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The appearance of an initial (and sometimes also a final) cosmological singularity in practically all
realistic models of the evolution of the universe is a distinguishing feature of modern cosmology.
Tensions concerning this question are always present. There are attempts to construct cosmological
models where the geometry is always regular. However, some approaches based on the description
of the possible passage through the singularities were also developed recently. We have tried to
elaborate a general formalism, telling when it is possible and when the singularity present an
unsurmountable obstacle.
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1. Introduction

Appearance of singularities is one of the most important phenomena in General Relativity
and its generalizations and modifications. The singularities were first discovered in such simple
geometries as those of the Friedmann universes and the Schwarzschild black holes and later their
general character was established [1, 2]. The investigation of the oscillatory approach to the
cosmological singularity [3] known also as Mixmaster universe [4] has opened the way to the
birth of a new branch of mathematical physics connecting chaos in cosmology and hyperbolic
Kac-Moody algebras [5].

Should we try to avoid the singularities and to construct models without them? There are
attempts to construct histories of the universe without singularities (see e.g. [6]). One can construct
also regular black holes (see e.g. [7–10]).

However, one can try also to cross a singularity. Sometimes one can suggest and justify a
prescription to match the geometry and matter field configurations in the regions separated by a
singularity. This can be called singularity crossing.

In the case of the so called soft or sudden singularities, the curvature is divergent but the
Christoffel symbols are finite [11]. The geodesics are well defined and the geometry can be
reconstructed. The crossing of the Big Bang - Big Crunch singularities looks more counterintuitive
[12]. However, it can be sometimes described by using the reparametrization of fields, including
the metric. One can say that to do this, it is necessary to resort to one of two ideas, or a combination
thereof. One of these ideas is to employ a reparameterization of the field variables which makes
the singular geometrical invariant non-singular.

Another idea is to find such a parameterization of the fields, including, naturally, the metric,
that gives enough information to describe consistently the crossing of the singularity even if some
of the curvature invariants diverge.

The application of these ideas looks in a way as a craftsman work (see e.g. [13–15]). We have
tried to develop a general formalism to distinguish “dangerous” and “non-dangerous” singularities,
considering the field variable space of the model under consideration [16–18]. Field redefinitions
play prominent roles in physics. They are primarily used at the linear and perturbative level in
high-energy physics, but their nonlinear generalizations are being met with increasing interest,
particularly in the study of gravity. Fields are dummy variables in the path integral, hence it
is generally expected that quantities computed from functional integrals, hence physics, should
remain invariant under field reparameterizations. From this viewpoint, fields are coordinates in the
infinite-dimensional configuration space, field redefinitions are changes of coordinates in this space,
and path integrals take on a more geometrical taste, generalizing the usual theory of integration on
manifolds. This has led to the Vilkovisky-DeWitt effective action [19–21] where the coupling to the
background field is made invariant by the introduction of a Levi-Civita connection in configuration
space. Thus, we shall take the position that physics at the fundamental level should not depend on
the way fields are parameterized.

The structure of the paper is as follows: in the second section we discuss standard spacetime
singularities; in the third section we give some examples of spacetime singularities removable
by field redefinitions; in the fourth section we consider the singularities in the space of field
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configurations; in the fifth section we treat quantum effective action and topological classification
of functional singularities; the final section contains concluding remarks.

2. Spacetime singularities

There exist singularities in themetric that are connectedwith the unhappy choice of coordinates.
Such singularities are called “coordinate singularities”. Some of them are trivial like the singularity
in the origin of the spherical coordinate system of the flat space r = 0. It is removed by the transition
to the Cartesian coordinates. The coordinate singularity at the horizon in the Schwarzschild metric
is much more involved:

ds2 =

(
1 −

2M
r

)
dt2 −

(
1 −

2M
r

)−1
dr2 − r2(dθ2 + sin2 θdφ2).

One can eliminate it by the transition to the Kruskal coordinates, but the horizon is physically
significant. As is well known one can cross it only in one direction. Mathematically, there exists
no parameter which smoothly connects the Kruskal change of coordinates to the identity. Such
changes of coordinates are called “large”.

In the center of the Schwarzschild geometry r = 0 one has the singularity of the Kretschmann
invariant

Ri jmnRi jmn,

which cannot be eliminated by a coordinate change.
In the Friedmann universe

ds2 = dt2 − a2(t)dl2

the Ricci scalar R diverges at t = 0.
The question arises what can we do with the singularities of this kind?

