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1. Introduction

Recent advances in observational methods and numerical techniques have enabled cosmologists
to constrain the parameters of the standard cosmological model, known as Lambda-Cold-Dark-
Matter [1], with outstanding accuracy. This model has its gravitational roots in Einstein’s General
Relativity, which remains the most successful theory of gravitation to date. It has withstood
numerous tests while successfully describing the Universe’s behaviour at both small and large scales.
However, to properly account for the Universe’s history, modern cosmology requires the inclusion of
two enigmatic components: dark matter (DM) and dark energy (DE). Despite constituting a striking
share of 95% of the Universe’s total matter content, the nature and properties of both these "dark"
components is still not fully understood. DM is widely considered as a pressureless and weakly
interacting matter component that is a crucial ingredient in the mechanism of structure formation
in the Universe and to the dynamics and motion of galaxies. On the other hand, DE was introduced
as the driving source for the late-time acceleration of the Universe, discovered in 1998 [2, 3] and
which could not be accounted for by conventional particle physics theory. In the past 25 years a
growing number of independent probing methods keeps endorsing the need for a more concrete
understanding of the nature of DE, detectable through distinguishable signatures on cosmological
observables. This has been made possible by the rapid progress in precision data collection, leading
to the urgency of resolving the mystery of these dark components.

In the standard cosmological model, ΛCDM, dark energy is simply portrayed as a cosmological
constant Λ, akin to some characteristic vacuum energy of the Universe, which remains constant
throughout its expansion. Albeit initially yielding great consistency confirmation in favour of
ΛCDM, the recent advent of observational precision and techniques has uncovered unforeseen
problems exposed as tensions between various probes, introducing a new crisis in the standard model
of cosmology [4–8]. These tensions arise from discrepancies between observations of the early and
late stages of the Universe, such as those of the Planck cosmic microwave background (CMB) data
and varied distance-ladder surveys, respectively. Arguably the most prominent issue, the Hubble
tension [9–11] arises from measurements of the current cosmic expansion rate in the Universe,
𝐻0, best illustrated by the discrepancy between the value inferred from the Planck satellite [12]
(𝐻0 = 67.4 ± 0.5 km s−1 Mpc−1) and the distance-ladder measurements of type Ia supernovae data
calibrated with Cepheid stars by the SH0ES collaboration [13] (𝐻0 = 73.04± 1.04 km s−1 Mpc−1).
Although part of these discrepancies could be attributed to data errors and systematics, the statistical
significance of roughly a 5𝜎 tension suggests flaws in the standard model itself, with many extensions
being proposed in the literature as an attempt to ease this problem. Exploring alternative models
may reveal new insights into the enigmatic nature of the dark sector, the physics of the early
Universe, or even the fundamental assumptions of ΛCDM [14].

In Ref. [15] we have studied a particular extension in which DE is portrayed by a canonical
scalar field (quintessence), coupled to DM through an interaction term in action, as proposed in
Ref. [16]. We performed a thorough numerical analysis of the dynamics of the model under
consideration, both at the background and linear perturbative levels. As in previous coupled
quintessence studies [17–21], we also derived constraints for the cosmological and model-specific
parameters according to different data-sets from which we found that although the cosmic tensions
persist in the best-fit realisation of the model, there is a non-zero prediction for deviations from
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the standard model encoded by the coupling parameter. A preliminary analysis of the statistical
preference of the Kinetic model over ΛCDM through the effective 𝜒2 and the Deviation Information
Criteria revealed no statistical preference for any of the models. Here we show that the full Bayesian
analysis actually indicates significant preference for the standard model, as the Bayes factor properly
accounts for the increased complexity introduced when adding more parameters.

