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Quantum 𝑁 = 2 Minkowski Superspace R. Fioresi and J. Razzaq

1. Introduction

Non commutative geometry provides us with a natural language to encode symmetries in the
quantum setting: quantum homogeneous spaces are deformations of the coordinate algebra of an
homogeneous space together with a coaction of a quantum group, that is an Hopf algebra [13]. This
framework is then ready to be generalized to the supersymmetric (SUSY) context.

In [17, 18], the𝑁 = 1 (complex) conformal superspace is realized as the superflag Fl(2|0, 2|1; 4|1),
of 2|0 dimensional subspaces into the superspace C4 |1 (𝑁 = 1 SUSY refers to the odd dimen-
sion of such vector space). Since the superflag is a quotient of the special linear supergroup,
we have that such supergroup, called the complex conformal supergroup SL(4|1) acts naturally
on Fl(2|0, 2|1; 4|1). The space C4 |1, underlying the defining representation of SL(4|1), is the
space of supertwistors (see [2, 3] and [18] for a more mathematical description). The superflag
Fl(2|0, 2|1, 4|1) can be embedded in the product

Fl(2|0, 2|1, 4|1) ⊂ Gr(2|0, 4|1) × Gr(2|1, 4|1),

and using the super Segre embedding [19] the superflag is embedded into the projective superspace
P80 |64 [13, 20].

For 𝑁 = 2, we can try to reproduce the construction by looking at the embedding:

Fl(2|0, 2|2, 4|2) ⊂ Gr(2|0, 4|2) × Gr(2|2, 4|2)

However this superflag is too big to be physically interesting. The scalar superfields associated to
it have too many field components to be useful in the formulation of supersymmetric field theories.
Still, the antichiral Gr(2|0, 4|2) and chiral Gr(2|2, 4|2) superspaces do have physical applications,
so it is useful to study them. They are both embedded in P8 |8.

The present work is organized as follows.
In Sec. 2 we describe the super Grassmannian Gr(2|0, 4|2) of 2|0 subspaces in the superspace

C4 |2, that is for 𝑁 = 2 supersymmetry (SUSY) and its superprojective embedding via the super
Plücker coordinates.

In Sec. 3, we described a quantum deformation of the super Grassmannian Gr(2|0, 4|2).
In Sec. 4, we define 𝑁 = 2 Minkowski superspace and we give a quantization of it. We also

introduce a quantum principal superbundle on it.
In this note, we are just introducing our approach and outlining our main results, for all the

details we refer the reader to the article [14].

2. Super Grassmannain Gr(2|0, 4|2)

We start with a brief review of Grassmannians in the ordinary setting and then we go to their
generalization to SUSY. For the notation and main definitions of SUSY refer to [7], [13].

In classical geometry, we can view Grassmannians as algebraic projective varieties via the
Plücker embedding. The image of a Grassmannian in a projective space under this embedding is
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characterized by the well-known Plücker relations. In the case of the Grassmannian Gr(2, 4) of 2
dimensional spaces into C4, the Plücker embedding is given explicitly by:

𝐺𝑟 (2, 4) −→ P(
2∧
(C4)) � P(C6)

(𝑎, 𝑏) ↦→ [𝑎 ∧ 𝑏] ≡ [𝑦12, 𝑦13, 𝑦14, 𝑦23, 𝑦24, 𝑦34]

where (𝑎, 𝑏) denotes a basis of the corresponding point, i.e. a 2-subspace in the Grassman-
nian Gr(2, 4) and 𝑦𝑖 𝑗 : 𝑎𝑖𝑏 𝑗 − 𝑏𝑖𝑎 𝑗 are called Plücker coordinates of (𝑎, 𝑏). In this case, the
Plücker relation reads:

𝑦12𝑦34 − 𝑦13𝑦24 + 𝑦14𝑦23 = 0.

We define big cell in Gr(2, 4) as 𝑈12 := {(𝑎, 𝑏) : 𝑦12 ≠ 0}. One can easily see that 𝑈12 � C
4,

which can then be identified with the complex Minkowski space (For more details, see [13], Chap. 2).