3. Examples of spacetime singularities removable by field redefinitions

Let us consider as an example the Hawking-Turok instanton [22].

ds2 = dσ2 + b2(σ)
[
dχ2 + sin2( χ) dΩ2

]
,

b(σ) ≈



σ , for σ ∼ 0 ,
(σ f − σ)1/3 , for σ ∼ σ f ,

φ(σ) ≈



1
2 σ

2 , for σ ∼ 0 ,

−

√
2
3 ln(σ f − σ), for σ ∼ σ f .

On Wick rotating χ, one obtains an open universe. The Ricci scalar is

R ∼
1

(σ f − σ)2 ,

there is a spacetime singularity at σ = σ f .
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Changing spacetime coordinates to dσ̄ = b−1 dσ, followed by a Weyl transformation ḡµν =

b−2 gµν gives us a non-singular geometry.
Let us make another Weyl transformation

ḡµν = Ω
2 g̃µν,

Ω = 1 + β e−α
√

2/3φ,

where α and β are free parameters. Introducing a new, canonically normalized scalar field

dφ̃2 = 6 e−
√

2/3φ
Ω

2 ∂ lnΩ
∂φ

*
,

√
2
3
−
∂ lnΩ
∂φ

+
-

dφ2,

we come to the situation when both the geometry and the scalar field are regular.
As a second example we consider a flat Friedmann universe with a scalar field

ds2 = dt2 − a2(t)dl2.

In such a universe there is a Big Bang - Big Crunch singularity. One can prescribe the rules for
its crossing making conformal transformations between the Einstein and Jordan frames, combined
with the transformation of the scalar field, which leaves it canonically normalized [14].

4. Field space and singularities

Let us try to answer the question: When the spacetime singularities can be removed by a
reparametrization of the field variables? We can put forward the following hypothesis: it can be
done when the geometry of the space of the field variables is non-singular. The notion of the
field space S was developed in order to treat on the same (geometrical) footing both changes of
coordinates in the spacetimeM and field redefinitions in the functional approach to quantum field
theory. This approach requires introducing a local metric G in field space S and computing the
associated geometric scalars by defining a covariant derivative which is compatible with G. The
metric G can be determined by the kinetic part of the action and its dimension depends on the field
content of the latter [19–21].

First of all we would like to consider the geometry of field space for pure gravity. For pure
gravity theories there is a unique one-parameter family of field-space metrics

Gab = GAB δ(x, x ′) ,

where
GAB =

1
2

(
gµρ gσν + gµσ gρν + c gµν gρσ

)
called DeWitt super-metric. It involves a dimensionless parameter c. Following [19] and [20], we
introduce also the Christoffel symbols, covariant derivatives and curvature tensor in the field space.

For the DeWitt functional metric, the Ricci scalar is

R =
n
4
−

n2

8
−

n3

8
,
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where n is the dimensionality of the spaceime.
We shall define the functional Kretschmann scalar of the underlying field space S as

K = RABCD R
ABCD .

Rather cumbersome calculations give

K =
n
8

(
n3

4
+

3n2

4
− 1

)
.

This shows that K is smooth for any spacetime metric g in any spacetime dimension n. Besides,
K does not depend on the DeWitt parameter c. Therefore, every theory of pure gravity is free of
curvature singularities in the field space G.

5. Quantum effective action and topological classification of functional singularities

At some field configurations the quantum effective action and the corresponding path integral
can become ill-defined. These configurations can correspond to the appearance of the gravitational
singularities.
It is somewhat surprising that both the functional Kretschmann scalar and the path-integral measure
is non-singular in four spacetime dimensions for the DeWitt metric. This suggests that n = 4 stands
at a special place from the perspective of the geometry of field space.

Let us introduce the functional

ψ[ϕ] = ei Γ[ϕ].

We shall call ψ[ϕ] the functional order parameter because ψ plays the analogous role of an order
parameter in the theory of phase transitions in ordered media or cosmology (see e.g. [23]).

The field spaceM can be thought of as the ordered medium itself, whereas functional singu-
larities correspond to topological defects. The functional order parameter ψ defines the map

ψ :M → S1,

from the field space to the unit circle, the latter playing the role of the order parameter space. The
singularities can be characterized by the fundamental group (first homotopy group).
Since π1(S1) = Z, the homotopy classes are labeled by the winding numberW .

