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1. Introduction

There are several promising attempts towards a theory of quantum gravity; all of them still
not satisfactory. The most popular frameworks that try to address the description of gravity at the
fundamental level are: String-branes theory / M theory, Loop quantum gravity and most recently
the Asymptotic Safety program (and similar RG approaches). String theory, by far the most popular
and workable framework, operates in more than three spatial dimensions and assumes a continuum
background that needs to be compactified. On the other hand Loop quantum gravity (or spin foam
models) is a background independent methodology defined in 3+1 dimensions, handling discrete
spectrum of quantum spacetime observables. It has certainly some conceptually attractive features.
Asymptotic safety (AS) ,[1], [2], works also in 4-dim and with continuous manifolds. It is a minimal
proposal that keeps the same symmetries and fields of Quantum Field Theory (i.e. SM) and General
Relativity (GR). It was able to indicate that general relativity and other extensions of the Einstein
Hilbert action (with higher derivatives) can be non-perturbatively renormalizable models. It is not
a complete framework since we don’t know the Lagrangian of our world. Finally, it is a background
independent approach. The steps that are followed in the framework are. First we define the theory
meaning the field contents (e.g. graviton other gauge fields) plus symmetries (e.g. coordinate trns).
We always respect diffeomorphism invariance plus some gauge symmetries from the non gravity
sector like SM gauge symmetries. Next, we determine the family of actions i.e. specific interactions
of fields that respect symmetries. Consequently, we work with functional renormalization group
equations in the theory space. The space containing all actions with “coordinates” coupling
constants (e.g. 𝐺, Λ), The renormalization group flow connects physics at different scales 𝑘 , that’s
why at the end we have 𝐺, Λ as running coupling constants.

In conventional quantum field theory quantum systems are treated with many degrees of
freedom and many orders of magnitude in length, or in energy and momentum. However, the
measurements are typically performed at low energies, in the infrared (IR) regime. A different
mathematical model/theory where those quantum fluctuations or modes are taken into account for
an energy which is between the UV and IR energy scales is needed. The functional renormalization
group (RG) method is such a mathematical tool to take into account the quantum fluctuations
step by step, consistently. The ultraviolet Lagrangian contains interaction terms multiplied by the
couplings. The renormalisation group flow method consistently eliminates the degrees of freedom
of the theory as we go towards lower energy and describes the values of the running couplings, [5].
Finally, we can obtain the value of IR couplings at practically zero energies. In the IR the effective
potential usually has an involved structure.

Weinberg first proposed in 1976 [3]. that perturbative renormalizability is not the only way for
a theory to be complete at high energies. It is enough to have finite values, at UV energies, to a finite
number of parameters that appear in the action. Asymptotic safety proposes just this thing, a theory
to have these two constraints: 1) a finite number of finite parameters that determine the theory at
high energies 2) with finite fixed values. While the general idea has been around for many years, it
has only been in the late 1990s, following works by Wetterich and Reuter, that asymptotically safe
gravity has been formulated, [4], [5].

In the present work we review the cosmological consequences of the gravity sector of an action
that exhibits Asymptotic Safe behaviour. In this context, we name these modified gravity theories
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as Asymptotic Safe Gravity. There are several works that try to solve various different problems of
High energy physics, Cosmology and Astrophysics using the properties of Asymptotic Safe Gravity.
There are for example several attempts that try to explain inflation, dark energy, dark matter, to
recover the MOND dynamics and Hubble tensions. Furthermore, results from a series of papers
concerning AS swiss cheese model with an interesting solution of the dark energy problem will
be given. [6], [7], [8], [9], [10]. Finally, focusing again on the dark energy model the low energy
cosmic evolution of recently developed minimally modified Einstein equations compatible with AS
gravity, [11], will be given for the first time.

2. Cosmological implications of Asymptotic Safe Gravity

Several interesting works have appeared in literature that study the cosmological and astro-
physical consequences of AS gravity [12]. They can be categorised in three cases. First, models
that perform RG improvement implemented at the level of the equations of motion, which should be
handled with care as far as the energy conservation is concerned (in the absence and in the presence
of matter) and second, studies that start working with an AS compatible effective action. Finally the
most crude approach is the improvement on existing classical solutions of general relativity, which
may be accepted for small time intervals of the cosmic evolution and not for the whole cosmic
history range. These approaches are approximations since AS framework although a rigor method-
ology capable of proving UV completeness for a class of actions, resembles the existence theorems
of differential equations and thus cannot not provide or explain yet the fundamental Lagrangian or
the emergence of the cosmological spacetime. However, it is expected that these RG improvements
provide a fair description of AS phenomenological consequences assuming of course that the AS
framework is the correct description of Nature.