2. Theoretical Motivation

Let’s begin by considering a phenomenological theory in the Einstein frame, where dark energy
in the form of a dynamical quintessence field, denoted as 𝜙, is minimally coupled to gravity. The
DE source interacts with a dark matter component as expressed in the following action [16]:

S =

∫
d4𝑥

√−𝑔
[
M2

Pl
2
𝑅 + 𝑋 −𝑉 (𝜙) + 𝑓 (𝑋)L̃𝑐 (𝜁, 𝑔𝜇𝜈) + LSM(𝜓𝑖 , 𝑔𝜇𝜈)

]
. (1)

Here, 𝑔 represents the determinant of the metric tensor 𝑔𝜇𝜈 , 𝑅 is the curvature scalar, and M2
Pl =

(8𝜋𝐺)−1 corresponds to the Planck mass in units where 𝑐 = 1, with 𝐺 being the Newtonian
constant. The second and third terms in the action represent the Lagrangian of the scalar field,
where 𝑋 = −𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙/2 represents the kinetic term of 𝜙, and𝑉 (𝜙) is the self-interacting potential
of the scalar field. The standard model is further extended by the introduction of a purely kinetic
function 𝑓 (𝑋) that multiplies the Lagrangian of cold dark matter [16], L𝑐 ≡ 𝑓 (𝑋)L̃𝑐, leading to a
coupling between 𝜙 and the dark matter fields 𝜁 . In particular, we focus on the simplest power-law
kinetic interaction, as motivated in Ref. [16], described by the function:

𝑓 (𝑋) =
(
M−4

Pl 𝑋

𝛼

)𝛼
=⇒ 𝑄 = −𝜌𝑐

𝛼

𝑋

(
□𝜙 +

𝜕𝜇𝜙𝜕𝜈𝜙∇𝜇𝜕𝜈𝜙
𝑋

+ 𝜕𝜇𝜙
𝜕𝜇𝜌𝑐

𝜌𝑐

)
, (2)

where 𝛼 is a dimensionless constant governing the strength of the coupling𝑄 in the dark sector and
𝜌𝑐 represents the energy density of the cold dark matter. We assume a simple exponential potential
for the quintessence field:

𝑉 (𝜙) = 𝑉0 exp
(
− 𝜆𝜙

MPl

)
, (3)

where 𝑉0 represents the energy scale of the potential, and 𝜆 characterises its steepness. These
choices for the coupling function and potential are motivated by the desire to have a scaling regime
[16] at early times, followed by an accelerated expansion driven by the scalar field. The exponential
potential drives the system out of the scaling solution and towards the late-time attractor.

It should be noted that the action described by Eq. (1) is mathematically equivalent to a scalar-
tensor theory in the Einstein frame with a conformal coupling in the DM action S𝑐

[
�̃�𝜇𝜈 (𝑋), 𝜁

]
.

The coupling arises via the conformal function 𝐶 (𝑋) = 𝑓 2(𝑋) in the metric transformation �̃�𝜇𝜈 =

𝐶 (𝑋)𝑔𝜇𝜈 , with a fundamentally different physical interpretation.
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3. Numerical Analysis

3.1 Background Dynamics

We assume cosmological dynamics in a flat Friedmann-Lemaître-Robertson-Walker (FLRW)
background, expressed by the scale factor of the Universe 𝑎(𝜏) in conformal time 𝜏:

d𝑠2 = 𝑎(𝜏)2
(
−d𝜏2 + 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗

)
. (4)

The equations governing the background evolution are obtained through variation of the action
according to the metric and the scalar degree of freedom, namely the modified Friedmann equation
and conservation relations:

3M2
PlH

2 = 𝑎2(𝜌𝑐 + 𝜌𝑏 + 𝜌𝑟 + 𝜌𝜙) , (5)

𝜙′′ + 2H𝜙′ + 𝑎2𝑉,𝜙 = 𝑎2𝑄 , (6)

𝜌′𝜙 + 3H(1 + 𝑤𝜙)𝜌𝜙 = 𝑄𝜙′ , (7)

𝜌′𝑐 + 3H 𝜌𝑐 = −𝑄𝜙′ , (8)

𝜌′𝑏 + 3H 𝜌𝑏 = 0 , (9)

𝜌′𝑟 + 4H 𝜌𝑟 = 0 , (10)

respectively, and with ′ ≡ d/d𝜏 and H = 𝑎′

𝑎
is the conformal Hubble rate. The coupling 𝑄 given in

Eq. (2) becomes:

𝑄 = 2𝛼𝜌𝑐
3H𝜙′ + 𝑎2𝑉,𝜙

2𝛼𝑎2𝜌𝑐 + (1 + 2𝛼) 𝜙′2
. (11)

Eqs. (8) and (7) imply that when 𝑄𝜙′ > 0, energy is transferred from the cold dark matter source
to the scalar field, and vice versa when 𝑄𝜙′ < 0. For numerical purposes, the value of 𝑉0 in the
potential, is used in a shooting method. As a result {𝜆, 𝛼} are the model’s free parameters. The
viable parameter space has been studied in Ref. [15] according to dynamical and stability conditions,
along with motivation for the particular initial conditions for the scalar field used in the simulations.
We resort to numerical simulations using a modified version of the Einstein-Boltzmann solver
CLASS [22–24] to study the predictions of the model over the expansion history for different {𝜆, 𝛼}
combinations, using standard Planck 2018 [12] reference values for the cosmological parameters.

In the left panel of Fig. 1, we present the evolution of the relative energy densities Ω𝑖 =

𝜌𝑖𝑎
2/(3M2

PlH2) for each species with respect to redshift (1 + 𝑧). As expected, the introduction of
the coupling leads to the emergence of an early scaling regime during the radiation-dominated epoch,
where the energy density of the scalar field is proportional to that of dark matter, approximately
following the relation 𝜌𝑐/𝜌𝜙 = 1/𝛼, as shown in the upper right panel of Fig. 1. Eventually, the field
exits this scaling regime and transitions towards the future attractor solution, causing its energy
density to continuously dilute as 𝜌𝜙 ∝ 𝑎−𝜆

2 . For the values considered, the coupling strength
𝑄𝜙′/𝜌𝑐 remains positive at all redshifts, implying a transfer of energy from the dark matter fluid to
the scalar field. It should be noted that by fixing the present-day values of fluid densities, the energy
density of cold dark matter is relatively higher at earlier times due to its contribution in supplying
energy to the scalar field at later times. This effect becomes more pronounced for larger values of 𝛼.
As the DM energy density decreases over time, the additional energy transferred to the scalar field
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Figure 1: Left panel: Evolution of the relative energy densities Ω𝑖 with redshift, 1 + 𝑧, of the scalar field
(green), dark matter (red), baryons (yellow) and radiation (grey) for ΛCDM (solid black), 𝛼 = 0.01 (dashed
lines) and 𝛼 = 0.03 (dotted lines). Upper right panel: Ratio of the energy densities of cold dark matter and
dark energy for ΛCDM (solid line), the uncoupled case 𝛼 = 0 (red dashed), 𝛼 = 0.01 (yellow dashed-dotted)
and 𝛼 = 0.03 (green dotted). Lower right panel: Fractional deviation of the conformal Hubble rate of
expansion for the same examples.

compensates for this effect compared to the uncoupled case. This behaviour is illustrated in the left
panel of Fig. 1. Consequently, we also see in the figure that the matter-radiation equality occurs at
earlier times as the value of 𝛼 increases. Furthermore, the 𝜙 field starts acquiring energy at a rate
proportional to its energy density and the equality between matter and dark energy occurs earlier.
In the lower right panel of Fig. 1 we depict deviations in the Hubble rate for the Kinetic model and
the uncoupled case (𝛼 = 0) compared to ΛCDM. We remark that no significant deviations in H
are observed during the radiation-dominated epoch, as interactions between the dark and radiation
sectors are excluded. However, as the matter contribution becomes significant, around 𝑧 ≈ 106, the
Kinetic models exhibit an increased value of H , with this effect becoming more pronounced for
higher values of 𝛼.

3.2 Evolution of Linear Perturbations

In the Newtonian gauge, we describe the perturbed FLRW metric according to the standard
line element [25]:

d𝑠2 = 𝑎2(𝜏)
[
− (1 + 2Ψ) d𝜏2 + (1 − 2Φ) 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗

]
, (12)

where Ψ(𝒙, 𝜏) and Φ(𝒙, 𝜏) are the Newtonian potentials. Linear perturbations around the gravi-
tational and the background fluid variables are denoted by a 𝛿. The linearised Einstein equations
describe the evolution of perturbations for different scales in terms of independent Fourier modes
and extra contributions from the dark sector coupling.