We now extend these ideas to the super setting to construct Grassmannian 𝐺𝑟 (2|0, 4|2) and
then we give its quantization.

Let {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝜖5, 𝜖6} be a basis for C4 |2 and 𝐸 :=
∧2(C4 |2). As usual we use latin letters

for even and greek letters for odd elements. We then have following set as a basis for 𝐸 :

(Even) : 𝑒𝑖 ∧ 𝑒 𝑗 1 ≤ 𝑖 < 𝑗 ≤ 4, 𝜖5 ∧ 𝜖5, 𝜖6 ∧ 𝜖6, 𝜖5 ∧ 𝜖6,

(Odd) : 𝑒𝑘 ∧ 𝜖𝑙 1 ≤ 𝑘 ≤ 4, 5 ≤ 𝑙 ≤ 6.

A general element 𝑄 of 𝐸 can be written as:

𝑄 = 𝑞 + 𝜆5 ∧ 𝜖5 + 𝜆6 ∧ 𝜖6 + 𝑎55𝜖5 ∧ 𝜖5 + 𝑎66𝜖6 ∧ 𝜖6 + 𝑎56𝜖5 ∧ 𝜖6

. with

𝑞 = 𝑞𝑖 𝑗𝑒𝑖 ∧ 𝑒 𝑗 , 𝜆𝑚 = 𝜆𝑚𝑖𝑒𝑖 , 𝑖, 𝑗 = 1, . . . , 4, 𝑚 = 5, 6 .

The element 𝑄 is decomposable if 𝑄 = 𝑎 ∧ 𝑏, where

𝑎 = 𝑟 + 𝜉5𝜖5 + 𝜉6𝜖6, 𝑏 = 𝑠 + 𝜂5𝜖5 + 𝜂6𝜖6,

with 𝑟 = 𝑟𝑖𝑒𝑖 , 𝑠 = 𝑠𝑖𝑒𝑖 . One obtains the following equalities:

𝑞 = 𝑟 ∧ 𝑠

𝜆5 = 𝜉5𝑠 − 𝜂5𝑟, 𝜆6 = 𝜉6𝑠 − 𝜂6𝑟,

𝑎55 = 𝜉5𝜂5, 𝑎66 = 𝜉6𝜂6, 𝑎56 = 𝜉5𝜂6 + 𝜉6𝜂5 (1)
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which imply,

𝑞 ∧ 𝑞 = 0,
𝑞 ∧ 𝜆5 = 0, 𝑞 ∧ 𝜆6 = 0,
𝜆5 ∧ 𝜆5 = −2𝑎55𝑞, 𝜆6 ∧ 𝜆6 = −2𝑎66𝑞, 𝜆5 ∧ 𝜆6 = −𝑎56𝑞,

𝜆5𝑎55 = 0, 𝜆6𝑎66 = 0,
𝜆5𝑎66 = −𝜆6𝑎56, 𝜆6𝑎55 = −𝜆5𝑎56,

𝑎2
55 = 0, 𝑎2

66 = 0, 𝑎56𝑎56 = −2𝑎55𝑎66

𝑎55𝑎56 = 0, 𝑎66𝑎56 = 0. (2)

More explicitly, we can write them in coordinates in the following way (always 1 ≤ 𝑖 < 𝑗 <

𝑘 ≤ 4 and 5 ≤ 𝑛 ≤ 6):

𝑞12𝑞34 − 𝑞13𝑞24 + 𝑞14𝑞23 = 0,
𝑞𝑖 𝑗𝜆𝑘𝑛 − 𝑞𝑖𝑘𝜆 𝑗𝑛 + 𝑞 𝑗𝑘𝜆𝑖𝑛 = 0,
𝜆𝑖𝑛𝜆 𝑗𝑛 = 𝑎𝑛𝑛𝑞𝑖 𝑗 ,

