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late cosmic acceleration at the background level without introducing a dark energy component.
This radical approach could be a new path to tackle problems not resolved until now in cosmology.
We estimate stringent constraints on the fractional and cosmological parameters using observational
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1. Introduction

Fractional calculus is a subject that has been introduced previously with two works by Niels
Henrik Abel in 1823 and 1826. It is a natural extension of the calculus discovered independently in
the late 17th century by Isaac Newton and Gottfried Leibniz, where differentiation and integration are
extended to noninteger or complex orders. Denoting by 𝜇 the fractional orders of the operations, the
new operations coincide with the results of classical calculus when 𝜇 ∈ Z, and if it is a positive integer
(differentiation) or negative integer (integration). Fractional calculus has drawn increasing attention
to studying physical behaviours. Research in fractional differentiation is inherently multi-disciplinary
and has its application across various disciplines, for example, fractional quantum mechanics and
gravity for fractional spacetime, fractional quantum field theory and cosmology [1–20].

In references [18] and [19], the fractional calculus free parameters are estimated using
cosmological data. The analysis from the type Ia supernovae (SNe Ia) data, the observational Hubble
parameter data (OHD), and the joint analysis lead to best-fit values for the free parameters. Moreover,
these best-fit values are used to calculate the age of the Universe, a current deceleration parameter,
and a current matter density parameter. In [20], dynamical systems were used to analyze fractional
cosmology for different matter contents, obtaining a late-time accelerating cosmology. Despite
the discrepancy between the age of the Universe predicted by the fractional calculus approach and
that of globular clusters, it is essential to highlight that fractional cosmology would contribute
to the solutions to other problems associated with the ΛCDM model. For example, the late-time
acceleration without dark energy can alleviate the so-called Cosmological Constant problem, in
which the observational value of the Λ differs between 60 and 120 orders of magnitude compared
with the value anticipated by particle physics [21]. Another problem related to the Dark Energy (DE)
is the coincidence problem, which stipulates that, currently, Dark Matter (DM) and DE densities
are of the same order of magnitude, with a fine-tuning problem associated with the context of
ΛCDM model [22]. Another issue that fractional cosmology can alleviate is the Hubble tension.
Measurements of the Hubble parameter at the current time, 𝐻0, exhibit a discrepancy of 5𝜎 between
the observational value obtained from cepheids and SNe Ia from the Hubble Space Telescope (HST)
[23], and the one inferred from Planck CMB [24]. The first corresponds to model-independent
measurements, while the second depends on the ΛCDM model. According to [25], observational
issues like the 𝐻0 tension are strong evidence that physics beyond ΛCDM model is required, being
the fractional cosmology one of these options. Therefore, following this line, a possible alternative
to solve this tension is considering extensions beyond ΛCDM (see [26, 27] for a review). In [18],
some results related to the 𝐻0 tension were discussed in the context of fractional cosmology. In the
present paper, we discuss the main results of [18–20].

2. Modified Friedmann equations

In Fractional cosmology, the Friedmann equation for the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric in a flat Universe is modified according to [8]

3𝐻2 + 3(1 − 𝜇)𝐻𝑡−1 =
∑︁
𝑖

𝜌𝑖 , (1)
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where 𝜇 is the fractional constant parameter, 𝐻 = ¤𝑎/𝑎 is the Hubble parameter, the dot means
derivative with respect the cosmic time, and we use units where 8𝜋𝐺 = 1.

Assuming separated conservation equations, we have [18]

¤𝜌𝑖 + 3 (𝐻 + (1 − 𝜇)/(3𝑡)) (𝜌𝑖 + 𝑝𝑖) = 0. (2)

If 𝜇 = 1, the standard cosmology without Λ is recovered. We are assuming the equation of
state 𝑝𝑖 = 𝑤𝑖𝜌𝑖, with 𝑤𝑖 ≠ −1 constants, setting 𝑎(𝑡0) = 1, where 𝑡0 is the current age of the
Universe, and denoting by 𝜌0𝑖 the current value of energy density of the 𝑖-th species, we obtain
𝜌𝑖 (𝑡) = 𝜌0𝑖𝑎(𝑡)−3(1+𝑤𝑖 ) (𝑡/𝑡0) (𝜇−1) (1+𝑤𝑖 ) . For 𝜇 ≠ 1, we have∑︁

𝑖

𝑝𝑖 = 6(𝜇 − 3)𝐻𝑡−1 + 3𝐻2 − 3(𝜇 − 2) (𝜇 − 1)𝑡−2. (3)

Eliminating
∑

𝑖 𝑝𝑖 and
∑

𝑖 𝜌𝑖 , we obtain

¤𝐻 = −2(𝜇 − 4)𝐻𝑡−1 − 3𝐻2 + (𝜇 − 2) (𝜇 − 1)𝑡−2, (4)

Defining the dimensionless time variable 𝜉 = 𝑡/𝑡0, we obtain by integrating (4), the following:

𝐸 (𝜉) = 𝐻 (𝜉)
𝐻0

=
1

3𝛼0𝜉

[
9 − 2𝜇 + 𝑟

2
− 𝑐𝑟

𝑐 + 𝜉𝑟

]
, (5)

𝑧(𝜉) = −1 + 𝜉
1
6 (2𝜇+𝑟−9) 3

√︄
(𝑐 + 1)
𝑐 + 𝜉𝑟

, (6)

𝑝(𝜉) =
𝐻2

0

(
2(4𝜇 − 9)𝑟

(
𝜉2𝑟 − 𝑐2) + 𝑟2 (𝜉𝑟 − 𝑐)2 − 7(4𝜇(2𝜇 − 9) + 45) (𝑐 + 𝜉𝑟 )2

)
12𝛼2

0𝜉
2 (𝑐 + 𝜉𝑟 )2 , (7)

𝜌(𝜉) =
𝐻2

0

(
−2(5𝜇 − 12)𝑟

(
𝜉2𝑟 − 𝑐2) + 𝑟2 (𝜉𝑟 − 𝑐)2 + (2𝜇 − 9) (8𝜇 − 15) (𝑐 + 𝜉𝑟 )2

)
12𝛼2

0𝜉
2 (𝑐 + 𝜉𝑟 )2 , (8)

𝑞(𝜉) = −
𝑐2 (2𝜇 + 𝑟 − 9) (2𝜇 + 𝑟 − 3) + 2𝑐

(
4𝜇2 − 24𝜇 + 5𝑟2 + 27

)
𝜉𝑟 + (−2𝜇 + 𝑟 + 3) (−2𝜇 + 𝑟 + 9)𝜉2𝑟

((−2𝜇 + 𝑟 + 9)𝜉𝑟 − 𝑐(2𝜇 + 𝑟 − 9))2 ,

(9)

𝑤eff (𝜉) =
2(4𝜇 − 9)𝑟

(
𝜉2𝑟 − 𝑐2) + 𝑟2 (𝜉𝑟 − 𝑐)2 − 7(4𝜇(2𝜇 − 9) + 45) (𝑐 + 𝜉𝑟 )2

((−2𝜇 + 𝑟 + 9)𝜉𝑟 − 𝑐(2𝜇 + 𝑟 − 9)) ((−8𝜇 + 𝑟 + 15)𝜉𝑟 − 𝑐(8𝜇 + 𝑟 − 15)) , (10)

Ωm (𝜉) =
(−8𝜇 + 𝑟 + 15)𝜉𝑟 − 𝑐(8𝜇 + 𝑟 − 15)
(−2𝜇 + 𝑟 + 9)𝜉𝑟 − 𝑐(2𝜇 + 𝑟 − 9) , (11)

where 𝛼(𝑡) = 𝑡𝐻 is the age parameter, 𝛼0 = 𝐻0𝑡0, 𝑐 =
−2𝜇+𝑟−6𝛼0+9
2𝜇+𝑟+6𝛼0−9 , and 𝑟 =

√︁
8𝜇(2𝜇 − 9) + 105.

Taking the limit as 𝜉 → ∞, we have

lim
𝜉→∞

𝑧(𝜉) = −1, lim
𝜉→∞

𝐸 (𝜉) = 0, lim
𝜉→∞

𝑝(𝜉) = 0, lim
𝜉→∞

𝜌(𝜉) = 0,

lim
𝜉→∞

𝑞(𝜉) =
−13 − 2(𝜇 − 4)𝜇 +

√︁
8𝜇(2𝜇 − 9) + 105

2(𝜇 − 2) (𝜇 − 1) , lim
𝜉→∞

𝛼(𝜉) = 1
6

(
9 − 2𝜇 +

√︁
8𝜇(2𝜇 − 9) + 105

)
≥ 0,

lim
𝑡→∞

𝑤eff(𝑡) =
−7 +

√︁
8𝜇(2𝜇 − 9) + 105
4(𝜇 − 1) , lim

𝑡→∞
Ωm(𝑡) =

5 −
√︁

8𝜇(2𝜇 − 9) + 105
2(𝜇 − 2) . (12)
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The main difficulty of this approach is the need to invert (6) to obtain 𝜉 as a function of 𝑧 because data
is in terms of redshift, which is impossible using analytical tools. After all, the equation is a rational
one. By introducing the logarithmic independent variable 𝑠 = − ln(1 + 𝑧), with 𝑠 → −∞ as 𝑧 → ∞,
𝑠 → 0 as 𝑧 → 0, and 𝑠 → ∞ as 𝑧 → −1, and given the initial conditions 𝛼(0) = 𝑡0𝐻0, 𝑡 (0) = 𝑡0, we
obtain the initial value problem

𝛼′(𝑠) = 9 − 2𝜇 − 3𝛼(𝑠) + (𝜇 − 2) (𝜇 − 1)
𝛼(𝑠) , (13)

𝑡′(𝑠) = 𝑡 (𝑠)/𝛼(𝑠). (14)

The equation (13) gives a one-dimensional dynamical system. The equilibrium points are
𝑇1 : 𝛼 = 1