Interesting works that connect the horizon and flatness problems and the inflationary period
within the AS framework are [14, 17, 20–22, 27, 28, 30, 33–38, 40, 43–46, 52, 53]. The idea is
that the running of a positive cosmological constant Λ which is treated as a coupling, can trigger
the initial acceleration, while the exit from it, is guaranteed due to the RG flow that reduces the
value of Λ. There is also the possibility to get inflation from higher derivative gravity actions
that are treated in the AS framework and they have a non Gaussian fixed point, which means
that they are non-perturbatively renormalised, because they phenomenologically behave like 𝑅2
gravity. The cosmic entropy issue usually connected with the particle creation after inflation during
the thermalisation has also been considered. Studies that provide solutions to the cosmic entropy
problem are [14, 21, 24]

There are also several proposals that try to explain the so called dark energy problem with the
RG evolution of Λ, see [6, 8, 18, 19, 32]. We will elaborate more on this in the next section.

Concerning the important issue of spacetime singularity avoidance/resolution, AS gravity can
offer also solutions, [13–15, 26, 48]. Quantum gravity approaches that assume a discrete spacetime
or an initial network of events can resolve naturally the problem of spacetime singularities. AS is
a theory that encapsulates a continuous gravity field. The reason that AS can provide singularity
avoidance is the anti-screening of gravity strength as well as the possible existence of a positive Λ

in the UV regime.
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Asymptotic Safe Gravity modifies also the properties of black holes such as non singular center,
inner horizon, possible final remnants and radiation, as it is suggested in [47, 49–51]

3. Swiss cheese and recent cosmic acceleration

It is not known if there is at the far infrared limit, (𝑘 → 0), a fixed point. The infrared behavior
of the RG flow trajectories describing the running behavior of 𝐺 and Λ cannot be trusted since the
RG methodology stops to be valid as 𝜆𝑘 reaches the value, 1/2. However, the divergence of the
beta functions happens near 𝑘 = 𝐻0. Thus, AS cannot predict the exact current value of Λ. It may
either be very negligible solving the old cosmological problem or it can be close to the Λ𝐶𝐷𝑀

model value. In the latter case AS can explain the recent cosmological constant problem but with
fine tuning and without answering about the coincidence problem. However, AS may explain both
old and new cosmological constant, as well as the coincidence problem without fine tuning with the
AS swiss model first proposed in [6] and further studied and generalised in [9], [10], [8], [7].

The recent cosmic acceleration that is attributed to a Dark energy (DE) component of the
Universe,[55], perhaps is the result of a time varying cosmological constant Λ(𝑧). We will present
now, the proposed solution of [6], [9], based in AS theory. It removes the coincidence and fine
tuning problem connecting the recent large scale structure and its characteristics with the recent
cosmic acceleration. There are also some other works, [65], [66], [67], that resolve partially the
recent cosmic acceleration and coincidence problem using the recent large scale structure formation;
these works prove that inhomogeneities can generate up to a point a DE effect. In [6],[9], the local
value of a positive Λ associated with galaxies or clusters of galaxies is the reason of the solution.

AS swiss model,[6], generalised in [9], works with 𝐺𝑘 and Λ𝑘 not in the UV regime (near the
NGFP fixed point) or in the far infrared scale, but in the intermediate astrophysical scale. Other
studies that assume such IR corrections at astrophysical scales are, [56].

The AS swiss cheese model also elaborates AS inspired quantum improved Schwarzschild-
de Sitter metric Eq.(1), [57]. These metrics have been chosen to describe the homogeneously
distributed galaxies and/or clusters of galaxies.

AS theory proposes that 𝐺𝑘 and Λ𝑘 are functions of the energy scale related cutoff 𝑘 . Note
that the cutoff 𝑘 is not as a momentum flowing into a loop but can be related to an inverse of a
typical distance over which we average the field. So, in a cosmological context of use, 𝑘 could be
related to a cosmic time, [70], or cosmic/astrophysical distance. In the AS swiss cheese the scale 𝑘

is connected with the typical size of a cluster of galaxies.
The original swiss-cheese model or Einstein-Strauss model [58] describes a global homoge-

neous and isotropic Universe that consists locally of many homogeneously distributed Schwarzschild
black holes. The spacetime matching of the global exterior metric with a local spherical black hole
is achieved respecting the Israel-Darmois conditions [59]. A smooth matching of the two solutions
happens if the first fundamental form (the intrinsic metric) is equal and the second fundamental
form is opposite for the two metrics across the whole matching surface if such a surface exists.

