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A possible candidate for dark matter is an ultralight bosonic particle comprising the Fuzzy Dark
Matter (FDM). The presence of FDM in a galactic cluster will impact the motion of satellites
residing in such clusters, through dynamical friction. Here we present numerical simulations of
the dynamical friction on satellites traversing an initially uniform FDM halo. The potentials of the
satellites we have studied are non-spherically symmetric and logarithmic. We find that the wakes
created on the FDM halo due to the passage of such satellites are qualitatively different from those
generated by spherically symmetric systems and we quantify the impact of fuzzy dark matter on
the dynamical friction coefficient of the satellites.
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1. Introduction

The existence of dark matter has been proposed by Zwicky [1] by application of the Virial
Theorem to clusters of galaxies, at the realisation that members of clusters have higher velocities
compared to what it would have been expected based on the light-emitting mass. Dark matter
participates in the gravitational interaction but does not absorb nor emits any light, thus remains
invisible. Rotation curves of galaxies [2] revealed a discrepancy between the light-emitting mass
galaxies and the mass responsible for the gravitational interaction. The latter extends to larger
distances from the centre compared to baryonic mass that interacts electomagnetically and creates
a halo of dark matter. Further evidence of the existence of dark matter [3] include gravitational
lensing [4], fluctuations of the Cosmic microwave background radiation [5] and galaxy cluster
interaction [6], baryonic acoustic oscillations [7], to name just a few.

While dark matter corresponds to 26.4% of the energy content of the Universe [8], its nature
is elusive. Numerous models have been proposed for the interpretation of dark matter, either in
particle form, such as the weakly interacting massive particle [9], macroscopic massive objects,
such as primordial black holes [10] or massive compact halo objects [11], neutrinos [12] or modified
gravity [13]. Ultralight bosonic particles are rising candidates for dark matter, as proposed in [14].
These models cover a wide mass spectrum from the axion range up to 10−24eV [15], within the
general category of weakly interacting sub-electronvolt particle (WISPs) [16]. Fuzzy dark matter
(FDM) [17], whose mass is in the range of 10−22 − 10−21eV, with a characteristic de Broglie length
scale of a few kiloparsecs, is postulated to exhibit quantum effects on large scales due to its low
mass. This wave-like behavior is predicted to have significant effects on the structure of dark matter
halos, potentially resolving some of the outstanding issues with the cold dark matter model, such as
the formation of too many small galaxies, the missing satellite problem [18] and the overly dense
central regions of dark matter halos, the so-called core-cusp problem [19]. The cold nature of the
particles allows for the formation of a Bose-Einstein condensate, which demonstrates a fluid-like
behaviour, where Dynamical effects can occur.
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A massive object moving within a mass concentration will experience dynamical friction,
which is a drag due to gravity, as it has been formulated by Chandrasekhar [20–22]. This interaction
decelerates the massive object, but also impacts the FDM halo creating smaller-scale structures [23]
depending on the detailed properties of the FDM model employed. These effects have been studied
analytically and numerically, considering the drag on a point mass and a spherically symmetric
extended mass distribution, corresponding to the Plummer potential [24, 25]. However, given that
massive objects, such as galaxies that play the role of satellites within FDM halos, are not necessarily
spherically symmetric, it is possible that the drag and the wake generated on the shape of the object
depend on their shape and orientation. Thus, we study here the impact of FDM to non-spherically
symmetric objects, such as galaxies described by the axisymmetric logarithmic potentials. We
simulate their evolution applying the methodology formulated in [24], and we compared against
known systems that may be host FDM haloes.

The structure of this contribution is as follows. In section 2 we present equations describing
FDM and the numerical scheme used for the study of the problem. In section 3 we present the
simulations. Section 4 focuses on the results of the simulations. We conclude in the final section 5.

2. Mathematical Formulation

FDM exhibits quantum mechanical behaviour, which because of the very low particle mass has
a corresponding de Broglie wavenumber that extends to astrophysical scales. Thus we shall use the
Schrödinger equation for the basic dynamics. Moreover, we will be focusing on the gravitational
dynamics, thus, we will be using the Poisson equation to find the relevant gravitational potential. The
combination of these two, leads to the Schrödinger-Poisson equation. However, in the application
we are discussing here, we will assume that the potential of the satellite dominates over the fuzzy
dark matter potential, thus in the evolutionary equation we will using the Schoödinger equation for
a particle of mass 𝑚 within a potential 𝑈𝑠:

𝑖ℏ
𝜕𝜓

𝜕𝑡
=

[
− ℏ2

2𝑚
∇2 + 𝑚(𝑈𝑠)

]
𝜓 . (1)

The wave-function is 𝜓, ℏ is the reduced Planck’s constant, 𝑚 is the mass of the FDM particle. The
potential term is 𝑈𝑠, which is the satellite’s potential which we will assume that it does not evolve
with time. As explained above, we neglect the potential corresponding to FDM, which formally
should have appeared in Schrödinger’s equation.