6

(
9 − 2𝜇 −

√︁
8𝜇(2𝜇 − 9) + 105

)
, satisfying 𝛼 > 0 for 1 < 𝜇 < 2, and 𝑇2 : 𝛼 =

1
6

(
9 − 2𝜇 +

√︁
8𝜇(2𝜇 − 9) + 105

)
, that satisfies 𝛼 > 0 for 𝜇 ∈ R. 𝑇1 is a source whenever it exists

and 𝑇2 is always a sink. That is the asymptotic behaviour for large 𝑡, which is consistent with [20].
We introduce the parameter 𝜖0 such that

𝜖0 =
1
2

lim
𝑡→∞

(
𝑡0𝐻0 − 𝑡𝐻

𝑡𝐻

)
, 𝛼0 =

1
6

(
9 − 2𝜇 +

√︁
8𝜇(2𝜇 − 9) + 105

)
(1 + 2𝜖0). (15)

𝜖0 is a measure of the limiting value of the relative error in the age parameter 𝑡𝐻 when it is
approximated by 𝑡0𝐻0.

3. Methodology and dataset

A Bayesian Markov Chain Monte Carlo (MCMC) analysis is performed to constrain the
phase-space parameter 𝚯 = {ℎ,Ω0𝑚, 𝜇} of the fractional cosmology using observational Hubble
data OHD, SNe Ia dataset and joint analysis. Under the emcee Python package environment [28],
after the auto-correlation time criterion warranty the convergence of the chains, a set of 4000 chains
with 250 steps each is performed to establish the parameter bounds. Additionally, the configuration
for the priors are Uniform distributions allowing vary the parameters in the range ℎ ∈ [0.2, 1],
Ω0𝑚 ∈ [0, 1] and 𝜇 ∈ [1, 3]. Hence the figure-of-merit for the joint analysis is built through the
Gaussian log-likelihood given as −2 ln(Ldata) ∝ 𝜒2

data and 𝜒2
Joint = 𝜒2

CC + 𝜒2
SNeIa, where each term

refers to the 𝜒2-function for each dataset. Now, each piece of data is described.

3.1 Cosmic chronometers

Up to now, a set of 31 points obtained by differential age tools, namely cosmic chronometers
(CC), represents the measurements of the Hubble parameter, which is cosmological independent [29].
In this sense, this sample is useful to bound alternative models to ΛCDM. Thus, the figure-of-merit
function to minimize is given by

𝜒2
CC =

31∑︁
𝑖=1

(
𝐻𝑡ℎ (𝑧𝑖) − 𝐻𝑜𝑏𝑠 (𝑧𝑖)

𝜎𝑖
𝑜𝑏𝑠

)2

, (16)

where the sum runs over the whole sample, and 𝐻𝑡ℎ − 𝐻𝑜𝑏𝑠 is the difference between the theoretical
and observational Hubble parameter at the redshift 𝑧𝑖 and 𝜎𝑜𝑏𝑠 is the uncertainty of 𝐻𝑜𝑏𝑠.
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3.2 Type Ia Supernovae

Ref. [30] provides 1048 luminosity modulus measurements, known as Pantheon sample, from
Type Ia Supernovae, which cover a region 0.01 < 𝑧 < 2.3. Due to this sample, the measurements
are correlated, and it is convenient to build the chi-square function as

𝜒2
SNeIa = 𝑎 + log

( 𝑒

2𝜋

)
− 𝑏2

𝑒
, (17)

where
𝑎 = Δ�̃�𝑇 · Cov−1

P · Δ�̃�, 𝑏 = Δ�̃�𝑇 · Cov−1
P · Δ1, 𝑒 = Δ1𝑇 · Cov−1

P · Δ1. (18)

Furthermore, Δ�̃� is the vector of residuals between the theoretical distance modulus and the observed
one, Δ1 = (1, 1, . . . , 1)𝑇 , CovP is the covariance matrix formed by adding the systematic and statistic
uncertainties, i.e. CovP = CovP,sys + CovP,stat. The super-index 𝑇 on the above expressions denotes
the transpose of the vectors.

The theoretical distance modulus is estimated by

𝑚𝑡ℎ = M + 5 log10

[
𝑑𝐿 (𝑧)
10 𝑝𝑐

]
, (19)

where M is a nuisance parameter which has been marginalized by Eq. (17).
The luminosity distance, denoted as 𝑑𝐿 (𝑧), is computed through

𝑑𝐿 (𝑧) = (1 + 𝑧)𝑐
∫ 𝑧

0

𝑑𝑧′

𝐻 (𝑧′) , (20)

being 𝑐 the speed of light.
In [18], the theoretical 𝐻 (𝑧) is obtained by solving numerically the system

𝐸 (𝑧) = − 𝑓 𝐹 (𝑧) + 𝐹 (𝑧)−𝜇
{
𝑓 2𝐹 (𝑧)2(𝜇+1) +Ω0m (𝑧 + 1)3𝐹 (𝑧)𝜇+1 +Ω0r (𝑧 + 1)4𝐹 (𝑧)

