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1. Introduction

Non-commutative geometry has long been put forward as a candidate for a theory of quantum
gravity. There, the general idea that spacetime should be somehow quantised at microscopic
scales has been realised in many different concrete approaches: Connes’ non-commutative spectral
triples [1], Lorentzian spectral triples [2, 3], Snyder and 𝜅-Minkowski spacetimes and their curved-
space generalisations [4–8], or strict deformation quantisation [9–12].1 A very popular approach is
the DFR spacetime [14], where one promotes the Cartesian coordinates describing flat Minkowski
spacetime to operators 𝑥𝜇 and postulates commutation relations

[𝑥𝜇, 𝑥𝜈] = iΘ𝜇𝜈 , (1)

with a constant skew-symmetric matrix Θ, whose entries are supposed to be of the order of the
Planck length. Such a construction solves the geometrical measurement problem [14, 15], namely
that the description of spacetime as a manifold must break down at distances of the order of the
Planck length because any attempt to localise spacetime points with higher accurary will result in the
formation of black holes and make the measurement impossible, and is thus a concrete realisation
of Gedankenexperiments involving such measurements [16–18]. Similar thoughts in the context of
quantum mechanics of particles lead to Generalised Uncertainty Principles (GUPs) [17–25], where
the well-known commutator [𝑥𝑖 , 𝑝 𝑗] = iℏ𝛿𝑖

𝑗
between position and momentum of a quantum particle

is generalised to involve position and/or momentum operators on the right-hand side.
However, it seems somewhat unsatisfactory to simply postulate changed commutation relations.

Instead, as the Gedankenexperiments suggest, it should be possible to derive them from gravity
itself. Among the many candidates for a theory of quantum gravity, the most conservative one
is perturbative Quantum Gravity (pQG), where one quantises metric fluctuations around a given
classical background in the spirit of Effective Field Theory (EFT) [26]. While General Relativity (as
described by the Einstein–Hilbert Lagrangian) is power-counting non-renormalisable as a quantum
field theory and thus cannot be a fundamental theory, pQG is still a valid EFT where the details of
the microscopic underlying theory only enter as free parameters that must be fixed by experiments.
For a given accuracy of measurements, only a finite number of these parameters are relevant,
and one can derive sound predictions which are valid at scales larger than the fundamental scale
(which for quantum gravity is the Planck length). Since pQG results from the application of the
well-established methods of Lagrangian quantum field theory to General Relativity, we expect that
any theory of quantum gravity has to reproduce the predictions of perturbative quantum gravity in
its region of validity, just as Newtonian gravity reproduces the results of GR in the weak gravity
regime.

In pQG, the diffeomorphism invariance of General Relativity translates into a gauge symmetry
for the quantised metric perturbations. Since diffeomorphisms move points and physical observables
must be gauge-invariant, it is clear that local fields (i.e., defined at a point of the underlying classical
spacetime manifold) cannot be observable, and the identification of observables that describe local
measurements is very complicated [27]. One possible way to construct observables that have a clear
operational interpretation is the relational approach [28], where observables are given by the value

1Since there is a huge amount of literature on the topic, we refer to the review [13] and the references given there and
in the cited references for further works. The same caveat applies to all other references that are cited later on.
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of one dynamical field of the theory with respect to or in relation to another dynamical field, i.e., at
the point where the other field has a certain value. That is, one has to measure fields not in the fixed
coordinate system describing the background spacetime, but in a dynamical system (or reference
frame) constructed from other fields in the theory in a suitable way. Relational observables have
a long history, but some issues have only been solved recently. In particular, for highly symmetric
backgrounds such as Minkowski spacetime or cosmological (Friedmann–Lemaître–Robertson–
Walker) spacetimes, one cannot construct the required dynamical coordinates from curvature scalars
(which have been proposed for this purpose) since these do not even distinguish all points on the
background. Moreover, while it is of course possible to add dynamical scalars by hand to the theory,
this changes the dynamics [29].