The wave-function can be written as a product of a real amplitude and a complex phase:

𝜓 =
√
𝜌𝑒𝑖 𝜃 . (2)

The square of the real amplitude 𝜌 is the density of the FDM, and the velocity of the u is the phase
of the wave function:

u =
ℏ

𝑚
∇𝜃 . (3)

Therefore, the combination of equations 1 and 2, along with an appropriate set of initial conditions
allows for the solution of a FDM system and a satellite [26, 27].
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The dynamical friction force exerted by the perturbation of the FDM onto the satellite is given
by the following expression:

𝐹𝐷𝐹 = −�̄�
∫
𝑉

𝑑𝑉
𝜌 − �̄�

�̄�

urel
|urel |

· ∇𝑈 . (4)

We quantify the dynamical friction due to FDM, by defining a dimensionless coefficient which is
given by the ratio of a characteristic force using the physical quantities involved in the problem and
the dynamical friction force. The reference force is defined as follows:

𝐹𝑟𝑒 𝑓 ≡ 4𝜋�̄�
(
𝐺𝑀

𝑢𝑟𝑒𝑙

)2
. (5)

𝑀 is the mass of the satellite, 𝑢𝑟𝑒𝑙 is the relative of the satellite with respect to the background
and �̄� is the average density of the FDM. Thus, the dimensionless dynamical friction coefficient as
follows:

𝐶𝑟𝑒𝑙 ≡
𝐹𝐷𝐹

𝐹𝑟𝑒 𝑓
. (6)

We further define the Quantum Mach number:

𝑀𝑄 ≡
𝑢𝑟𝑒𝑙ℏ

𝐺𝑀𝑚
. (7)

3. Numerical Scheme

For the numerical integration of the governing equation 1 we apply a symplectic integrator,
in Fourier space following the formulation of [28]. We separate the kinetic and potential terms of
the right-hand side of the Schrödinger equation which are then associated to the Laplacian and the
potential operator. The integration method is outline below:

𝜓 ← exp
[
−𝑖Δ𝑡

2
𝑚

ℏ
𝑈𝑠

]
𝜓, (8a)

𝜓 ← ifft
{
exp

(
−𝑖𝑘2Δ𝑡

ℏ

2𝑚

)
fft [𝜓]

}
, (8b)

𝜓 ← exp
[
−𝑖Δ𝑡

2
𝑚

ℏ
𝑈𝑠

]
𝜓 . (8c)

We denote by fft and ifft the fast Fourier and the inverse fast Fourier transformation, respectively.
We step-in-time by Δ𝑡, and 𝑘 is the wavenumber.

We have simulated 2-D and 3-D systems with a typical mode resolution of 𝑁 = 256 in 3-D, and
𝑁 = 512 in the 2-D runs, a time-step Δ𝑡 = 0.005 to ensure numerical convergence in all runs. we
also run some cases in higher resolution for numerical convergence. The simulation domain size
for both the 2-D and the 3-D runs is 𝐿 = 50𝜋, unless specified otherwise. We have applied periodic
boundary conditions. The initial FDM wavefunction is ∥𝜓∥ = 1 so that the density is uniform, and
a uniform velocity along the 𝑧 direction by assuming that the satellite is at rest while the dark matter
halo moves. This is implemented by using an appropriate linearly increasing phase.
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4. Results

Since our focus is the interaction of the potential with a FDM halo, we will be focusing on
two main families of potentials: the spherically symmetric Plummer potential and the logarithmic
potential.

The spherically symmetric, Plummer potential [29] given by the following expression

𝑈𝑠 = −
𝐺𝑀√︁
𝑟2 + 𝑅2

𝑐

. (9)

We denote by 𝑀 the total mass, by 𝑅𝑐 the core radius and by 𝑟 the radial coordinate, measured from
the centre.