𝜆𝑖5𝜆 𝑗6 + 𝜆𝑖6𝜆 𝑗5 = 𝑎56𝑞𝑖 𝑗 ,

𝜆𝑖𝑛𝑎𝑛𝑛 = 0, 𝜆𝑖5𝑎66 = −𝜆𝑖6𝑎56, 𝜆𝑖6𝑎55 = −𝜆𝑖5𝑎56

𝑎56𝑎56 = −2𝑎55𝑎66, 𝑎55𝑎56 = 0, 𝑎66𝑎56 = 0,
𝑎2
𝑛𝑛 = 0. (3)

We call relations (3) the super plücker relations. These relations completely characterize the
super Grassmannian Gr(2|0, 4|2), since decomposable 𝑄 are evidently corresponding to subspaces;
moreover the 𝑞𝑖 𝑗 , 𝑎𝑛𝑚, 𝜆𝑛𝑘 give the superprojective coordinates in complete analogy to the ordinary
setting described above (see also [13], [21]). We then have the following result.

Theorem 2.1. The graded superring associated to the image of Gr(2|0, 4|2) under the super Plücker
embedding is C[Gr] � C[𝑞𝑖 𝑗 , 𝑎𝑛𝑚, 𝜆𝑛𝑘]/I𝑃 where I𝑃 the ideal generated by relations (3).

For a proof, one can see [21]. Though our notations in here and [14] are different, however,
the relations in [21] and ours coincide.

Another observation, that is helpful for quantization is: one can also view C[Gr(2|0, 4|2)] as
a subalgebra sitting inside C[SL(4|2)]. Let us display the generators of the algebra C[GL(4|2)] in
the matrix form ©­­­­­­­­­«

𝑔11 𝑔12 𝑔13 𝑔14 𝛾15 𝛾16
𝑔21 𝑔22 𝑔23 𝑔24 𝛾25 𝛾26
𝑔31 𝑔32 𝑔33 𝑔34 𝛾35 𝛾36
𝑔41 𝑔42 𝑔43 𝑔44 𝛾45 𝛾46

𝛾51 𝛾52 𝛾53 𝛾54 𝑔55 𝑔56
𝛾61 𝛾62 𝛾63 𝛾64 𝑔65 𝑔66

ª®®®®®®®®®¬
then

C[SL(4|2)] � C[𝑔𝑖 𝑗 , 𝑔𝑚𝑛, 𝛾𝑖𝑚, 𝛾𝑛 𝑗]/(Ber − 1) ,
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where Ber is the Berezinian of the matrix and 1 ≤ 𝑖, 𝑗 ≤ 4 and 5 ≤ 𝑚, 𝑛 ≤ 6. Now, one can identify
C[𝐺𝑟] as subalgebra of C[SL(4|2)] generated by:

𝑦𝑖 𝑗 = 𝑔𝑖1𝑔 𝑗2 − 𝑔𝑖2𝑔 𝑗1, 𝜂𝑘𝑛 = 𝑔𝑖1𝛾𝑛2 − 𝑔𝑖2𝛾𝑛1

𝑥55 = 𝛾51𝛾52, 𝑥66 = 𝛾61𝛾62 𝑥56 = 𝛾51𝛾62 + 𝛾61𝛾52. (4)

3. The Quantum Super Grassmannian Gr𝑞 (2|0, 4|2)

The key idea for quantization is to replace the geometric objects with a deformation of al-
gebra of functions on these objects and replace actions with coactions. With the inclusion
C[Gr] ⊂ C[SL(4|2)] as described in the last section, the idea for quantization is to consider
C𝑞 [SL(4|2)] (we follow [13]) and see how the corresponding subalgebra looks like. This approach
was also used in the classical setting for a quantization of grassmannians and flag varities (see [9],
[11], [12]).

Firstly, let us recollect briefly, some basic facts about quantum supermatrices. We refer the
reader to [17] and [13] for notation and details.

