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The theta vacuum in𝑄𝐶𝐷 is the standard vacuum, twisted by the exponential of the Chern-Simons
term. But what is the quantum operator𝑈 (𝑔) for winding number 1?
We construct 𝑈 (𝑔) in this note. The Poincaré rotation generators commute with it only if they
are augmented by the spin 1

2 representation of the Lorentz group coming from large gauge
transformations. This result is analogous to the ‘spin-isopin’ mixing result due to Jackiw and
Rebbi [1], and Hasenfratz and ’t Hooft [2] and a similar result in fuzzy physics [3].
Hence states can drastically affect repreentations of observables. This fact is further shown by
charged states dressed by infrared clouds. Following Mund, Rehren and Schroer [5], we find that
Lorentz invariance is spontaneously broken in these sectors. This result has been extended earlier
to 𝑄𝐶𝐷 (references [6] given in the Final Remarks) where even the global 𝑄𝐶𝐷 group is shown
to be broken.
It is argued that the escort fields of [5] are the Higgs fields for Lorentz and colour breaking. They
are string-localised fields where the strings live in a union of de Sitter spaces. Their oscillations
and those of the infrared clouds generate the associated Goldstone modes.
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1. Introduction

In quantum physics, there are always two related aspects. The first is the algebra A of
observables which represent elements subject to experimental measurements. The second is the
state 𝜔 which represents the quantum ensemble which will be subject to measurements. 𝜔 is a
positive linear functional on A, so that if 𝑎 ∈ A , 𝜔(𝑎) is a complex number. Also 𝜔(𝑎∗𝑎) ≥ 0
and 𝜔(I) = 1, the two properties needed for a probability measure.

In this view, the Hilbert space 𝐻 and the representation of A on 𝐻 are emergent concepts
which can be found using the GNS construction. The abstract algebra A is always the same, but
the representations of A depend on 𝜔.

It can happen that two 𝜔’s give equivalent representations, but matrix elements of observables
between vectors in these representations vanish: this vanishing theorem may require taking the
direct sum of these representations.

It can also happen that the emergent representations are inequivalent. Here too, no observable
can excite a vector in one to a vector in the other.

In either case, we say that the representations are superselected. If a Lagrangian symmetry
changes the superselection sector, it is said to be spontaneously broken.

In an infinite ferromagnet, the vector states in an irreducible representation can be all those
with the same direction of asymptotic spins. Observables can be those which affect the local spins
without changing the asymptotic value. That defines an irreducible representation of observables.

Another Hilbert space will have vectors with asymptotic direction of spins being in a different
direction, but still observables causing only local disturbances of spins. These two irreducible
representations are equivalent, but no observable has a non-zero matrix element between vectors of
the two representations.

In the case of a charged Higgs field 𝜙 breaking say𝑈 (1) gauged symmetry, it can happen that
we have two families of states defining their Hilbert spaces, the expectation values of 𝜙(𝑥) as | ®𝑥 |
goes to infinity differing in magnitude. This difference can be caused by the Higgs potential. In
this case, the 𝑈 (1) gauge field has different masses in the two cases so that the representations are
inequivalent. But still the local observables define the same algebra .

These remarks illustrate that we need both the abstract algebra A and a state on it to realise A
as operators on a Hilbert space.In this paper, we elaborate on this idea for 𝑆𝑈 (𝑁) theta vacua in non-
abelian gauge theories. These vacua are based on the fact that the homotopy group 𝜋3(𝑆𝑈 (𝑁)) = 𝑍 ,
for 𝑁 ≥ 2. The quantum states are classified by representations of this group. If 𝑔𝑛 is a winding
number 𝑛 transformation, then 𝑛 has the image exp(𝑖𝑛𝜃) on the theta states. They define a
representation of observables on these states. If 𝑈 (𝑔𝑛) is the quantum operator implementing the
winding number 𝑛 transformation on theta states, and 𝑔 denotes 𝑔1, then 𝑈 (𝑔) acting on a theta
state must have eigenvalue 𝑒𝑖 𝜃 . We will find𝑈 (𝑔) explicitly. It is a ‘large’ gauge transformation so
that all observables must commute with it. The 𝑔 in question is the configuration that occurs for
Skyrme solitons.