2(𝜇+2)
3

}1/2

, (21)

𝐹′ (𝑧) = 2 𝑓 𝐹 (𝑧)𝜇+2

(𝜇 − 1) (𝑧 + 1)

{
𝑓 𝐹 (𝑧)𝜇+1 −

[
𝑓 2𝐹 (𝑧)2𝜇+2 +Ω0m (𝑧 + 1)3𝐹 (𝑧)𝜇+1 +Ω0r (𝑧 + 1)4𝐹 (𝑧)

2(𝜇+2)
3

]1/2}−1

,

(22)

where 𝑓 ≡ (1 − 𝜇)/(2𝑡0𝐻0) is going to be the fractional constant that will act as the cosmological
constant. For 𝜇 > 1, Ω0m +Ω0r < 1, and notice that we choose the positive branch in order to have
𝐸 (𝑧) > 0 and where Ω0r = 2.469 × 10−5ℎ−2(1 + 0.2271𝑁eff), where 𝑁eff = 2.99 ± 0.17 [24].

On the other hand, in reference [19] was constrained the free parameters with the SNe Ia data
and OHD using more data points. In particular, the first one has used the same sample as in [18].
The second one is considered the OHD sample compiled by Magaña et al. [32], which consists of 51
data points from cosmic chronometers and BAO estimations in the redshift range 0.07 ≤ 𝑧 ≤ 2.36.
Hence, for the constraint, we numerically integrate the system given by Eqs. (13) and (14), which
represent a system for the variables (𝛼, 𝑡) as a function of 𝑠 = − ln (1 + 𝑧), and for which we consider
the initial conditions 𝛼(𝑠 = 0) ≡ 𝛼0 = 𝑡0𝐻0 and 𝑡 (𝑠 = 0) ≡ 𝑡0 = 𝛼0/𝐻0. Then, the Hubble parameter
is obtained numerically by 𝐻𝑡ℎ (𝑧) = 𝛼(𝑧)/𝑡 (𝑧). For this integration, we consider the NumbaLSODA

5
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code, a python wrapper of the LSODA method in ODEPACK to C++ 1. For further comparison, were
also constrained the free parameters of the ΛCDM model by excluding radiation, whose respective
Hubble parameter as a function of the redshift is given by 𝐻 (𝑧) = 𝐻0

√︁
Ω𝑚,0(1 + 𝑧)3 + 1 −Ω𝑚,0.

Finally, the free parameter 𝛼0 was considered through the parameterization given by Eq. (15).
Therefore, the free parameters of the Fractional cosmological model are 𝜃 = {ℎ, 𝜇, 𝜖0}, and the free
parameters of the ΛCDM model are 𝜃 = {ℎ,Ω𝑚,0}. For the free parameters 𝜇, 𝜖0, and Ω𝑚,0 were
considered the following flat priors: 𝜇 ∈ 𝐹 (1, 4), 𝜖0 ∈ 𝐹 (−0.1, 0.1), and Ω𝑚,0 ∈ 𝐹 (0, 1). On the
other hand, the prior chosen for 𝜖0 is because 𝜖0 is a measure of the limiting value of the relative error
in the age parameter 𝑡𝐻 when it is approximated by 𝑡0𝐻0 as given by Eq. (15). For the mean value
𝜖0 = 0, we acquire 𝛼0 = 1

6 (−2𝜇+ 𝑟 +9), and then, we have the leading term for 𝐸 (𝑧) ≃ (1+ 𝑧)
6

(9−2𝜇+𝑟 ) .
The lower prior of 𝜇 is because the Hubble parameter 𝐻 ≃ (𝜇 − 1)/𝑡 becomes negative when 𝜇 < 1,
in the absence of matter.

3.3 Results and discussion

The constraints obtained in [18] through cosmic chronometers, Type Ia Supernovae, and joint
analysis are summarized in Fig. 1 and Table 1 (middle rows). The fractional parameter prefers
𝜇 = 2.839+0.117

−0.193 for a joint analysis which suggests a solid presence of fractional calculus in the
dynamical equations of cosmology; however, it generates crucial differences as it is possible to
observe from Figs 2a, 2b, and 2b. From one side, the term (1 − 𝜇)𝐻/𝑡 acts like an extra source
of mass, closing the Universe and not allowing the observed dynamics, in particular, the Universe
acceleration at late times if 𝜇 < 2, but, for 𝜇 > 2, we can have an accelerated power-law solution.
Furthermore, from Figs. 2a, 2b, and 2b it is possible to notice that the fractional constant 𝑓 can
act like the object that causes the Universe acceleration. It is possible to observe from 𝐻 (𝑧) and
𝑞(𝑧) essential differences when we compare them with the standard model, mainly at high redshifts.
In addition, the Jerk parameter also shows that the source of the Universe acceleration is not a
cosmological constant because, at 𝑧 = 0, the fractional parameter does not converge to 𝑗 = 1; this is
in agreement with recent studies that suggest that Λ is not the cause of the Universe acceleration [33].