This problem was only solved recently [30–33], where a dynamical coordinate system has been
constructed from the gauge-dependent parts of the metric perturbation to all orders in perturbation
theory. This method avoids the introduction of extra fields, and is an explicit example of the
so-called geometrical clocks [34, 35] used in the relational approach. Concretely, the dynamical
coordinates are obtained as solutions of scalar differential equations in the perturbed geometry,
where the choice of differential equation is related to the measurement one wants to model. The
solution of these equations then depends on the metric perturbation, and since these are quantised
and non-commuting, also the dynamical coordinates have a non-vanishing commutator. In this
way, one obtains a non-commutative geometry from quantum gravity, which is in our opinion quite
satisfactory. To make concrete predictions, we have computed this induced non-commutativity to
leading order in a background Minkowski spacetime in [36]. We explain this computation and the
outcome in detail in the following sections.

2. Observables and dynamical coordinates in perturbative quantum gravity

As explained in the introduction, in a theory of gravity whose symmetries include diffeomor-
phisms the outcome of measurements can be modeled using relational observables. These are
obtained by evaluating dynamical fields in a coordinate system that is also dynamical, i.e., con-
structed from other fields of the theory. Let us thus assume that we are given such a dynamical
coordinate system 𝑋 (𝜇) [𝑔, 𝜙] depending on the full dynamical metric 𝑔𝜇𝜈 and possibly dynamical
matter fields 𝜙. We have enclosed the index 𝜇 in parenthesis to make clear that this is not a vector,
but a collection of four scalar fields which under diffeomorphisms with parameter 𝜉𝜇 transform
appropriately. Let us further assume that we can separate the full metric 𝑔𝜇𝜈 into a background one
𝑔0
𝜇𝜈 and a perturbation ℎ𝜇𝜈:

𝑔𝜇𝜈 = 𝑔0
𝜇𝜈 + 𝜅ℎ𝜇𝜈 , (2)

where 𝜅 ≡
√

16𝜋𝐺N is a small pertubation parameter, and that the dynamical coordinates also admit
a perturbative expansion:

𝑋 (𝜇) (𝑥) = 𝑥𝜇 + 𝜅𝑋
(𝜇)
1 (𝑥) + 𝜅2𝑋

(𝜇)
2 (𝑥) + O

(
𝜅3
)
. (3)

For a background Minkowski space, we can clearly take 𝑔0
𝜇𝜈 = 𝜂𝜇𝜈 , the flat metric in Cartesian

coordinates 𝑥𝜇, and those do discriminate between all points of the background. Perturbatively, we
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then also take small diffeomorphisms that keep the background fixed, 𝑥𝜇 → 𝑥𝜇 + 𝛿𝜉 𝑥𝜇 = 𝑥𝜇 − 𝜅𝜉𝜇,
such that the transformation of the dynamical coordinates 𝛿𝜉 𝑋 (𝜇) = 𝜅𝜉𝜌𝜕𝜌𝑋

(𝜇) results in

𝛿𝜉 𝑋
(𝜇)
1 = 𝜉𝜇 , 𝛿𝜉 𝑋

(𝜇)
2 = 𝜉𝜌𝜕𝜌𝑋

(𝜇)
1 , (4)

and so on. The changes in tensor fields are obtained using the Lie derivative L𝜅 𝜉 , such that inserting
the decomposition (2) with 𝑔0

𝜇𝜈 = 𝜂𝜇𝜈 into 𝛿𝜉𝑔𝜇𝜈 = L𝜅 𝜉𝑔𝜇𝜈 we obtain

𝛿𝜉 ℎ𝜇𝜈 = 𝜕𝜇𝜉𝜈 + 𝜕𝜈𝜉𝜇 + 𝜅
(
𝜉𝜌𝜕𝜌ℎ𝜇𝜈 + ℎ𝜌𝜇𝜕𝜈𝜉

𝜌 + ℎ𝜌𝜈𝜕𝜇𝜉
𝜌
)
, (5)

where all indices are raised and lowered using 𝜂𝜇𝜈 .
We see immediately that a first-order invariant observable can be defined by