For clarification, we add that observables are all the operators commuting with the complete
commuting set (CCS) of large gauge transformations whose eigenvalues label the superselection
sector. .They include all small gauge transformations (generated by Gauss law) and all local
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obsrvables. The small gauge transformations vanish on all the quantum vector states and commute
also with the local observables.

2. Remarks on Gauge Transformations

We will work with an 𝑆𝑈 (𝑁) gauge theory with the Gell-Mann matrices 𝜆𝛼 as its Lie algebra
generators in its defining 𝑁-dimensional representation. We also fix an 𝑆𝑈 (2) subgroup with Pauli
matrices 𝜏𝑖 as its generators.

On a spatial slice R3, the gauge group G is the group of smooth maps

𝑔 : R3 → 𝑆𝑈 (𝑁)

with 𝑔(𝑥) having a definite limit as the spatial coordinate goes to infinity, that is as | ®𝑥 | → ∞. It has
been called the Sky group by Balachandran and Vaidya [7]. It is the analogue of the Spi group for
asymptotically flat spaces introduced by Ashtekar and Hanson [8].

Let 𝜆𝛼 be the 𝑆𝑈 (𝑁) Gell-Mann matrices. Then if Ξ is a Lie algebra valued test function,

Ξ(®𝑥) = Ξ𝛼 (®𝑥)𝜆𝛼,

with Ξ𝛼 (®𝑥) approaching definite limits as | ®𝑥 | → ∞ ,the Lie algebra generators of the sky group are

𝑄(Ξ) =
∫

𝑑3𝑥 𝑡𝑟 (𝐷𝑖Ξ(®𝑥) 𝐸𝑖 (®𝑥) + Ξ(®𝑥) 𝐽0(®𝑥))

where 𝐷𝑖 is the covariant derivative, 𝐸𝑖 is the ( Lie algebra valued) electric field, 𝐽0 is the 𝑆𝑈 (𝑁)
charge density from matter sources and the trace is in the Lie algebra representation.

If the test functions are compactly supported or vanish fast at infinity, 𝑄(Ξ) represents the
smeared Gauss law as one can see by partial integration. So all observables are required to
commute with it. In addition,𝑄(Ξ) is required to vanish on quantum states. These are called ‘small
gauge transformations’.

If Ξ𝛼 do not all vanish at infinity, considerations based on locality show that observables still
commute with them [11]. But 𝑄(Ξ) need no longer vanish on quantum states. For example , in
𝑄𝐸𝐷, if Ξ goes to a constant at infinity and does not vanish on quantum states, then it means that
we are working in a charged sector.

So an isometry operator which does not commute with such 𝑄(Ξ) is not an observable
, it changes the superselection sector. It is an intertwiner between two representations of the
observables. We will see that generic elements of the Lorentz or 𝑆𝑈 (𝑁) groups do precisely
that.Hence they are spontaneously broken.

3. The Theta Vacua

The theta vacua are quantum vector states which respond to𝑈 (𝑔) with eigenvalue 𝑒𝑥𝑝(𝑖𝜃) and
which are invariant under small gauge transformations.They can be inferred from instanton physics
and are given by

|𝜃⟩ = 𝑒𝑥𝑝(𝑖𝜃
∫

𝐾 (𝐴)) |0⟩
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where 𝐾 (𝐴) is the 𝑆𝑈 (𝑁) Chern-Simons term ,

𝐾 (𝐴) = 1
8𝜋2 𝑡𝑟 (𝐴 ∧ 𝑑𝐴 + 2

3
𝐴 ∧ 𝐴 ∧ 𝐴),

and |0⟩ is the Poincaré-invariant vacuum. It is invariant under large and small gauge transformations.
The theta state above is also 𝑆𝑈 (𝑁) invariant. We restrict it to the irreducible representation

of 𝑆𝑈 (2) chosen earlier for later convenience.
Under a winding number 1 transformation 𝑔 of 𝐴, 𝐴→ 𝑔𝐷𝑔−1,∫

𝐾 (𝐴) acquires the additional term

1
24𝜋2

∫
𝑡𝑟 (𝑑𝑔 𝑔−1)3 = 1

so that the above Chern-Simons twisted vacuum is indeed the theta vacuum vector.
Note that

∫
𝐾 (𝐴) is invariant under small gauge transformations.