The AS swiss cheese model matches an AS corrected Schwarzschild-de Sitter metric with
a homogeneous isotropic metric. Both metrics contain 𝑘 dependent cosmological and Newton
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constants. Thus, we have

𝑑𝑠2 = −
(
1 − 2𝐺𝑘𝑀

𝑅
− 1

3
Λ𝑘𝑅

2
)
𝑑𝑇2 + 𝑑𝑅2

1 − 2𝐺𝑘𝑀

𝑅
− 1

3Λ𝑘𝑅
2
+ 𝑅2 𝑑Ω2 , (1)

where 𝐺𝑘 and Λ𝑘 are functions of a characteristic scale 𝑘 of the system under investigation. The
homogeneous and isotropic metric is of the form

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
[

𝑑𝑟2

1 − 𝜅𝑟2 + 𝑟2𝑑Ω2
]
, (2)

where 𝑑Ω2 =

(
𝑑𝜃2 + sin2𝜃 𝑑𝜑2

)
the metric of the two sphere and 𝑎(𝑡) is the scale factor and

𝜅 = 0,±1 the spatial curvature
The matching requirements provide the following equations for 𝑅𝑆 which is the value of black

hole radius in the matching surface (𝑟 = 𝑟Σ), which is related with the cosmic scale factor,

𝑅𝑆 = 𝑎𝑟Σ (3)( 𝑑𝑅𝑆

𝑑𝑡

)2
= 1−𝜅𝑟2

Σ − 𝐹 (4)

2
𝑑2𝑅𝑆

𝑑𝑡2
= −𝑑𝐹

𝑑𝑅
|𝑅𝑆

(5)

with 𝐹 = 1 − 2𝐺𝑘𝑀

𝑅𝑆
− 1

3Λ𝑘𝑅
2
𝑆

Eqs. (3, 4, 5) give the conventional FLRW expansion rate and cosmic acceleration equations
for constant 𝐺𝑘 and Λ𝑘 . For the cse of AS gravity Eqs. (3, 4, 5) provide modified equations of
motion that generate the recent passage from a decceleration to an acceleration era.

AS theory at the present incomplete stage cannot provide the exact dependence of the cutoff
𝑘 on physical scales like lenght or energy. Thus, for phenomenological purpose various simple
scalings have been proposed [61], [62], [21], [63], [64]. In the AS swiss cheese 𝑘 is associated
with a characteristic astrophysical length scale 𝐿. So, the ansatz for 𝑘 is 𝑘 = 𝜉/𝐿, with 𝜉 is a
dimensionless order-one number. A natural choice which generates the desired phenomenology, is
to set as 𝐿 equal to the proper distance 𝐷 > 0. The use of proper distances proved also to be a
sucesful choice also for excibiting a singularity avoidance/smoothing in spherical solutions of AS
gravity [13].

The proper distance along a radial path, 𝑑𝑇 = 𝑑𝜃 = 𝑑𝜑 = 0 from 𝑅0 till 𝑅 is given by

𝐷 (𝑅) =
∫ 𝑅

𝑅0

𝑑R
√
𝐹
. (6)

The value of 𝑘 is 𝑘𝑆 = 𝜉/𝐷𝑆 , where 𝐷𝑆 (𝑅𝑆) is the proper distance at the matching surface.
Assuming a far IR fixed point the dimensionless Newton constant and cosmological constant run
according to the trajectory

𝑔 (𝑘) = 𝑔∗ + ℎ1𝑘
𝜃1 , 𝜆 (𝑘) = 𝜆∗ + ℎ2𝑘

𝜃2 , (7)

with (𝜃1, 𝜃2 ≥ 0) two unknown critical exponents.
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Finally, solving the ODEs 4,5, that describe the cosmic evolution and refer to the expansion
of the Universe we can determine the time evolution of the dark matter contribution, Ω𝐷𝑀 , the
dark energy contribution Ω𝐷𝐸 , the equation of state parameter 𝑤𝐷𝐸 and the deceleration parameter
𝑞 = − 𝑎 ¥𝑎