The equations that govern the evolution of perturbations in each fluid can be obtained by
considering conservation relations and remain as standard for baryons and radiation, which are

5



P
o
S
(
C
O
R
F
U
2
0
2
2
)
2
1
7

Observational Tensions in Kinetically Coupled Quintessence

non-interacting species. For the coupled DM these become

𝛿′𝑐 + 𝜃𝑐 − 3Φ′ =
𝑄

𝜌𝑐
(𝜙′𝛿𝑐 − 𝛿𝜙′) −

𝜙′

𝜌𝑐
𝛿𝑄 , (13)

𝜃′𝑐 + H𝜃𝑐 − 𝑘2Ψ =
𝑄

𝜌𝑐

(
𝜙′𝜃𝑐 − 𝑘2𝛿𝜙

)
, (14)

describing the evolution of the density contrast, denoted as 𝛿𝑖 = 𝛿𝜌𝑖/𝜌𝑖 and the velocity divergence
𝜃𝑖 = ∇ · 𝑣 (𝑖) . The perturbed coupling term is defined as

𝛿𝑄 =
2𝛼𝜌𝑐

2𝛼𝑎2𝜌𝑐 + (1 + 2𝛼)𝜙′2
{
−3Φ′𝜙′ − 𝜙′𝜃𝑐 +

[
3H𝜙′ + 𝑎2(𝑉,𝜙 −𝑄)

]
𝛿𝑐 +

(
2𝑘2 + 𝑎2𝑉,𝜙𝜙

)
𝛿𝜙

−
[
3H𝜙′ + 2𝑎2(𝑉,𝜙 −𝑄)

] 𝛿𝜙′
𝜙′

+ 2𝑎2Ψ
(
𝑄 −𝑉,𝜙

)}
, (15)

and we remark the explicit dependence of 𝛿𝑄 on the velocity potential 𝜃𝑐, which is unusual compared
to other coupled dark energy models [18, 26]. Finally, linearisation of the Klein Gordon equation
gives:

𝛿𝜙′′ + 2H𝛿𝜙′ +
(
𝑎2𝑉,𝜙𝜙 + 𝑘2

)
𝛿𝜙 − (Ψ′ + 3Φ′) 𝜙′ + 2𝑎2Ψ𝑉,𝜙 = 𝑎2𝛿𝑄 + 2𝑎2𝑄Ψ . (16)

The inclusion of the coupling leaves an imprint on important cosmological observables that
can be probed against different data, in particular the matter power spectrum and the temperature-
temperature (TT) and lensing angular power spectra of the cosmic microwave background (CMB).
Again, assuming standard Planck 2018 values for the shape of the scalar primordial power spectrum
[12] as well, it is possible to single out the model-specific signatures by taking different sets of
{𝜆, 𝛼} relevant for the scales under consideration.

In the left panel of Fig. 2, we present the linear matter power spectrum at the present time
up to the scale 𝑘max = 0.1ℎ Mpc−1 along with the fractional differences for the Kinetic model in
contrast with ΛCDM. We identify an overall suppression at intermediate scales (10−3ℎ Mpc−1 ≲

𝑘 ≲ 3 × 10−2ℎ Mpc−1), followed by an enhancement at smaller scales. This effect is primarily
related with the global deviation of the turnover in the matter power spectrum to higher 𝑘 values
due to the shift of the radiation-matter equality era to earlier times as identified in the study of the
background evolution. The positive exchange of energy from cold dark matter to dark energy at late
times inevitably leads to a suppression of the growth of matter perturbations at intermediate scales
and an enhancement at smaller scales and the highest deviations are observed for larger values of
𝛼. Consequently, the amplitude of the matter power spectrum at the present time and a scale of 8
ℎ−1Mpc, denoted as by 𝜎8, is expected to be larger for the Kinetic model.