H𝜇𝜈 ≡ ℎ𝜇𝜈 − 𝜂𝜌𝜇𝜕𝜈𝑋
(𝜌)
1 − 𝜂𝜌𝜈𝜕𝜇𝑋

(𝜌)
1 + O(𝜅) , (6)

since then the transformation (4) of 𝑋 (𝜇)
1 cancels exactly the one of ℎ𝜇𝜈 (5). This is of course just a

special case of the general relational construction, namely evaluating the field that one is interested
in (here the metric) in the dynamical coordinate system. For an arbitrary tensor field 𝑇

𝜇· · ·
𝜈 · · · , the

invariant observable T 𝜇· · ·
𝜈 · · · is given by

T 𝜇· · ·
𝜈 · · · (𝑋) ≡ 𝜕𝑋𝜇

𝜕𝑥𝛼
· · · 𝜕𝑥

𝛽

𝜕𝑋𝜈
· · ·𝑇 𝛼· · ·

𝛽 · · · (𝑥(𝑋)) , (7)

and it is easy to check that the invariant metric perturbation (6) is a special case of this construction
for 𝑇𝜇𝜈 = 𝑔𝜇𝜈 , subtracting the background metric: H𝜇𝜈 ≡ 𝜅−1 (G𝜇𝜈 − 𝜂𝜇𝜈

)
. That is, to obtain

an invariant observable one has to invert the perturbative expansion (3) to obtain the background
coordinates 𝑥𝜇 as functionals of the dynamical ones 𝑋 (𝜇) , and then perform a change of coordinates,
evaluating the field in the dynamical system (including the Jacobian factors for tensor fields). Since
the dynamical coordinates transform as scalars by assumption, one can easily see that the observable
T 𝜇· · ·
𝜈 · · · defined by (7) is invariant under diffeomorphisms, but of course this can also be checked

explicitly to arbitrary order, as for H𝜇𝜈 (6).
Let us comment shortly on the philosophy behind the relational construction. What we are

ultimately interested in are physical events, which can be defined by coincidences of two dynamical
fields of the theory. That is, what is measured is ultimately the value of one field (the observable)
at the point where another field (the coordinate, or ruler, or clock) has a given value. On the
background spacetime, we can use a system of background coordinates to describe points, which
we may imagine as abstraction of physical rulers and clocks. However, once gravity becomes
dynamical, that is once we include a dynamical metric, we must also take into account the dynamics
of the rulers and clocks themselves, and use a system of dynamical (field-dependent) coordinates
to describe points. Of course, as long as we restrict to perturbation theory (such as the EFT of
pQG), there is a unique map between these two sets given by the expansion (3) (and its inverse),
and we can compute quantum corrections to classical results. One of these quantum effects is the
non-commutativity of the coordinates.

It remains to actually construct a system of dynamical coordinates that transforms properly
under diffeomorphisms and corresponds to some measurement setup. To ensure a proper transfor-
mation, one can obtain them as solutions of scalar differential equations [30–32, 37] which hold
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on the background. For a flat Minkowski background, the Cartesian coordinates are harmonic:
𝜕2𝑥𝜇 = 0, and so one can define the dynamical coordinates as solutions of ∇2𝑋 (𝜇) = 0 [31].
Expanding metric (2) and dynamical coordinates (3) to first order, for the first-order correction we
obtain [36]

𝑋
(𝜇)
1 (𝑥) =

∫
𝐺 (𝑥, 𝑦)𝐻𝜇 (𝑦) d4𝑦 , 𝐻𝜇 ≡ 𝜕𝜌ℎ

𝜌𝜇 − 1
2
𝜕𝜇ℎ , (8)

where 𝐺 is a Green’s function of the flat d’Alembertian: 𝜕2𝐺 (𝑥, 𝑦) = 𝛿4(𝑥 − 𝑦). Clearly, the 𝑋
(𝜇)
1

are non-local functionals of the metric perturbation ℎ𝜇𝜈 , and thus the invariant observables (7) will
be as well, as explained in the introduction. However, by a proper choice of 𝐺 we can at least
obtain a causal observable and avoid unphysical action-at-a-distance effects. In the classical theory,
this forces us to take the retarded Green’s function 𝐺ret(𝑥, 𝑦) = Θ(𝑥0 − 𝑦0)𝛿[(𝑥 − 𝑦)2] which has
support on the past lightcone; in the quantum theory, we have to use the in-in formalism [38, 39] to
ensure a causal evolution. Since the background Cartesian coordinates determine straight lines, the
dynamical coordinates 𝑋 (𝜇) defined as solutions of ∇2𝑋 (𝜇) = 0 in a sense determine lines which
are as straight as possible in the perturbed geometry. In the next section, we will see that they
indeed do not commute anymore.

