5.3 Should local supersymmetry enhancement also work for D1-D5-P black holes?

In your talk you enhanced the local supersymmetries of the DVVM microstates of the F1-NS5-
P black hole. Should the LSE (local supersymmetry enhancement) principle also work for the
microstates of the D1-D5-P black holes, often pictured as some 1-5 open strings?

Indeed, although the F1-NS5-P black hole is U-dual to the D1-D5-P black hole, the picture
that we have of the microstates that account for their entropy are very different and not dual. A very
interesting question is to understand whether one can find microstates with 16 local supersymmetries
in all duality frames.

One possible outcome is that LSE works for DVVM-type fractionation (where the entropy is
coming from the fractionation of the F1’s inside the NS5’s), but not for ‘Strominger-Vafa’-type
fractionation (where the entropy is coming from momentum-carrying 1-5 open strings). In other
words, in this situation, one would be able to track the degrees of freedom characterising the
microstates from 𝑔𝑠 = 0 (zero-gravity regime) to 𝑔𝑠 ≲ 1/𝑁 (finite/weak-gravity regime) in the case
of the F1-NS5-P black hole (with the supermaze degrees of freedom), but not in the case of the
D1-D5-P black hole. If the goal was to prove that the horizon is an artefact of smearing the stringy
degrees of freedom, one could be satisfied by this outcome: Since a horizon is a horizon in all
duality frames, one just needs to resolve the horizon in one of the duality frames.

Another outcome would be that one should be able to find degrees of freedom characterising
the microstates that can be tracked from the zero-gravity regime to (at least) the finte/weak-gravity
regime for the the D1-D5-P system as well. These degrees of freedom do not need to be the 1-5
open strings, which perhaps cannot be tracked to the weak-gravity regime; but the hard part is to
find enough of them to account for the Strominger-Vafa entropy [38]. This is work in progress.

Another type of supersymmetric black hole for which the local supersymmetric enhancement
is unclear is those which involve branes of the same type orthogonal to each other.

The supersymmetry enhancement formalism just tells us what ingredients can be used in order
to make a local 16-supersymmetric state. But the formalism does not tell about the size of the bound
state. For instance, take M2-M2 black holes, made of pairs of orthogonal M2 branes in e.g. a 𝑇4,
with one species of M2 branes wrapping the directions 12, and the other wrapping the directions 34.
The glues to add in order to enhance the local supersymmetries are for example M2(13) and M2(24),
or M2(14) and M2(23). The coefficients in front of the main excitations and the glues reveal that
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the interpolation from the M2(12) to the M2(34) has to be done through a holomorphic curve in the
𝑇4; see [39]. It is not clear that one has found a local resolution of the M2-M2 intersection. Instead,
the LSE may well mean that, starting from the first M2(12), one needs to go around the scale of the
𝑇4 to reach the second M2(34).

Similarly, a way to enhance the local supersymmetries of M5(y1234) and M5(y1256) can also
be done through a holomorphic curve along the 3456 space. The LSE formalism does not tell if the
size of the bound state is at the scale of the Calabi-Yau three-fold, like the MSW microstates [40],
or if one can replace locally the orthogonal intersection between the M5(y1234) and M5(y1256)
with some other configuration.
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A. Projectors and involutions for branes

In this Appendix we list the involutions associated to common brane type. In Type II string
theory, they are:

𝑃P = Γ01 , 𝑃F1 = Γ01𝜎3 ,

𝑃IIA
NS5 = Γ012345 , 𝑃IIB

NS5 = Γ012345𝜎3 ,

𝑃IIA
KKM(12345;6) = Γ012345𝜎3 , 𝑃IIB

KKM(12345;6) = Γ012345 , (68)

𝑃D0 = Γ0𝑖𝜎2 , 𝑃D2 = Γ012𝜎1 , 𝑃D4 = Γ01234𝑖𝜎2 , 𝑃D6 = Γ0123456𝜎1 ,

𝑃D1 = Γ01𝜎1 , 𝑃D3 = Γ0123𝑖𝜎2 , 𝑃D5 = Γ012345𝜎1 .

The projectors in M-theory are given by:

𝑃P = Γ01 , 𝑃M2 = Γ012 , 𝑃M5 = Γ012345 , 𝑃KKM(123456;7) = Γ0123456 . (69)
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