¤𝑎2 . All the important quantities as functions of the redshift are give n below.
The derivative with respect to the redshift of the proper distance is

𝐷 𝑝

𝑑𝑧
= − 𝑟Σ

𝑠 (𝑧 + 1)2 (8)

with

𝑠 = −
2𝑀 (𝑧 + 1)

(
𝑔∗𝐷𝑝 (𝑧)2

𝜉 2 + ℎ1

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃1−2
)

𝑟Σ
−
𝑟2
Σ

(
ℎ2

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃2+2
+ 𝜆∗ 𝜉 2

𝐷𝑝 (𝑧)2

)
3(𝑧 + 1)2 + 1 (9)

This is one of the differential equations we have to solve together with the expansion rate ODE
for the scale factor.

𝑞(𝑧) =
[
6𝐽𝑀𝐷 𝑝 (𝑧)5

(
ℎ1

(
𝜉

𝐷 𝑝 (𝑧)

) 𝜃1

+ 𝑔∗

)
+

6
√

3𝑀𝑟Σ𝐷 𝑝 (𝑧)4
(
ℎ1(𝜃1 − 2)

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃1
− 2𝑔∗

)
𝑧 + 1

−
2𝐽𝜉4𝑟3

Σ
𝐷 𝑝 (𝑧)

(
ℎ2

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃2
+ 𝜆∗

)
(𝑧 + 1)3 +

√
3𝜉4𝑟4

Σ

(
ℎ2(𝜃2 + 2)

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃2
+ 2𝜆∗

)
(𝑧 + 1)4

]
/𝑐

where

𝑐 = 2𝑦
©«
6𝑀𝐷 𝑝 (𝑧)5

(
ℎ1

(
𝜉

𝐷 𝑝 (𝑧)

) 𝜃1

+ 𝑔∗

)
+
𝜉4𝑟3

Σ
𝐷 𝑝 (𝑧)

(
ℎ2

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃2
+ 𝜆∗

)
(𝑧 + 1)3

ª®®®®¬
(10)

and

𝑦 =
(
−

6𝑀 (𝑧 + 1)𝐷 𝑝 (𝑧)2
(
ℎ1

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃1
+ 𝑔∗

)
𝜉2𝑟Σ

−
𝜉2𝑟2

Σ

(
ℎ2

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃2
+ 𝜆∗

)
(𝑧 + 1)2𝐷 𝑝 (𝑧)2 + 3

)1/2 (11)

where the today Schücking radius for a cluster of galaxies with mass 𝑀 is

𝑟Σ = 3

√︄
2𝐺𝑁𝑀

𝐻2
0Ω𝐷𝑀 0

(12)

the dark energy and dark matter part evolution is :

Ω𝐷𝐸 (𝑧) =
Ω𝑚0(𝑧 + 1)3

(
𝑔∗𝐷𝑝 (𝑧)2

𝜉 2 + ℎ1
(

𝜉

𝐷𝑝 (𝑧)

) 𝜃1−2
)

𝐺𝑁

+
ℎ2

(
𝜉

𝐷𝑝 (𝑧)

) 𝜃2+2
+ 𝜆∗ 𝜉 2

𝐷𝑝 (𝑧)2

3 𝐻2
0

−Ω𝑚0(𝑧 + 1)3

(13)
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Ω𝐷𝑀 (𝑧) = Ω𝑚0(𝑧 + 1)3 (14)

The evolution of the dark energy coefficient is

𝑤𝐷𝐸 (𝑧) =
𝑟Σ

𝑣

[√
3 𝑟3

Σ 𝜉
4 (2𝜆∗ + ℎ2(2 + 𝜃2) (

𝜉

𝐷 𝑝 (𝑧)
) 𝜃2

)
− 3𝐽𝑟2

Σ (1 + 𝑧)𝜉4 [𝜆∗ + ℎ2(
𝜉

𝐷 𝑝 (𝑧)
) 𝜃2

]
𝐷 𝑝 (𝑧)

− 6
√

3𝑀 (1 + 𝑧)3 (2𝑔∗ − ℎ1(−2 + 𝜃1)
(

𝜉

𝐷 𝑝 (𝑧)
) 𝜃1

)
𝐷 𝑝 (𝑧)4

]
where

𝑣 = 3 𝑗 (1+𝑧)4
[
𝑟3
Σ𝜉

4 (𝜆∗+ℎ2
( 𝜉

𝐷 𝑝 (𝑧)
) 𝜃2 )𝐷 𝑝 (𝑧)/(1+𝑧)3−6𝐺𝑁𝑀𝜉2𝐷 𝑝 (𝑧)3+6𝑀

(
𝑔∗+ℎ1

( 𝜉

𝐷 𝑝 (𝑧)
) 𝜃1 )𝐷 𝑝 (𝑧)5

]
(15)

and

𝑗 =

√√√√√3 −
𝑟2
Σ
𝜉2 [𝜆∗ + ℎ2( 𝜉

𝐷𝑝 (𝑧) )
𝜃2]