The inclusion of the coupling is also reflected in the evolution of the gravitational potentials,
parametrised in terms of the lensing potential 𝜙lens = (Ψ +Φ)/2 for particular scales. We identify
an overall suppression in 𝜙lens which in turn leads to a suppression of the lensing power spectrum
as well, as demonstrated in the right panel of Fig. 2, with this effect becoming more pronounced
for larger values of 𝛼. On the other hand, the time variation of 𝜙lens is directly related to the
integrated Sachs-Wolfe effect (ISW), imprinted in the shape of the temperature-temperature (TT)
power spectrum as a contribution to the radiation transfer function, and is illustrated in the left
panel of Fig. 3 as a function of the angular multipole ℓ. This effect comprises two contributions:
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Figure 2: Left panel: The matter power spectrum as function of 𝑘 , for the uncoupled case (dashed red line),
𝛼 = 0.001 (yellow dot-dashed line), 𝛼 = 0.002 (green dotted line) and ΛCDM (black solid line), along with
the percentage deviations from the ΛCDM case (lower pannel). Right panel: Evolution of the sum of the
gravitational potentials as a function of the redshift at 𝑘 = 0.01 Mpc−1 for the same examples.

an early-time term occurring during the transition from the radiation- to matter-dominated epochs,
shifted to earlier times in the Kinetic model, and a late-time term associated with the dynamics of
the dark energy component. We observe a clear overall enhancement compared to the reference case
for ℓ ≲ 300, with milder differences around the plateau at ℓ < 10 and the most significant deviations
around ℓ ∼ 50. Furthermore, there is a clear increase in the amplitude of the first peak accompanied
by a broadening of its shape along with slight variations between the peaks and troughs at higher
multipoles. The validity of these combined deviations can be assessed with cosmological data from
background observations and the large-scale structure.

4. Observational Constraints

4.1 Data Sets

The baseline data set considered is the CMB Planck 2018 [12] data for large angular scales
ℓ = [2, 29], and a combination of TT, TE, and EE likelihoods for small angular scales ℓ = [30, 2508]
for TT, and ℓ = [30, 1996] for TE cross-correlation and and EE power spectra, referred to as "Plk18"
henceforth. We then explore the impact of adding distance and expansion rate measurements,
namely baryonic acoustic oscillations (BAO) data from the Sloan Digital Sky Survey (SDSS) DR7
Main Galaxy Sample [27], SDSS DR12 consensus release [28] and the 6dF Galaxy Survey [29],
in combination with distance moduli measurements of type Ia Supernova (SN) data from Pantheon
[30]. This expanded data set is referred to as "Plk18+BAO+SN". Finally, we included CMB lensing
potential data from Planck 2018 [31, 32] resulting in the data set "Plk18+BAO+SN+len". We
use a set of free sampling parameters consisting of the baseline ΛCDM cosmological parameters
(Ω𝑏ℎ2,Ω𝑐ℎ

2, 𝑧𝑟𝑒𝑖𝑜, 𝜃𝑠, 𝐴s, 𝑛s), as well as the two free parameters associated with the Kinetic model
(𝛼, 𝜆). We consider flat priors for all the parameters and provide the specific range of values in
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Figure 3: Left panel: TT power spectrum of anisotropies as function of the angular scale ℓ, for the uncoupled
case (dashed red line), 𝛼 = 0.001 (yellow dot-dashed line), 𝛼 = 0.002 (green dotted line) and ΛCDM (black
solid line) for reference, along with percentage deviations with respect to ΛCDM (lower panel). Right panel:
Lensing angular power spectra for the same examples and relative difference between the predictions for each
model and for ΛCDM.

Table I of Ref. [15]. Our analysis also yields derived constraints on 𝐻0 and 𝑆0
8 = 𝜎0

8

√︁
Ω0
𝑚/0.3. The

latter is also known to be in tension with cosmic shear measurements [7, 8, 33] for the standard
model, with CMB data favouring higher values. Finally, to produce the Monte Carlo Markov
Chain (MCMC) samples we resort to our personal modification of the Einstein Boltzmann solver
CLASS [22–24] interfaced with the Monte Python sampler [34, 35], following the Metropolis-
Hastings algorithm. Subsequently, we analyse the MCMC chains and produce the results reported
in Ref. [15], resorting to the GetDist Python package [36].