3. Non-commutative coordinates

The basic reason why the dynamical coordinates do not commute is that they are functionals
of the dynamical fields, which have a non-vanishing commutator after quantisation. Therefore,
the non-commutativity of the coordinates is not fundamental, but induced from the one of the
fields. In pQG, we are quantising the metric perturbation ℎ𝜇𝜈 (2), whose action is obtained by
expanding the Einstein–Hilbert action for gravity 𝑆EH = 𝜅−2

∫
𝑅
√−𝑔 d4𝑥 to second order around

the flat Minkowski background and adding the standard de Donder gauge term [40] to fix the gauge
transformation (5). By neglecting all higher-order terms coming from the expansion of the Einstein–
Hilbert action, we are treating ℎ𝜇𝜈 as a free quantum field on the Minkowski background, which
gives the leading EFT corrections, in particular the leading-order commutator of the dynamical
coordinates. For a free theory, Wick’s theorem determines all correlation functions in terms of the
(time-ordered) two-point function

𝐺F
𝜇𝜈𝜌𝜎 (𝑥, 𝑥′) ≡ −i

〈
T ℎ𝜇𝜈 (𝑥)ℎ𝜌𝜎 (𝑥′)

〉
=
(
2𝜂𝜇 (𝜌𝜂𝜎)𝜈 − 𝜂𝜇𝜈𝜂𝜌𝜎

)
𝐺F(𝑥, 𝑥′) , (9)

where

𝐺F(𝑥, 𝑥′) =
∫

�̃�F(p, 𝑡, 𝑡′) eip(x−x′ ) d3p

(2𝜋)3 , �̃�F(p, 𝑡, 𝑡′) ≡ −i
e−i |p | |𝑡−𝑡 ′ |

2|p| (10)

is the massless scalar time-ordered two-point function or Feynman propagator. Moreover, for a
free theory the commutator of two 𝑋

(𝜇)
1 will be proportional to the identity since they are linear

functionals of ℎ𝜇𝜈 (8), and we can thus obtain the commutator by computing its expectation value:[
𝑋

(𝜇)
1 (𝑥), 𝑋 (𝜈)

1 (𝑥′)
]
=

〈[
𝑋

(𝜇)
1 (𝑥), 𝑋 (𝜈)

1 (𝑥′)
]〉
1 . (11)

To compute a true expectation value instead of an S-matrix element, we need to use the in-in or
closed-time-path formalism [38, 39], which also ensures a causal evolution. In the in-in formalism,

5
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the time integration is replaced by the integration along a path going from −∞ to +∞ and back to
−∞, and the time-ordering of fields in the usual in-out formalism is replaced by the path-ordering
of fields along this integration contour. Depending on which part of the contour the fields are put,
we thus have the corresponding path-ordered two-point functions

𝐺𝐴𝐵
𝜇𝜈𝜌𝜎 (𝑥, 𝑥′) ≡ −i

〈
Pℎ𝐴

𝜇𝜈 (𝑥)ℎ𝐵𝜌𝜎 (𝑥′)
〉

(12)

with 𝐴, 𝐵 = ±, which have the same form as (9), but with the scalar Feynman propagator (10)
replaced by the corresponding Wightman function or anti-time-ordered Dyson propagator:

𝐺++
𝜇𝜈𝜌𝜎 (𝑥, 𝑥′) = −i

〈
T ℎ+𝜇𝜈 (𝑥)ℎ+𝜌𝜎 (𝑥′)

〉
=
(
2𝜂𝜇 (𝜌𝜂𝜎)𝜈 − 𝜂𝜇𝜈𝜂𝜌𝜎

)
𝐺F(𝑥, 𝑥′) , (13a)

𝐺+−
𝜇𝜈𝜌𝜎 (𝑥, 𝑥′) = −i

〈
ℎ−𝜌𝜎 (𝑥′)ℎ+𝜇𝜈 (𝑥)