(1 + 𝑧)2𝐷 𝑝 (𝑧)2 −
6𝑀 (1 + 𝑧) [𝑔∗ + ℎ1( 𝜉

𝐷𝑝 (𝑧) )
𝜃1]𝐷 𝑝 (𝑧)2

𝑟Σ𝜉
2

 (16)

It has be proven in[9] that solving numerically the ODEs 4,5, the desired behaviour for the dark
energy contribution Ω𝐷𝐸 and the equation of state parameter 𝑤𝐷𝐸 emerges. Most importantly the
recent passage from a deceleration to acceleration that happens recently appears.

4. Modified Einstein equations

In [11] authors derived new modified Eistein equations for a gravity with varying Λ and 𝐺 and
including up to second order covariant derivatives for the metric the 𝐺 and Λ. These extra kinetic
terms are absolutely necessary in order to have meaningful energy conservation though Bianchi
identities. The derived equations are appropriate to study AS gravity properties.

The gravitational equations demanding the previously mentioned features have been proved in
[11] are:

𝐺𝜇𝜈 = −Λ̄ 𝑒𝜓𝑔𝜇𝜈 −
1
2
𝜓;𝜇𝜓;𝜈 −

1
4
𝑔𝜇𝜈𝜓

;𝜌𝜓;𝜌 + 𝜓;𝜇;𝜈 − 𝑔𝜇𝜈□𝜓 + 8𝜋𝐺𝑇𝜇𝜈 (17)

and Bianchi identities generate the following conservation equation(
𝐺𝑇𝜇𝜈

) ;𝜇+𝐺
(
𝑇𝜇𝜈−

1
2
𝑇𝑔𝜇𝜈

)
𝜓;𝜇 = 0 . (18)

where Λ = Λ̄ 𝑒𝜓 and 𝐺 = �̄� 𝑒𝜒.
The system of equations (17), (18) is unique, for Einstein gravity with varyingΛ and𝐺 allowing

up to second derivatives in 𝑔𝜇𝜈 ,Λ, 𝐺. Note, also that Λ and 𝐺 can be any function of spacetime
coordinates. We immediately observe that there are no covariant derivatives for 𝐺 in equation (17);
they cancel out. Furthermore, both equations (17), (18) reduce to the conventional ones of General
Relativity for constant values of Λ and 𝐺.
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We re interested to explore the cosmology of these Einstein modified equations. Thus, we
work with a spatially homogeneous and isotropic cosmological metric of the form of equation(2).
To proceed futher we choose a diagonal energy-momentum tensor 𝑇 𝜇

𝜈 , that describes a fluid with
energy density 𝜌 and pressure 𝑃. It is given by

𝑇 𝜇𝜈 = (𝜌 + 𝑃)𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 , (19)

with 𝑢𝜇 the fluid 4-velocity.
Then the conservation equation (18) is

¤𝜌 + 3𝑛𝐻 (𝜌 + 𝑃) + 𝜌 ¤𝜒 + 𝜌 + 3𝑃
2

¤𝜓 = 0 . (20)

We observe that an energy exchange between the energy density 𝜌 and 𝐺,Λ is allowed. Since
we are interested to describe the late cosmology without any exotic fields or fluids (a "baroque"
way to generate dark energy) it suffices to consider a perfect fluid with a constant equation of state
parameter 𝑤 = 𝑃

𝜌
. Then, the conservation equation (20) can be written as

Λ
1+3𝑤

2 𝐺𝜌 =
𝑐 Λ̄

1+3𝑤
2

𝑎3(1+𝑤) , (21)

with 𝑐 > 0 an integration constant.
Finally the cosmological equations of motions are

𝐻2 + 𝜅

𝑎2 =
Λ̄

3
𝑒𝜓 − 𝐻 ¤𝜓 −

¤𝜓2

4
+ 8𝜋𝑐

3𝑎3(1+𝑤) 𝑒
− 1+3𝑤

2 𝜓 , (22)

¤𝐻 =
𝜅

𝑎2 + 𝐻
¤𝜓
2
+

¤𝜓2

4
− 1

2

(
¤𝜓
) ·
− 4𝜋𝑐(1+𝑤)

𝑎3(1+𝑤) 𝑒−
1+3𝑤

2 𝜓 . (23)

Note that there is a redundancy. Two out of the three equations (21), (22), (23) are independent.
One equation can be derived from the other two, which is a consistent thing to expect. For example
equation (23) can be derived from the other two. However, equation (23) is very useful to keep
since it provides the acceleration and thus we can check if there is a passage from deceleration to
acceleration.