The axisymmetric logarithmic potentials [30, 31] are described by the following expression

𝑈𝑠 =
𝑣2
𝑐

2
ln

(
𝑅2 + 𝑦2

𝑏2
𝑦

+ 𝑅2
𝑐

)
. (10)

The cylindrical radius is related to the Cartesian coordinates as follows 𝑅2 = 𝑥2 + 𝑧2, there the
system is axially symmetric round the 𝑦-axis. We denote by 𝑏𝑦 the ellipticity parameter and 𝑣𝑐 is
the orbital circular velocity for 𝑟 ≫ 𝑅𝑐. The object moves in the 𝑧 direction. We have also studied
another family of potentials where the axis of symmetry is parallel to the direction of motion. These
systems are described by the following potential:

𝑈𝑠 =
𝑣2
𝑐

2
ln

(
𝑅2 + 𝑧2

𝑏2
𝑧

+ 𝑅2
𝑐

)
. (11)

Here the axial radius now is 𝑅2 = 𝑥2 + 𝑦2. The ellipticity parameter must lie within the range

1
√

2
< 𝑏𝑦,𝑧 < 1.08 , (12)

to ensure that there are no negative values of energy density [32].
The two-dimensional analogue of the logarithmic system is given in the following expression:

𝑈𝑠 =
𝑣2
𝑐

2
ln

(
𝑦2

𝑏2
𝑦

+ 𝑧2

𝑏2
𝑧

+ 𝑅2
𝑐

)
, (13)

where, either 𝑏𝑦 , 𝑏𝑧 are equal to unity and the parameter varies within the range of appropriate
values. other within the range of permitted values. Such models allow faster integration times and
provide a qualitative understanding of the behaviour of the system.

In Figures 1 and 2 we plot the FDM density for the Plummer potential for two choices of
𝑀𝑄 = 1 , 1/8. In Figure 3 we plot a series of FDM density for the logarithmic potential where the
direction of motion is parallel to the axis of symmetry of the potential.

Next we asses the dimensionless dynamical friction coefficient 𝐶𝑟𝑒𝑙 , for various relative veloc-
ities, potentials, ellipticities and directions of motion. Regarding the Plummer potential, Figure 4,
we notice that for 𝑀𝑄 = 1, 𝐶𝑟𝑒𝑙 is predominantly positive but its value is typically small. On the
contrary, for lower 𝑀𝑄’s, the maxima of 𝑀𝑄 are well above unity, but it also has obtains negative
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Figure 1: Snapshots of the FDM density contrast at various times for a spherical Plummer potential with
𝑀𝑄 = 1 travelling through a FDM for different values of 𝑅𝐶 , as indicated on each row.

Figure 2: Snapshots of the FDM density ratio at various times for a spherical Plummer potential with
𝑀𝑄 = 1/8 travelling through a FDM for different values of 𝑅𝐶 , as indicated on each row.
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Figure 3: Snapshots of the FDM density ratio over the average density at various times for a logarithmic
potential with 𝑅𝐶 = 0.9 and 𝑀𝑄 = 0.1. The rows from top to the bottom have 𝑏𝑧 = 0.707, 0.8, 0.9, 1, 1.08.
The axis of symmetry of the ellipsoid is along the direction of motion. Reproduced from [33].

values. This is representative of the erratic effect of the wake and overdensities lying ahead of the
satellite as well as trailing it. Regarding the behaviour of the satellites described by logarithmic
potentials, Figures 5 and 6, which are not spherically symmetric, we notice that even though the
velocity 𝑣𝑐 is the same for all systems, differences by at least a factor of 5 are observed depending
on the ellipticity and the direction of motion of the object.

5. Conclusions

While most major studies of dynamical friction due to FDM, so far, have focused on spherically
symmetric systems, realistic galaxies, playing the role of satellites and travelling through FDM
haloes are unlikely to be spherically symmetric, and are better described by at least axially symmetric
or even triaxial potentials. Moreover, extended systems have constant orbital velocities at large
distances, and are well described by logarthmic potentials. The simulations we have performed
and discussed in these proceedings, demonstrate significant qualitative and quantitative differences
between spherically symmetric and axisymmetric systems. These results can be considered in
relation to the motion of the Large Magellanic Cloud within the DM halo of the Milky Way. This
motion is likely to lead to the creation of a wake [34–36].

If a satellite is not spherically symmetric, the direction of motion of the galaxy with respect to
the axis of symmetry, leads to measurable differences on the dynamical friction. It also affects the
shape of the wake, which in general trails the underlying mass distribution. Such features cannot be
directly observed, yet they may be identified through future maps of DM via gravitational lensing.
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Figure 4: The dynamical friction coefficient 𝐶𝑟𝑒𝑙 as a function of time for Plummer potentials for various
values of 𝑀𝑄. Reproduced from [33].

Finally, we notice that for low velocities the effect of the gravitational force is not always a
drag, but it may also lead to acceleration, parallel to the direction of motion. This is due to the fluid
nature of the FDM, which may generate overdensities ahead of the satellite.
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