〉
=
(
2𝜂𝜇 (𝜌𝜂𝜎)𝜈 − 𝜂𝜇𝜈𝜂𝜌𝜎

)
𝐺− (𝑥, 𝑥′) , (13b)

𝐺−+
𝜇𝜈𝜌𝜎 (𝑥, 𝑥′) = −i

〈
ℎ−𝜇𝜈 (𝑥)ℎ+𝜌𝜎 (𝑥′)

〉
=
(
2𝜂𝜇 (𝜌𝜂𝜎)𝜈 − 𝜂𝜇𝜈𝜂𝜌𝜎

)
𝐺+(𝑥, 𝑥′) , (13c)

𝐺−−
𝜇𝜈𝜌𝜎 (𝑥, 𝑥′) = −i

〈
T ℎ−𝜇𝜈 (𝑥)ℎ−𝜌𝜎 (𝑥′)

〉
=
(
2𝜂𝜇 (𝜌𝜂𝜎)𝜈 − 𝜂𝜇𝜈𝜂𝜌𝜎

)
𝐺F(𝑥, 𝑥′) , (13d)

since fields on the backward part of the contour are always “later” than fields on the forward part.
The scalar propagators in Fourier space read

�̃�+(p, 𝑡, 𝑡′) ≡ −i
e−i |p | (𝑡−𝑡 ′ )

2|p| , �̃�− (p, 𝑡, 𝑡′) ≡ −i
ei |p | (𝑡−𝑡 ′ )

2|p| , �̃�D(p, 𝑡, 𝑡′) ≡ −i
ei |p | |𝑡−𝑡 ′ |

2|p| (14)

and we see that they only differ from the Feynman propagator in the time dependence in the
exponential. The expectation value of the commutator (11) can thus be written as〈[

𝑋
(𝜇)
1 (𝑥), 𝑋 (𝜈)

1 (𝑥′)
]〉

=

〈
P𝑋

−(𝜇)
1 (𝑥)𝑋+(𝜈)

1 (𝑥′)
〉
−
〈
P𝑋

+(𝜇)
1 (𝑥)𝑋−(𝜈)

1 (𝑥′)
〉

(15)

with 〈
P𝑋

𝐴(𝜇)
1 (𝑥)𝑋𝐵(𝜈)

1 (𝑥′)
〉
=

∬
𝐺𝐴𝐶 (𝑥, 𝑦)𝐺𝐵𝐷 (𝑥′, 𝑦′)𝐻𝜇

𝐶
(𝑦)𝐻𝜈

𝐷 (𝑦′) d4𝑦 d4𝑦′ , (16)

where we used the explicit expression (8) for the first-order dynamical coordinates 𝑋 (𝜇)
1 , and where

the Einstein summation convention also holds for 𝐶, 𝐷 = ±. Note that all time integrals in the
in-in formalism are taken over the closed contour, which includes the integrals in (8); the required
propagators are just the scalar ones (10) and (14). In the classical limit, one does not distinguish
between the “+” and “−” fields, and then in the expectation value (16) one encounters either the
combinations 𝐺F − 𝐺− (for 𝐴/𝐵 = +) or 𝐺+ − 𝐺D (for 𝐴/𝐵 = −), which are both equal to the
retarded propagator 𝐺ret. In this way the in-in formalism ensures a causal evolution [38, 39].

To finally compute the expectation value (16), we also need to ensure that we choose the right
state. Since the massless propagators (10) and (14) only decay like a power for large separations, the
integrals harbor potential IR divergences coming from the integration over the past lightcone. To
obtain an IR-finite result, we need to slightly deform the integration contour in the complex plane,
which is the correct prescription to select the true interacting vacuum state of the theory [41–43].
In practice, this amounts to adding a convergence factor exp[𝜖 |p| (𝑦0 + 𝑦′0)] with 𝜖 > 0 to the
integrals (16), and take the limit 𝜖 → 0 after integration. Even though we consider a theory of
free fields, there are non-trivial interactions because of the integration over the past light cone; the
convergence factor can thus also be interpreted as an adiabatic cutoff of the interaction in the far
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past [44]. Using the expressions of the propagators in Fourier space (10) and (14), the integrals
in (16) including the convergence factors can then be easily computed, and we obtain〈[

𝑋
(𝜇)
1 (𝑥), 𝑋 (𝜈)

1 (𝑥′)
]〉

=

∫
i𝜂𝜇𝜈

2|p|3
[
cos[|p| (𝑡 − 𝑡′)] |p| (𝑡 − 𝑡′) − sin[|p| (𝑡 − 𝑡′)]

]
eip(x−x′ ) d3p

(2𝜋)3 .