4.2 Results

In Tables 1 and 2 we present the constraints on the sampled parameters for the Kinetic and
ΛCDM models, respectively. These results are illustrated in Fig. 4 where the corresponding 2D
contour plots for all the considered combinations of data sets are displayed. Although the constraints
on the cosmological parameters of the Kinetic model are compatible with those of the ΛCDM case
within the uncertainties, the latter yields higher mean values for 𝐻0 and Ω0

𝑚. The Kinetic model
exhibits a positive correlation between 𝐻0 and Ω0

𝑚, opposite to the anti-correlation observed in
the ΛCDM model. This characteristic correlation persists across all the three data combinations
considered and is ascribed to the non-zero prediction for the 𝛼 parameter, which enhances the TT
power spectrum. Furthermore, Fig. 4 depicts contour plots for the constraints in the 𝑆0

8 −Ω0
𝑚 plane.

Both the standard and extended models exhibit a positive correlation between these parameters.
With only the Plk18 data, we find 𝑆0

8 = 0.793+0.110
−0.064 at a 68% confidence level (C.L.) in the Kinetic

model, thereby mitigating the discordance with cosmic shear measurements in the standard model
(𝑆0

8 = 0.833 ± 0.016). However, when considering other data sets, the discrepancy reemerges,
indicating tensions between the BAO and/or SN data within this framework. A similar situation has
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Kinetic Model
Parameter Plk18 Plk18+BAO+SN Plk18+BAO+SN+len

𝑆0
8 0.793+0.110

−0.064 0.875+0.037
−0.043 0.863+0.030

−0.039
Ω0
𝑚 0.257+0.045

−0.025 0.2988+0.0072
−0.0036 0.2982+0.0070

−0.0035
𝐻0 64.0+3.3

−1.8 67.14 ± 0.62 66.94+0.60
−0.54

10−9𝐴𝑠 2.088 ± 0.035 2.096 ± 0.035 2.111 ± 0.031
𝑛𝑠 0.9667 ± 0.0047 0.9669 ± 0.0044 0.9655 ± 0.0041
𝜆 1.11 ± 0.48 0.42+0.18

−0.21 0.41+0.17
−0.22

104𝛼 1.88 ± 0.95 1.37+0.67
−1.00 1.05+0.51

−0.87

Table 1: 68% C.L. bounds on the cosmological and model parameters for the Kinetic model for the three
different combinations of data sets: Planck, Planck combined with BAO and SN, and their full combination
with CMB lensing.

been observed in a Galileon model [37], suggesting a potential bias towards ΛCDM-like models in
the BAO data [38].

The results for the specific parameters of the Kinetic model can be appreciated in the 2D
contour plots of Fig. 5, where we see that the coupling parameter 𝛼 is consistently constrained to be
of the order 10−4, regardless of the data set combination. When considering only the Planck data, a
higher mean value of 𝛼 is preferred, primarily to better accommodate the TT likelihood. However,
incorporating BAO and SN data slightly reduces the mean value of 𝛼. Furthermore, adding CMB
lensing data shifts the peak of the posterior distribution for 𝛼 to an even lower central value. This
behaviour is associated with the reported lensing excess by the Planck collaboration [12, 39]. In the
Kinetic model, the lensing power spectrum is always suppressed compared to the ΛCDM scenario,
with higher values of 𝛼 corresponding to lower amplitudes. Consequently, a lower mean value of
𝛼 is favoured to better match the CMB lensing data.