Late cosmic era does not refer to the far infrared regime but in the intermediate IR scale. This
can me modeled using the dimensionful quantities, as

𝐺 (𝑘)𝐼𝑅 =
𝑔∗
𝑘2 + ℎ1𝑘

𝜃1−2 Λ (𝑘)𝐼𝑅 = 𝜆∗𝑘
2 + ℎ2𝑘

𝜃2+2 (24)

Since we are interested to explore in late cosmology the possibility of solving the dark energy
problem without dark energy coming from exotic ad hoc fields and without fine tuning, we can now
set 𝑤 = 0 and for simplicity 𝜅 = 0. Furthermore, to be consistent with solar/galactic dynamics 𝐺
should be almost constant. Thus, a reasonable choice to proceed is to assume that the second term
in the first expression of Eq.(24) to be dominant to the first. So 𝐺 (𝑘) behaves as almost constant
having a mild dependence of 𝑘 for appropriate values of 𝜃1. Thus, ℎ1 is essentially close to 𝐺𝑁 and
𝜃1 must be close to 2. Furthermore, for reasonable phenomenology and for reasons arising from

8



P
o
S
(
C
O
R
F
U
2
0
2
2
)
2
0
3

Asymptotic Safety and the Cosmic Coincidence Problem Vasilios Zarikas

AS theory, 𝜃2 should be close to 0. Then, both terms in the second expression of Eq.(24) are almost
proportional to 𝑘2, we choose for simplicity 𝜆∗ ≪ 1. Therefore, in summary, we assume

𝑔∗ ≪ ℎ1𝑘
𝜃1
𝐼𝑅
, 𝜆∗ ≪ ℎ2𝑘

𝜃2
𝐼𝑅

(25)

where 𝑘 𝐼𝑅 is the astrophysical scale.
At this stage a certain scale should be selected for 𝑘 . For cosmology it is common to use the

following expression [17]

𝑘 =
𝜉

𝑡
, (26)

where 𝜉 > 0 is a dimensionless parameter that should be of order of unity in order to avoid a fine
tuning problem.

Another popular cutoff identification used in the Asymptotic Safe Gravity phenomenology is
a connection with the Hubble scale, [20],

𝑘 = 𝜉𝐻 (𝑡) , (27)

with 𝜉 a positive constant for 𝐻 > 0 which is the case in our investigation.
For both scaling choices, numerical solutions of equations (21), (22), (23), exhibit no passage

from a deceleration to an acceleration era today. This is an expected and correct result since we have
chosen to work with no fine tuning values for the unknown parameters and also we did not include
any exotic field or fluid but just a dust content. The modified Einstein equations presented in [11] is
most probably a fair description of the early Universe assuming that Asymptotic Safe Gravity is a
valid model. Furthermore, to explain the passage from deceleration to acceleration, the large scale
structure should be taken into account. This could be possible developing a new swiss cheese type
model or a new inhomogenous model like Szekeres model for the novel modified Einstein equation
(17) respecting equation (18).

5. Conclusions

In this study we present a brief description of AS gravity and some of its phenomenological
consequences regarding Cosmological ans astrophysical issues, with focus on the dark energy
problem. Then we reviewed briefly the outcome of a series of publications that propose a natural
explanation of recent cosmic acceleration and its coincidence problem with the help of a swiss
cheese model. This AS swiss cheese model is consistent with current observations and is well
suited to explain dark energy problem in a minimal way without exotic field and without fine tuning
or extra scales.

Finally, we have described the late cosmology era of new modified Einstein equations inspired
from AS gravity. The analysis of the solutions make apparent that the large scale structure is needed
to explain the recent passage from deceleration to acceleration in a natural way. Thus, as a future
work it would be interesting to develop a new swiss cheese model or inhomogeneous models for
the new modified Einstein equations.
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