(17)
To transform this expression back into real space, we use spherical coordinates, and a lengthy but
ultimately straightforward computation leads to [36][

𝑋
(𝜇)
1 (𝑥), 𝑋 (𝜈)

1 (𝑥′)
]
= −i

𝜂𝜇𝜈

8𝜋
sgn(𝑡 − 𝑡′)Θ[−(𝑥 − 𝑥′)2]1 . (18)

We see that the commutator of two 𝑋
(𝜇)
1 vanishes for spacelike separations (due to the Heaviside

Θ function). For timelike separations, we obtain a constant with the sign depending on whether
the second 𝑋

(𝜈)
1 is in the future or in the past of the first 𝑋

(𝜇)
1 . Moreover, our result is fully

Lorentz-invariant.
Finally we can compute the commutator of two dynamical coordinates 𝑋 (𝜇) to leading order.

For this, we use that the background coordinates 𝑥𝜇 commute with everything, such that[
𝑋 (𝜇) , 𝑌 (𝜈)

]
= 𝜅2

[
𝑋

(𝜇)
1 (𝑥), 𝑋 (𝜈)

1 (𝑦)
]
+ O

(
𝜅3
)

= −i𝜅2 𝜂
𝜇𝜈

8𝜋
sgn(𝑋0 − 𝑌0)Θ[−(𝑋 − 𝑌 )2] + O

(
𝜅3
)
.

(19)

Using that 𝜅2 = 16𝜋𝐺N = 16𝜋ℓ2
Pl, we see that the leading-order result is proportional to the squared

Planck length ℓPl, which appears naturally. The commutator (19) is the main result of our work [36].

4. Discussion and outlook

Comparing our result (19) with the commutation relations (1) of the DFR spacetime, there
are two main differences: first, the commutator is not constant, but depends on the coordinates
themselves. Clearly, the most general form of the commutator reads

[𝑋𝜇, 𝑌 𝜈] = iΘ𝜇𝜈 (𝑋,𝑌 ) , (20)

with the matrix Θ fulfilling

Θ𝜇𝜈 (𝑋,𝑌 ) = −Θ𝜈𝜇 (𝑌, 𝑋) , [Θ𝜇𝜈 (𝑋,𝑌 )]† = Θ𝜇𝜈 (𝑋,𝑌 ) (21)

to ensure antisymmetry and reality of the commutator, the second because the 𝑋𝜇 are Hermitean
operators. In the DFR spacetime, this is solved by taking Θ constant, real, and antisymmetric in its
indices. For our result, the matrix Θ𝜇𝜈 (𝑋,𝑌 ) = −2ℓ2

Pl𝜂
𝜇𝜈 sgn(𝑋0 − 𝑌0)Θ[−(𝑋 − 𝑌 )2] depends on

the coordinates 𝑋 and𝑌 , and so can be symmetric in its indices since the antisymmetry comes from
the sign sgn(𝑋0 − 𝑌0). The second (and more important) difference concerns the interpretation
of the coordinate operators 𝑋 (𝜇) . In the DFR approach (and others such as spectral triples), the
non-commutative coordinates are operators in some abstract space, and the classical geometry only
emerges from their spectrum: the physical coordinates are the (possibly generalized) eigenvalues

7
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of the coordinate operators. In pQG, we instead associate a dynamical field-dependent coordinate
to each physical event. That is, once one takes dynamical gravity into account, one cannot work
anymore with a fixed background, but has to include the dynamics of the reference frame itself.
Physical events are thus described in a relational way, by the state of one dynamical field of the theory
with respect to this dynamical coordinate system. Since the dynamical coordinates are constructed
from the metric perturbation (8), they become non-commuting operators in the quantum theory.
In this way, quantum gravity induces a non-commutativity of the coordinates that are needed to
describe observables in the full theory.