Moreover, the Universe’s age obtained under this scenario is 𝑡0 = 33.617+3.411
−4.511 Gyrs based on

our Joint analysis, around 2.4 times larger than the age of the Universe expected under the standard
paradigm. However, this value does not contradict the minimum bound expected for the universe
age imposed by globular clusters. As far as we know, the maximum bound does not exist and is
model-dependent. Fig. 2d displays the reconstruction of the H0(𝑧) diagnostic [34] for the fractional
cosmology and its error band at 3𝜎 of confidence level (CL).

In reference [19], the best-fit values of the free parameters space for the ΛCDM model and the
Fractional cosmological model, obtained from the SNe Ia data, OHD, and in their joint analysis, with
their corresponding 𝜒2

𝑚𝑖𝑛
criteria, are presented in Table 1 (last rows). The uncertainties correspond

to 1𝜎, 2𝜎, and 3𝜎 CL. In Figures 3a and 3b, we depict the posterior distribution and joint admissible
regions of the free parameters space of the ΛCDM model and the Fractional cosmological model,
respectively. The joint admissible regions correspond to 1𝜎, 2𝜎, and 3𝜎 CL. Due to the degeneracy
between 𝐻0 and M, the distribution of ℎ for the SNe Ia data was not represented in their full
parameter space. The analysis from the SNe Ia data leads to ℎ = 0.696+0.302

−0.295, 𝜇 = 1.340+2.651
−0.339 and

1Available online in the GitHub repository https://github.com/Nicholaswogan/numbalsoda
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Figure 1: 2D likelihood contours at 68% and 99.7% CL, alongside the corresponding 1D posterior distribution
of the free parameters (see Ref. [18])

Table 1: Best-fit values and 𝜒2
𝑚𝑖𝑛

criteria for the ΛCDM model with free parameters ℎ and Ω𝑚,0; for the
Fractional cosmological model (dust + radiation) [18]; and the Fractional cosmological model with free
parameters ℎ, 𝜇, and 𝜖0 [19]. The MCMC analysis obtained the values from the SNe Ia data, OHD (or CC),
and their joint analysis. The ΛCDM model is used as a reference model.

Best-fit values

Data 𝒉 𝛀𝒎,0 𝝁 𝝐0 × 102 𝝌2
𝒎𝒊𝒏

𝚲CDM model

SNe Ia 0.692+0.209 +0.296 +0.307
−0.120 −0.278 −0.292 0.299+0.022 +0.046 +0.068

−0.021 −0.042 −0.059 · · · · · · 1026.9

OHD 0.706+0.012 +0.024 +0.035
−0.012 −0.024 −0.036 0.259+0.018 +0.038 +0.059

−0.017 −0.033 −0.047 · · · · · · 27.5

SNe Ia+OHD 0.696+0.010 +0.020 +0.029
−0.010 −0.020 −0.029 0.276+0.014 +0.030 +0.043

−0.014 −0.027 −0.040 · · · · · · 1056.3

Fractional cosmological model (dust + radiation) [18] (The uncertainties presented correspond to 1𝜎(68.3%) CL)

SNe Ia 0.599+0.275
−0.269 0.160+0.050

−0.072 2.771+0.161
−0.214 · · · 54.83

CC 0.629+0.027
−0.027 0.399+0.093

−0.122 2.281+0.492
−0.433 · · · 16.14

SNe Ia+CC 0.692+0.019
−0.018 0.228+0.035

−0.040 2.839+0.117
−0.193 · · · 78.69

Fractional cosmological model [19] (The uncertainties presented correspond to 1𝜎(68.3%), 2𝜎(95.5%), and 3𝜎(99.7%) CL)

SNe Ia 0.696+0.215 +0.293 +0.302
−0.204 −0.284 −0.295 · · · 1.340+0.492 +2.447 +2.651

−0.245 −0.328 −0.339 1.976+0.599 +1.133 +1.709
−0.905 −1.848 −2.067 1028.1

OHD 0.675+0.013 +0.029 +0.041
−0.008 −0.015 −0.021 · · · 2.239+0.449 +0.908 +1.386

−0.457 −0.960 −1.190 0.865+0.395 +0.650 +0.793
−0.407 −0.657 −0.773 29.7

SNe Ia+OHD 0.684+0.011 +0.021 +0.031
−0.010 −0.020 −0.027 · · · 1.840+0.343 +1.030 +1.446

−0.298 −0.586 −0.773 1.213+0.216 +0.383 +0.482
−0.310 −0.880 −1.057 1061.1

𝜖0 =

(
1.976+1.709

−2.067

)
× 10−2, which are the best-fit values at 3𝜎 CL. In this case, the value obtained

for ℎ cannot be considered as a best fit due to the degeneracy between 𝐻0 and M. On the other hand,
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(c) Reconstruction of the 𝑗 (𝑧) in fractional cosmology
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(d) H0(𝑧) diagnostic for fractional cosmology

Figure 2: Reconstruction of Hubble Factor 𝐻 (𝑧), deceleration parameter 𝑞(𝑧), Jerk 𝑗 (𝑧), andH0(𝑧) diagnostic
and its comparison against ΛCDM model (red dashed lines) with ℎ = 0.6766 and Ωm0 = 0.3111 [24] (see
Ref. [18])

the lower limit of the best fit for 𝜇 is very close to 1. That is because the posterior distribution for
this parameter is close to this value, as seen from Figure 3b. That indicates that a value of the SNe Ia
data prefers 𝜇 < 1, but, as a reminder, this value leads to a negative Hubble parameter in the absence
of matter. However, as can be seen from the same Figure 3b, the posterior distribution for these
parameters is multi-modal. Therefore, it is possible to obtain a best-fit value that satisfies 𝜇 > 1.