Gauge transformations of Sky act on wave functions (𝜓1, 𝜓2, 𝜓3) where 𝜓 𝑗 belongs to 𝐿2(𝑆2).
So if 𝑔 is an element of the Sky group, and 𝑈 (𝑔) is the operator implementing it, 𝑈 (𝑔)𝜓 𝑗 (®𝑥) =

𝜓𝑘 (®𝑥)𝑈 (𝑔(𝑥))𝑘 𝑗 and the scalar product for two wave functions is
∫
𝑑𝜇(𝑥)∑𝜓𝑖 (𝑥)∗𝜓 𝑗 (𝑥). where

𝑑𝜇(𝑥) = 𝑑 (𝑐𝑜𝑠𝜃)𝑑𝜙 in the usual notation.

4. The Operator Implementing Winding Number Transformations

We can guess that it is a large gauge transformation. We propose to show that it is the finite
gauge transforrmation generated by 𝑄(ℎ) where ℎ(®𝑥) = ( ®𝜏 · ®̂𝑥) ℎ̃(𝑟) with

ℎ̃(0) = 0, ℎ̃(∞) = −𝜋.

This test function is well-defined at 𝑟 equals 0 as ℎ̃ vanishes there. But as ℎ̃ is not zero as 𝑟 becomes
∞, it generates a large gauge transformation. It will be recognised that ℎ is the winding number 1
Skyrmion configuration. ( See for example [9] ). An important feature of ℎ is that it is invariant
only under the simultaneous rotation of ®̂𝑥 and ®𝜏. This plays a crucial role in describing spin 1

2
nucleons using the chiral model of pions.

5. More on Superselection Sectors : Many Theta Vacua

Let us note a striking feature of theta vacua .When one writes ®𝜏. ®̂𝑥, there is an identification of
directions such as the third direction in ®𝜏 and ®𝑥 spaces, or an identification of angular momentum
generators in the two spaces. We can also write ℎ′ equals ( ®𝜏′. ®̂𝑥) ℎ̃ where 𝜏′

𝑖
s are any rotated Pauli

matrices. That too will give a theta sector from its ℎ. But (ℎ′ − ℎ) does not vanish at infinity and so
𝑄(ℎ′ − ℎ) is a large gauge transformation. Hence 𝑄(ℎ′) and 𝑄(ℎ) define different superselection
sectors even though their eigenvalues on the Chern-Simons-twisted vacua are the same ! This is
like the situation in a ferromagnet when the spins located at the points at infinity are in different
directions.The algebras of observables in the two cases are isomorphic : the isometry is provided
by the rotation of spins from one direction to the other.

Superposition of such theta vacua produces a mixed state for the observables. If 𝐶𝑃 violation
from instantons is found, we can ask which mixed state is responsibe for it.
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6. Spin 1/2 from Gluons

There is a 1980 paper by Friedman and Sorkin [4] with a similar title and we have adapted our
title from theirs. There are also papers with similar results by Jackiw and Rebbi [1] and Hasenfratz
and ’t Hooft [2] in the theory of non-abelian monopoles.

As emphasised in the introduction, quantum theory requires both an algebra of observables
and a state .( That is the case also in classical theory.) In functional integral approaches, the latter
is defined by the Lagrangian. It can happen that the latter is defined entirely by bosonic variables,
but still quantum theory contains spinorial states. There are plenty of examples. The books [9]
and [10] describe many instances, both from soliton physics( eg.Skyrmions ) and from molecular
physics ( such as the ethylene molecule). The theta states are other examples. A vector state in
this case is defined by the vacuum twisted by a Chern-Simons term. The algebra of observables is
gauge invariant.