Using the well-known formula

Δ𝐴Δ𝐵 ≥ 1
2
|⟨[𝐴, 𝐵]⟩| (22)

relating the standard deviations Δ of two Hermitean operators 𝐴 and 𝐵 (that is, the uncertainties in
the measurement of their values) to the expectation value of their commutator, we obtain from the
result (19) a generalised uncertainty principle

Δ𝑋Δ𝑌 ≥ ℓ2
Pl Θ[−(𝑋 − 𝑌 )2] . (23)

Taken at face value, this uncertainty principle tells us that the measurements of coordinates whose
corresponding events are timelike separated (for which Θ[−(𝑋 − 𝑌 )2] = 1) are always uncertain,
with a standard deviation of exactly the Planck length (up to higher-order corrections). On the other
hand, measurements of coordinates whose corresponding physical events have spacelike separation
(for which Θ[−(𝑋 −𝑌 )2] = 0) are uncorrelated and certain. However, in contrast to the well-known
quantum-mechanical Heisenberg uncertainty principle relating the uncertainties in the measurement
of a particle’s position and momentum, in quantum gravity it is impossible to repeatedly measure
the coordinates 𝑋 (𝜇) of the same event. The operational meaning of the standard deviation Δ𝑋

is therefore not clear, and we leave the question how one can extract observable results from the
commutator (19) to future work. What we can assert, and what is reflected in the vanishing
of the commutator (19) for spacelike separations, is that a measurement can not influence other
measurements at spacelike separations. This statement of the microcausality principle, namely
the impossibility of superluminal signaling, holds independently of the state in which the system
is prepared [45–47]. In our case, it is ultimately a consequence of the causal evolution of the
field-dependent coordinates guaranteed by the in-in formalism, and the fact that the gravitational
perturbation ℎ𝜇𝜈 satisfies microcausality since it is quantized according to the standard rules for
relativistic quantum fields.

As for any EFT, our result (19) is valid at length scales above the Planck length, where one can
neglect higher orders in comparison to the leading one. In particular, we note that the causal relation
between the events described by the non-commutative coordinates is to leading order the same as
the one of the commuting background coordinates, and any non-commutativity would only appear
at higher orders; the right-hand side of (19) is thus unambiguous. For the same reason, we cannot
infer strong statements about the resolution of singularities from our result (as is done for black
holes [48]), but of course our result gives hints on how a fundamental quantum gravity theory could
naturally incorporate non-commutativity. To obtain a result that is also valid for smaller distances,
we would have to compute higher-order corrections. An important question that then arises is the
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proper interpretation of a causal relation between non-commuting coordinates, and the topology
of the manifold described by these coordinates. While there are some proposals (for example for
Riemannian spectral triples [49]), this is a challenge especially in the Lorentzian case [50]. Already
in the classical case, there can be a mismatch between the topology of the underlying manifold and
the causal ordering induced by the Lorentzian metric [51]; see [52] for an overview of results and
open questions.

Nevertheless, before investigating in detail these foundational questions one needs to collect
more information in concrete settings. We are currently generalising our results to a background de
Sitter spacetime which describes the current accelerated expansion of our universe; we plan further-
more to study non-commutative coordinates for pQG around a cosmological (FLRW) background
which is relevant during inflation, the period of primordial expansion. An important question is the
choice of dynamical coordinate system. In principle, it should be chosen in accordance with the
experimental setup, or otherwise said, we need to model which rulers and clocks are actually used
to measure observables. The generalized harmonic coordinates ∇2𝑋 (𝜇) = 0 that we used here are
a natural choice that also appears in other contexts, for example matrix models [53], but one might
also contemplate other choices such as geodesic lightcone coordinates [33, 54–57] which model
observations made along the observer’s past lightcone, or synchronous coordinates [58]. Last but
not least, it remains to derive observational consequences of the non-commutativity (19) and its
future generalizations to other backgrounds.
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