It is important to mention that the OHD and the joint analysis do not experience this issue,
which allows us to maintain the validity of the prior used for 𝜇. The analysis from OHD leads to
ℎ = 0.675+0.041

−0.021, 𝜇 = 2.239+1.386
−1.190 and 𝜖0 =

(
0.865+0.793

−0.773

)
× 10−2, which are the best-fit values at 3𝜎

CL. In this case, note how the OHD can properly constrain the free parameters ℎ, 𝜇 and 𝜖0, i.e., we
obtain the best fit for the priors considered in our MCMC analysis. Also, note how the posterior
distribution of 𝜇 includes the value of 1, as seen from Figure 3b, but greater than 3𝜎 CL.

Finally, the joint analysis with data from SNe Ia + OHD leads to ℎ = 0.684+0.031
−0.027, 𝜇 = 1.840+1.446

−0.773

and 𝜖0 =

(
1.213+0.482

−1.057

)
×10−2, which are the best-fit values at 3𝜎 CL. Focusing our analysis on these

results, we can conclude that the region in which 𝜇 > 2 is not ruled out by observations. On the other
hand, these best-fit values lead to an age of the Universe with a value of 𝑡0 = 𝛼0/𝐻0 = 25.62+6.89

−4.46 Gyrs
at 3𝜎 CL. This fact to find a universe roughly twice older as one of the ΛCDM models, which is also
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(a) Posterior distribution and joint admissible regions of
the free parameters ℎ and Ω𝑚,0 for the ΛCDM model,
obtained in the MCMC analysis.
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(b) Posterior distribution and joint admissible regions
of the free parameters ℎ, 𝜇, and 𝜖0 for the Fractional
cosmological model, obtained in the MCMC analysis.

Figure 3: Posterior distribution and joint admissible regions of the free parameters obtained in the MCMC
analysis for each model. The admissible joint regions correspond to 1𝜎(68.3%), 2𝜎(95.5%), and 3𝜎(99.7%)
CL, respectively. The best-fit values for each model free parameter are shown in Table 1 (see Ref. [19]).

in disagreement with the value obtained with globular clusters, with a value of 𝑡0 = 13.5+0.16
−0.14 ± 0.23

[35], is a distinction of the Fractional Cosmology. This result also agrees with the analysis made in
[18], section 8, where the best-fit 𝜇-value is obtained from the reconstruction of 𝐻 (𝑧) for different
priors of 𝜇. In [18] was considered a set of 31 points obtained by differential age tools, namely cosmic
chronometers (CC), represents the measurements of the Hubble parameter, which is cosmological
independent [29] (in [19] was considered the datasets from [32], which consists of 51 data points
in the redshift range 0.07 ≤ 𝑧 ≤ 2.36, 20 more points as compared with [29]; nevertheless, the
additional points are model-dependent). The 1048 luminosity modulus measurements, known as
the Pantheon sample, from Type Ia Supernovae cover a region 0.01 < 𝑧 < 2.3 [31]. In [18], results
depend on the priors used for 𝜇. Say, for the prior 0 < 𝜇 < 1, 𝜇 = 0.50 and 𝑡0 = 41.30 Gyrs; for
1 < 𝜇 < 3, 𝜇 = 1.71 and 𝑡0 = 27.89 Gyrs; and for 0 < 𝜇 < 3, 𝜇 = 1.15 and 𝑡0 = 33.66 Gyrs.

From the values for the 𝜒2
𝑚𝑖𝑛

criteria presented in Table 1 (first rows), it is possible to see that the
ΛCDM model is the best model to fit the SNe Ia, OHD, and joint data. Nevertheless, the Fractional
cosmological model studied in [19] exhibits values of the 𝜒2

𝑚𝑖𝑛
criteria close to the values of the

ΛCDM model, with differences of 1.2 for the SNe Ia data, 2.2 for the OHD data, and 4.8 for their
joint analysis. So, this Fractional cosmological model is suitable for describing the SNe Ia and OHD
data, as seen from Figure 4a and Figure 5, showing the transition from a deceleration expansion
phase to an accelerated one. Therefore, Fractional Cosmology can be considered an alternative valid
cosmological model to describe the late-time Universe.