The inclusion of BAO and SN data leads to narrower constraints on Ω0
𝑚, resulting in tighter

constraints on other parameters such as 𝐻0, 𝑆0
8, and 𝜆. The parameter 𝜆 is directly connected to the

anti-correlation displayed in Fig. 5 in the Ω0
𝑚 − 𝜆 plane, where higher values of Ω0

𝑚 correspond to
lower values of 𝜆. This negative correlation arises from considering that the late-time accelerated
expansion is primarily regulated by two parameters: Ω𝜙 and 𝜆. The Friedmann constraint for
flatness gives Ω𝜙 ≈ 1 − Ω0

𝑚 at late times, implying that higher values of Ω0
𝑚 are associated with

lower values of Ω0
𝜙
. Consequently, to achieve a cosmological constant-like scenario for the scalar

field at present times, the mean value of 𝜆 is pushed towards smaller values, explaining the identified
anti-correlation between Ω0

𝑚 and 𝜆.

5. Model Selection analysis

Lastly, we aim to evaluate whether the Kinetic model is favoured over theΛCDM case resorting
to different statistical indicators for comparison purposes. First, we simply evaluate the effective
𝜒2-statistics, corresponding to the maximum likelihood, denoted as 𝜒2

eff, and which allows us to
determine how well the Kinetic model fits the data when compared to ΛCDM. This is accomplished
by calculating Δ𝜒2

eff = 𝜒2
eff,Kinetic − 𝜒2

eff,ΛCDM, where a negative value indicates support for the

9
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Figure 4: 68% and 95% C.L. 2D contours derived for the parameter combinations 𝐻0-Ω0
𝑚 (left panels) and

𝑆0
8-Ω0

𝑚 (right panels) in the Kinetic model (upper panels) and ΛCDM model (lower panels) for the Planck
2018 data (green), the Planck 2018, BAO and SN combination (yellow), and their combination with CMB
lensing(red).
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Figure 5: 68% and 95% C.L. contours obtained in the Kinetic model for the Planck 2018 data (green), the
Planck 2018, BAO and SN combination (yellow), and their combination with CMB lensing (red).

Kinetic model, while a positive value suggests otherwise. On the other hand, in order to statistically
compare the level of support for one model against the other, we calculate the Bayes factor of an
extended model relative to ΛCDM. The Bayes factor of an extended model 𝑖 with respect to the
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ΛCDM Model
Parameter Plk18 Plk18+BAO+SN Plk18+BAO+SN+len

𝑆0
8 0.833 ± 0.016 0.831+0.013

−0.015 0.834 ± 0.013
Ω0
𝑚 0.3163 ± 0.0085 0.3151+0.0060

−0.0075 0.3162 ± 0.0073
𝐻0 67.31 ± 0.61 67.39+0.53

−0.45 67.32 ± 0.53
10−9𝐴𝑠 2.102 ± 0.034 2.102 ± 0.034 2.105+0.028

−0.032
𝑛𝑠 0.9652 ± 0.0044 0.9656 ± 0.0039 0.9651 ± 0.0041

Table 2: 68% C.L. bounds on the cosmological parameters for the ΛCDM model for the three different
combinations of data sets: Planck 2018, Planck 2018 combined with BAO and SN, and and their full
combination with CMB lensing.

ΛCDM model is given by [REF]

𝐵𝐾,ΛCDM =
𝑃(D|𝐾)

𝑃(D|ΛCDM) , (17)

which we calculated employing the MCEvidence code [40] and where D represents a given data set
and 𝑃(D|𝐾) and 𝑃(D|ΛCDM) are the evidences for the Kinetic and ΛCDM models, respectively.
We see that the greater the evidence for the Kinetic model relative to ΛCDM, the larger the Bayes
factor 𝐵𝐾,ΛCDM will be. The numerical Bayes factor may be translated into a qualitative statement
about the strength of evidence for an extended model against ΛCDM through the use of Jeffrey’s
scale [41]. According to this criteria the conclusive range of values of ln 𝐵𝐾,ΛCDM imply weak
([1, 2.5]), moderate ([2.5, 5]) or strong evidence (> 5). If the value is negative then there is no
evidence of support for the Kinetic model over ΛCDM and if | ln 𝐵𝐾,ΛCDM | < 1 then nothing can
be concluded using the data set D.