A superselection sector contains a large gauge transformation 𝑈 (𝑔). We claimed above that
this 𝑈 (𝑔) for us generates a winding number 1 transformation. We also claimed that this 𝑈 (𝑔) is
given by the Skyrmion configuration for 𝑔. Let us prove this result.

Let Ψ be a coloured field in the 𝑁-dimensional 𝑆𝑈 (𝑁) representation. A finite transformation
on Ψ is then given by

𝑒𝑖𝑄 (ℎ)Ψ(𝑥)𝑒−𝑖𝑄 (ℎ) =
∑︁
𝑛

𝑖𝑛

𝑛!
[𝑄(ℎ), [𝑄(ℎ), · · · [𝑄(ℎ),Ψ] · · · ]]

=
∑︁
𝑛

𝑖𝑛

𝑛!
(( ®𝜏 · 𝑥) ℎ̃(𝑟))𝑛Ψ((𝑥) = 𝑒𝑥𝑝(𝑖(𝜏 · 𝑥) ℎ̃(𝑟))Ψ(𝑥)

≡ 𝑔(ℎ)Ψ(𝑥) (1)

Here 𝑔 is a Skyrmion configuration which is well-defined :

𝑔(ℎ) = cos ℎ(𝑟) + 𝑖(𝜏 · ®̂𝑥) sin ℎ(𝑟).

A Remark

Let ℎ′ be defined using 𝜏′. The 𝑔(ℎ) above and a 𝑔(ℎ′) are both −I at 𝑟 → ∞ although
𝑄(ℎ − ℎ′) does not come from the Gauss law and need not vanish on quantum states. Thus when
restricted to the sphere at ∞, the map from the Lie algebra to the Lie group level is not injective.
This result has played a role in the above analysis.

Back to the main theme. The expression (1) is valid also in the pure gluon sector when the
state is given by the Chern-Simons-twisted vacuum. The latter involves the connection 𝐴 = 𝐴𝛼𝜆𝛼

and𝑈 (𝑔) gauge transforms it with 𝑔(ℎ) as in (1).
Now the gluons rotate only with tensorial angular momentum ( 2𝜋 rotation = +I ). This operator

rotates just ®̂𝑥 in ℎ̂. But that changes𝑄(ℎ), changing also the superselection sector. We can conclude
that the canonical angular momentum 𝐿𝑖 for the gluon sector is spontaneously broken.

But consider adding the gauge rotation 𝑄(I ℎ̃(𝑟)𝜏𝑖/2) to 𝐿𝑖 . where I is the constant function
with value 1 on R3 and let us choose the vector state |𝜃 > ⊗(𝑎, 𝑏, 0), |𝑎 |2 + |𝑏 |2 = 1. The added
term rotates 𝜏𝑖 as well in𝑄(ℎ) so that 𝐿𝑖 +𝑄(I ℎ̃(𝑟) 𝜏𝑖/2) commutes with𝑄(ℎ) : it does not change
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the supeselection sector. That is, the total angular momentum 𝐽𝑖 = 𝐿𝑖 + 𝑄(I ℎ̃(𝑟)𝜏𝑖/2) does not
change the superselection sector.

The 2𝜋 rotation from 𝐽𝑖 acting on the above twisted vacuum state changes its sign : the 𝑆𝑈 (2)
Chern-Simons twisted vacuum is spinorial.( Recall that we restricted the Chern-Simons term to an
𝑆𝑈 (2) irreducible representation). In this way we get spinorial states in the gluon sector.

If we had considered the vector state |𝜃 > ⊗(𝑎, 𝑏, 𝑐) where |𝑎 |2 + |𝑏 |2 + |𝑐 |2 = 1, the subspace
spanned by (𝑎, 𝑏, 0) will become fermionic and the subspace spanned by (0, 0, 𝑐) will stay bosonic.
This also means that if C3 is associated with the quarks, two of the quarks become bosonic and the
third fermionic. This has many phenomenological consequences which can be used to test for theta
vacua, We will return to this issue in a later work.