A functional singularity exists wheneverW , 0.
Let us consider as an example a flat Friedmann universe filled with a massless scalar field,

minimally coupled to gravity. There is the singularity of the Big Bang - Big Crunch type. This
singularity can be eliminated by a field reparametrization. Direct (while tricky) calculation shows
that in this case the winding number is equal to zero. Let us discuss it in more detail. The action
here is

Γ̃ =

∫
Ω

d4x
√
−g

(
R

16 πGN
−

1
2
∂µφ ∂

µφ

)
,

where GN denotes the Newton’s constant. The simplest cosmological spacetime is given by the
spatially-flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = −N2 dt2 + a2
[
(dx1)2 + (dx2)2 + (dx3)2

]
,
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where N = N (t) denotes the lapse function and a = a(t) is the scale factor. For a homogeneous
scalar field φ = φ(t), we find

a3
±(t) = ±3

√
κ pφ t (1)

φ±(t) = ±
1
√
κ

log
(
±

t
t0

)
, (2)

where t0 is an integration constant, pφ = a3 φ̇ is a constant of motion that follows from the equation
for φ and we have set N = 1 in the final expressions. The different signs above correspond to
different regimes of evolution of the universe. Expansion takes place for the positive sign, with
0 < t < ∞, and contraction for the negative sign, with −∞ < t < 0. We have also adjusted the
integration constants accordingly in order to obtain a±(0) = 0. With such a choice we can join the
two regimes of evolution at t = 0 to form a “bouncing” configuration, which shall be denoted by
ϕis = (as(t), φs(t)).

It is not difficult to show that the Ricci scalar for the solution (1) diverges for t → 0, which
indicates the existence of a spacetime singularity at the bounce. We also note that the determinant
of the spacetime metric vanishes at the bounce, which could suggest the presence of a covariant
singularity. Thus, one can suspect that the spacetime singularity at t = 0 corresponds to a
functional singularity, which would prevent us from defining observables for the bouncing solution
ϕis. However, the calculation of the functional winding numberW shows otherwise. Following the
formalism described in [17], we encircle the potentially singular configuration ϕis with a curve γ1

parameterised as
γI (t; θ) = (as(t) + A cos θ, φs(t) + A sin θ, 1) , (3)

for all values of t for which a = as(t) and φ = φs(t) are defined, and A is a positive constant. Since
the effective action diverges when computed along (3), the calculation of the winding number for
such a parameterization is quite tricky. Nothing forbids us from parameterizing γ1 differently, but
it is easier to exploit the freedom to add total derivatives to the effective action. By including the
total derivative

F =
A3

3
cos3 θ φ̇ +

A2

2
cos2 θ ȧ , (4)

we can cancel out the divergence in the time integral over the configurations (3). This results in
Γ[ϕs] = 0, already suggesting that the apparent singularity is removable. Indeed, the effective
action evaluated along (3) vanishes identically, namely Γ(θ) = 0, which yields

W = 0 . (5)

This implies that the apparent singularity at ϕs is indeed removable by local alterations of the
effective action in the vicinity of ϕs. In fact, by imposing a cutoff T > 0 in the lower limit of the
time integral in Eq. (5) and taking T → 0 in the end, one finds

lim
T→0
ΓT [ϕs] = 0 , (6)

where ΓT [ϕs] denotes the regularized effective action. Therefore, the spacetime singularity at t = 0
does not correspond to a functional singularity and physical observables can be defined normally.
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This shows that configuration-space coordinates must exist in which the spacetime singularity
vanishes completely. Indeed, the corresponding reparameterizations were found not only for the
Friedmann universe [14] but also for the Bianchi - I universe [24] and for the Kantowski-Sachs
model [25].

6. Conclusions

Let us recapitulate briefly the content of our works. We have proposed to investigate singular-
ities in the field space rather than in spacetime. Existing examples show that certain singularities
in spacetime can be removed by field redefinitions albeit being non-removable under change of
coordinates. Finding field redefinitions that can eliminate singularities is not always feasible in
practice. The promising approach is to calculate curvature invariants in field space. We showed
that the Kretschmann scalar of the DeWitt functional metric turns out to be free of singularities. We
should note that removing a singularity from a field configuration certainly makes its description
more complete, but the fact that a singularity is removable in field space does not imply that there
is no interesting physics occurring around it. Horizons as removable spacetime singularities clearly
teach us that investigating the physics likely requires a case by case study. In fact, studying specific
models of self-gravitating systems is one of the natural developments of the present work, as it is
the formal analysis of field-space invariants for more general theories than pure gravity. We have
discussed also the relation between the structure of the quantum effective action and the presence
of the singularities in field space. We have treated in some detail the case of the flat Friedmann
cosmological model with a massless scalar field and have shown that the singularity in the field
space is absent.
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