In Tab. 3 we present the values for both the Δ𝜒2
eff and the ln 𝐵𝐾,ΛCDM, along with the cor-

responding individual values. From the analysis, we find that when considering only the Plk18
data, the Kinetic model shows a slightly better fit to the data compared to the ΛCDM model, with
a decrease in the chi-squared value of Δ𝜒2 = −0.9. However, this preference disappears when
other data sets are included. This is mainly due to the BAO and SN data affecting the fit to the
temperature-temperature (TT) likelihood, which worsens after incorporating the CMB lensing data.

Statistics
Data Sets D

Plk18 Plk18+BAO+SN Plk18+BAO+SN+len

ΛCDM 𝜒2
eff 2771.1 3804.62 3813.92

ln 𝐵ΛCDM −1423.2 −1941.0 −1945.1
Kinetic 𝜒2

eff 2770.2 3805.32 3814.92
ln 𝐵𝐾 −1427.4 −1946.3 −1951.8
Δ𝜒2

eff −0.9 0.7 1.0
ln 𝐵𝐾,ΛCDM −4.2 −5.4 −6.8

Table 3: Results for the Δ𝜒2
eff and the Bayesian evidence ratio ln 𝐵𝐾,ΛCDM obtained for the Kinetic and

ΛCDM scenarios.
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The Kinetic model predicts a suppressed lensing amplitude, whereas the CMB lensing data actually
indicates an excess of power. However, any support for the Kinetic model becomes insignificant
when considering the Bayesian evidence, for which we report negative values across all the data
sets. This is directly related with the increased complexity of the Kinetic model, with the inclusion
of two additional parameters resulting in either reduced or no improvement at all in the fitting to
the data. Therefore, we can conclude that there is no statistical evidence for the Kinetic model in
this analysis.

6. Discussion

In this study, we investigated a Kinetic model consisting of a coupled quintessence theory
with a power-law kinetic interaction, and explored its impact on the evolution of the background
and linear perturbations in the Universe. We analysed the relevant cosmological observables and
derived constraints on the model parameters using various data sets, including CMB, CMB lensing,
BAO, and SN data.

We first performed a numerical study of the predictions of the model to assess the valid
parameter space with physical interest, resorting to a modified version of the publicly available
Einstein-Boltzmann code CLASS. At the background level, we found that a non-zero value of 𝛼
allows for a scaling regime during the radiation-dominated epoch, where the ratio of the densities
of cold dark matter and the scalar field approximately scale with 𝛼. We identified that only energy
transfer from DM to DE can be realised in such scenarios. Additionally, the radiation-matter
equality is shifted towards earlier times, with direct consequences on the matter power spectrum,
namely a suppression of small-scale power and an enhancement of large-scale growth compared
to the ΛCDM model. Consequently, we observed an overall suppression of the lensing potential
and modifications in the ISW effect, which alter the shape of the temperature power spectrum of
anisotropies at large angular scales.

Using an MCMC method for cosmological parameter extraction, we applied the theoretical
insight gained in the numerical study to constrain the model. We found that the tension in 𝑆0

8 was
apparently alleviated, with 𝑆0

8 = 0.793+0.110
−0.064 at 68% confidence level using Planck data only, while

the tension in 𝐻0 persisted. Regardless of the combination of data sets considered, the parameter
𝛼 was consistently constrained to be on the order of 10−4. We also reported constraints on the
other parameter of the Kinetic model, 𝜆, with the strongest bounds being obtained when combining
BAO and SN data. This is primarily caused by the strong constraining power of BAO data on
Ω0
𝑚, which indirectly affects the bounds on 𝜆. Finally, we presented a model selection study using

the effective 𝜒2
eff and the Bayesian evidence, with the latter indicating statistical preference for

ΛCDM over the Kinetic toy-model related to the increased dimension of the parameter space. In
conclusion, we highlight the importance of considering the Kinetic model and other variations for
future investigations, especially with the availability of new probes from upcoming surveys. Further
studies using high-precision data will help resolve tensions and establish a definitive preference for
one model over the other, possibly hinting at more complicated shapes for the kinetic function.
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