On the other hand, Fig. 4a shows the theoretical Hubble parameter for the ΛCDM model (red
dashed line) and the Fractional cosmological model (solid blue line) as a function of the redshift
𝑧, contrasted with the OHD sample. The shaded curve represents the confidence region of the
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(b) Reconstruction of the 𝑞(𝑧) in fractional cosmology
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(c) Reconstruction of the 𝑗 (𝑧) in fractional cosmology
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(d) H0(𝑧) diagnostic for fractional cosmology

Figure 4: Theoretical Hubble parameter, Deceleration parameter, Jerk, and H0 diagnostic (solid blue line) as
a function of the redshift 𝑧 for the Fractional cosmological model. The shaded curve represents the confidence
region at 3𝜎(99.7%) CL. Each model is compared with the ΛCDM model (red dashed line). Fig. 4a is
contrasted with the OHD sample. The rest of the figure is obtained using the best-fit values from the joint
analysis in Table 1 (see Ref. [19])

Hubble parameter for the Fractional cosmological model at 3𝜎(99.7%) CL. The figure is obtained
using the best-fit values from the joint analysis in Table 1 (last rows). Additionally, in order to
establish that this Fractional cosmological model can describe a universe that experiences a transition
from a decelerated expansion phase to an accelerated one, we compute the deceleration parameter
𝑞 = −1 − ¤𝐻/𝐻2, which using the Riccati Equation (4), leads to

𝑞(𝛼(𝑠)) = 2 + 2(𝜇 − 4)
𝛼(𝑠) − (𝜇 − 2) (𝜇 − 1)

𝛼2(𝑠)
. (23)

Following this line, in Figure 4b, we depict the deceleration parameter for the Fractional cosmological
model as a function of the redshift 𝑧, obtained for the best-fit values from the joint analysis in the
Table 1 (last rows), with an error band at 3𝜎 CL. We also depict the deceleration parameter for
the ΛCDM model as a reference model. From this figure, we can conclude that the Fractional
cosmological model effectively experiences this transition at 𝑧𝑡 ⪆ 1, with the characteristic that
𝑧𝑡 > 𝑧𝑡 ,Λ𝐶𝐷𝑀 , being 𝑧𝑡 ,Λ𝐶𝐷𝑀 the transition redshift of the ΛCDM model. Even more, the current
deceleration parameter of the Fractional cosmological model is 𝑞0 = −0.37+0.08

−0.11 at 3𝜎 CL. Moreover,
we compute the cosmographic parameter known as the Jerk, which quantifies if the Fractional
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Figure 5: (left panel) Theoretical apparent B-band magnitude for the ΛCDM model (red dashed line) and the
Fractional cosmological model (solid blue line) as a function of the redshift 𝑧, contrasted with the Pantheon
data set. (right panel) Variation of the theoretical apparent B-band magnitude of the Fractional cosmological
model concerning the ΛCDM model as a function of the redshift 𝑧. The curve is obtained through the
expression Δ𝑚𝐵 = 𝑚𝐵,𝑀𝑜𝑑𝑒𝑙 − 𝑚𝐵,Λ𝐶𝐷𝑀 . The figures are obtained using the best-fit values from the joint
analysis in Table 1 (see Ref. [19])

cosmological model tends to Λ or its another kind of DE, which can be written as

𝑗 (𝑠) = 𝑞(𝑠) (2𝑞(𝑠) + 1) − 𝑑𝑞(𝑠)
𝑑𝑠

, (24)

where 𝑞 is given by Eq. (23). Hence,

𝑗 (𝛼(𝑠)) = 12(𝜇 − 4)
𝛼(𝑠) + (𝜇 − 21)𝜇 + 50

𝛼(𝑠)2 − 2(𝜇 − 3) (𝜇 − 2) (𝜇 − 1)
𝛼(𝑠)3 + 10. (25)

Figure 4c shows the Jerk for the ΛCDM model (red dashed line) and the Fractional cosmological
model (solid blue line) as a function of the redshift 𝑧. The figure is obtained using the best-fit values
from the joint analysis in Table 1 (last rows) with an error band at 3𝜎 CL, represented by a shaded
region. A departure of more than 3𝜎 of CL for the current value for ΛCDM shows an alternative
cosmology with an effective dynamical equation of state for the Universe for late times in contrast to
ΛCDM.

On the other hand, in Figure 4d, we depict H0 diagnostic for the ΛCDM model (red dashed
line) and the Fractional cosmological model (solid blue line) as a function of the redshift 𝑧. The
figure is obtained using the best-fit values from the joint analysis in Table 1 (last rows), with an error
band at 3𝜎 CL, represented by a shaded region. As a reminder, in both Figures 4c and 4d, we also
depict the Jerk and the H0 diagnostic for the ΛCDM model as a reference model.