7. The Lorentz Group

Let 𝐾𝑖 be the canonical boost associated to 𝐿𝑖 . Then 𝐾𝑖 +𝑄(𝑖I 𝜏𝑖/2) and 𝐿𝑖 +𝑄(I 𝜏𝑖/2) fulfil
the 𝑆𝐿 (2, 𝐶) algebra and are appropriate generators for a Majorana field.

( We can also consider 𝐿𝑖 + 𝑄(−𝑖𝜏𝑖/2) ). A Majorana field transforming unitarily by these
operators can also be constructed using Weinberg’s methods [12].)

Unfortunately this choice of boosts does not seem to preserve the superselection sector. For
example , in𝑄(ℎ), 𝜏𝑖 will transform by the non-unitary (1/2, 0) representation of 𝑆𝐿 (2, 𝐶) and that
does not seem to be compensated by the transformation of 𝑥. So the Lorentz group is spontaneously
broken, a result known from other papers. But the spinorial cover of the Euclidean group with
𝐿𝑖 +𝑄(I 𝜏𝑖/2) and spacetime translations seem implementable in the theta sectors.

In a subsequent paper, we show that infrared effects canonically induce fields on the two-sphere
at ‘infinity’ with covariant 𝑆𝐿 (2, 𝐶). Acting on the vacuum, they create states on the local algebra
which under 𝑆𝐿 (2, 𝐶) intertwine inequivalent irreducible representations.

8. The Chern-Simons term for 𝑆𝑂 (3) ⊂ 𝑆𝑈 (𝑁)

When 𝑁 ≥ 3, there is an 𝑆𝑂 (3) subgroup in 𝑆𝑈 (𝑁) acting say on the first three components
of the 𝑁-dimensional vector space. This group had a prominent role in our work on dibaryons [13]
as solitons.

Now we can construct the Chern-Simons term 𝐾 (𝐴) and the associated twisted vacuum with
𝐴 valued in the 𝑆𝑂 (3) algebra. The image of 𝜏𝑖/2 are the 3 × 3 angular matrices 𝑙𝑖 . ( These
are conventionally called 𝜃𝑖 as in our group theory book [14] , but we will use 𝑙𝑖 instead to avoid
confusion with the theta of theta vacua.) Accordingly, the Skyrmion configuration is changed to

ℎ′(®𝑥) = (®l · ®̂𝑥) ℎ̃(𝑟).

Its finite transformation equals
�̂�( ®̂𝑥) = 𝑒𝑖®𝑙 · ®̂𝑥ℎ(𝑟)

with winding number 4 and so the eigenvalue of winding number transformation on the Chern-
Simons twisted vacuum is 𝑒4𝑖 𝜃 . The periodicity in theta now is accordingly 2𝜋

4 .
The angular momentum 𝐽𝑖 = 𝐿𝑖 + 𝑙𝑖 is now tensorial. The boost generators are 𝐾𝑖 + 𝑄(𝑖𝑙𝑖) ,

but the associated Lorentz group changes the superselection sector.
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9. Brief Remarks on Escort Fields

We add this brief para to draw attention to the remarkable developments in the theory of
string-localised quantum fields and their escort fields, They have a bearning on this paper too.

In the abstract, we remarked that the Goldstone modes of Lorentz symmetry breaking are
incorporated in the escort fields of [5].That is the case : these fields incorporate a ’string’ from the
direction of the Wilson line, and it can locally fluctuate creating quantised Goldstone modes. But
to keep this paper focused, we will discuss such points in later work[15].

10. Final Remarks

There is more to be said on superselection sectors and their relation for example to Wilson
lines and the Rindler space. They will be discussed in later work.

An older result discussed in [6] concerns 𝑄𝐶𝐷 :As it is non-abelian, its generators do not
generically commute with 𝑄(Ξ) : only the stability group of 𝑄(Ξ) does so.

A particular result among others with direct application is the calculation of the Landau-Yang
process, strctly forbidden by Lorentz invariance and allowed by its breaking. This calculation with
Asorey, Balachandran and Momen[16] is complete and will soon be reported.

It is striking that theta vacua can convert the gluon sector to spinorial states and that the theta
states are infinitely degenerate. These results will have an impact on axion phenomenology, which
is yet to be explored.
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