In Figures 6a and 6b, we depict the matter density and fractional density parameters for the
Fractional cosmological model (the last one interpreted as dark energy), respectively, as a function
of the redshift 𝑧, for the best-fit values from the joint analysis in the Table 1, with an error band at 1𝜎
CL. We depict the matter density and dark energy density parameters in both figures for the ΛCDM
model. From Figure 6a, we can see that the matter density parameter for the Fractional cosmological
model, obtained from Eq. (11), presents significant uncertainties, which can be a consequence of
their reconstruction from a Hubble parameter that does not take into account any EoS. In this sense,
the current value of this matter density parameter at 1𝜎 CL is Ω𝑚,0 = 0.531+0.195

−0.260, a value that is in
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(a) Matter density parameter for the ΛCDM model (red
dashed line) and the Fractional cosmological model
(solid blue line) as a function of the redshift 𝑧.
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(b) Dark energy density parameter for theΛCDM model
(red dashed line) and the Fractional cosmological model
(solid blue line) as a function of the redshift 𝑧.

Figure 6: Dark energy and Dark Matter density parameters for the ΛCDM model and the Fractional
cosmological model as a function of the redshift 𝑧. The shaded curve represents the confidence region of the
matter density parameter for the Fractional cosmological model at 1𝜎(68.3%) CL. The figure is obtained
using the best-fit values from the joint analysis in Table 1 (see Ref. [19])

agreement with the asymptotic value obtained from Eq. (12) of Ω𝑚,𝑡→∞ = 0.519+0.199
−0.262, computed at

1𝜎 CL for the best-fit values from the joint analysis in the Table 1 (last rows). Therefore, this greater
value of Ω𝑚,0 for the Fractional cosmological model can, in principle, explain the lower value of the
current deceleration parameter 𝑞0 and the excess of matter in the effective term 𝜌frac = 3(𝜇 − 1)𝑡−1𝐻

with Ωfrac(𝛼(𝑠)) = (𝜇 − 1)/𝛼(𝑠). Note that the current value Ωfrac,0 can be interpreted as the dark
energy density parameter for the Fractional cosmological model as Ωfrac,0 = 0.469+0.260

−0.195, which
satisfies the condition Ω𝑚,0 +Ωfrac,0 = 1. Observe that the energy densities of DE and DM are of
the same order of magnitude today, alleviating the Coincidence Problem.

Finally, we estimate the free parameters (𝛼0, 𝜇) using cosmological data. Using the re-
parameterization 𝐻0 = 100km/s

Mpc ℎ, 𝛼0 = 1
6

(
9 − 2𝜇 +

√︁
8𝜇(2𝜇 − 9) + 105

)
(1 + 2𝜖0).

The analysis from the SNe Ia data, OHD and the joint analysis with data from SNe Ia + OHD leads
respectively to ℎ = 0.696+0.302

−0.295, 𝜇 = 1.340+2.651
−0.339 and 𝜖0 =

(
1.976+1.709

−2.067

)
× 10−2, ℎ = 0.675+0.041

−0.021,

𝜇 = 2.239+1.386
−1.190 and 𝜖0 =

(
0.865+0.793

−0.773

)
× 10−2, and ℎ = 0.684+0.031

−0.027, 𝜇 = 1.840+1.446
−0.773 and

𝜖0 =

(
1.213+0.482

−1.057

)
× 10−2, where the best-fit values are calculated at 3𝜎 CL. On the other hand,

these best-fit values lead to an age of the Universe with a value of 𝑡0 = 𝛼0/𝐻0 = 25.62+6.89
−4.46 Gyrs,

a current deceleration parameter of 𝑞0 = −0.37+0.08
−0.11, both at 3𝜎 CL, and a current matter density

parameter of Ω𝑚,0 = 0.531+0.195
−0.260 at 1𝜎 CL. Finding a Universe roughly twice older as the one of

ΛCDM is a distinction of Fractional Cosmology. Focusing our analysis on these results, we can
conclude that the region in which 𝜇 > 2 is not ruled out by observations. This parameter region
is relevant because, in the absence of matter, fractional cosmology gives a power-law solution
𝑎(𝑡) = (𝑡/𝑡0)𝜇−1, which is accelerated for 𝜇 > 2. In summary, we presented a fractional origin
model that leads to an accelerated state without appealing to Λ or Dark Energy.
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4. Conclusions

This paper discusses the formalism of fractional calculus, which modifies the integer order
derivative by a fractional derivative of order 𝜇. It generates changes in the Friedmann equations,
where the standard evolution of the cosmic species densities depends on the fractional parameter and
the Universe’s current age 𝑡0. The additional term in the new cosmic dynamics equation can support
the late-time accelerated expansion without a dark energy component. We estimated stringent
constraints on the fractional and cosmological parameters using observational Hubble data, Type Ia
supernovae and joint analysis to elucidate that. According to our results, the Universe would be older
than the standard estimations. We have obtained modified Friedmann equations at the background
level under fractional calculus, which provides a late cosmic acceleration without introducing a dark
energy component. This radical approach could be a new path to tackle problems not resolved until
now in cosmology. Finally, we analyzed whether fractional cosmology can alleviate 𝐻0 tension.
We observe a trend of 𝐻0 to the value obtained by the Supernova 𝐻0 for the Equation of State [25]
at current times, and in agreement with Planck’s value [24] for 𝑧 ≲ 1.5. However, a discrepancy
between both values in the region 1.5 < 𝑧 < 2.5 holds, so 𝐻0 tension is not fully resolved.
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