Definition 3.1. The quantum matrix superalgebra M𝑞 (𝑟 |𝑠) is defined as

M𝑞 (𝑟 |𝑠) := C𝑞 ⟨𝑧𝑖 𝑗 , 𝜉𝑘𝑙⟩/I𝑀

where C𝑞 ⟨𝑧𝑖 𝑗 , 𝜉𝑘𝑙⟩ denotes the free superalgebra over C𝑞 = C[𝑞, 𝑞−1] generated by the even
variables

𝑧𝑖 𝑗 , for 1 ≤ 𝑖, 𝑗 ≤ 𝑟 or 𝑟 + 1 ≤ 𝑖, 𝑗 ≤ 𝑟 + 𝑠.

and by the odd variables

𝜉𝑘𝑙 for 1 ≤ 𝑘 ≤ 𝑟, 𝑟 + 1 ≤ 𝑙 ≤ 𝑟 + 𝑠

or 𝑟 + 1 ≤ 𝑘 ≤ 𝑟 + 𝑠, 1 ≤ 𝑙 ≤ 𝑟,

satisfying the relations 𝜉2
𝑘𝑙

= 0 and I𝑀 is an ideal that we describe below by relations 5. We can

visualize the generators as a matrix

[
𝑧𝑚×𝑚 𝜉𝑚×𝑛
𝜉𝑛×𝑚 𝑧𝑛×𝑛

]
.

It is convenient sometimes to have a common notation for even and odd variables.

𝑎𝑖 𝑗 =


𝑧𝑖 𝑗 1 ≤ 𝑖, 𝑗 ≤ 𝑟, or 𝑟 + 1 ≤ 𝑖, 𝑗 ≤ 𝑟 + 𝑠,

𝜉𝑖 𝑗 1 ≤ 𝑖 ≤ 𝑟, 𝑟 + 1 ≤ 𝑗 ≤ 𝑟 + 𝑠, or
𝑟 + 1 ≤ 𝑖 ≤ 𝑟 + 𝑠, 1 ≤ 𝑗 ≤ 𝑟 .

We assign a parity to the indices: 𝑝(𝑖) = 0 if 1 ≤ 𝑖 ≤ 𝑟 and 𝑝(𝑖) = 1 if 𝑟 + 1 ≤ 𝑖 ≤ 𝑟 + 𝑠. The
parity of 𝑎𝑖 𝑗 is 𝜋(𝑎𝑖 𝑗) = 𝑝(𝑖) + 𝑝( 𝑗) mod 2. Then, the ideal I𝑀 is generated by the relations:
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𝑎𝑖 𝑗𝑎𝑖𝑙 = (−1) 𝜋 (𝑎𝑖 𝑗 ) 𝜋 (𝑎𝑖𝑙 )𝑞 (−1) 𝑝 (𝑖)+1
𝑎𝑖𝑙𝑎𝑖 𝑗 , for 𝑗 < 𝑙

𝑎𝑖 𝑗𝑎𝑘 𝑗 = (−1) 𝜋 (𝑎𝑖 𝑗 ) 𝜋 (𝑎𝑘 𝑗 )𝑞 (−1) 𝑝 ( 𝑗)+1
𝑎𝑘 𝑗𝑎𝑖 𝑗 , for 𝑖 < 𝑘

𝑎𝑖 𝑗𝑎𝑘𝑙 = (−1) 𝜋 (𝑎𝑖 𝑗 ) 𝜋 (𝑎𝑘𝑙 )𝑎𝑘𝑙𝑎𝑖 𝑗 , for 𝑖 < 𝑘, 𝑗 > 𝑙

or 𝑖 > 𝑘, 𝑗 < 𝑙

𝑎𝑖 𝑗𝑎𝑘𝑙 − (−1) 𝜋 (𝑎𝑖 𝑗 ) 𝜋 (𝑎𝑘𝑙 )𝑎𝑘𝑙𝑎𝑖 𝑗 = (−1) 𝜋 (𝑎𝑖 𝑗 ) 𝜋 (𝑎𝑘𝑙 ) (𝑞−1 − 𝑞)𝑎𝑘 𝑗𝑎𝑖𝑙 ,
for 𝑖 < 𝑘, 𝑗 < 𝑙 (5)

Theorem 3.2. M𝑞 (𝑟 |𝑠) a super bialgebra with comultiplication and counit defined as:

Δ(𝑎𝑖 𝑗) :=
∑︁
𝑘

𝑎𝑖𝑘 ⊗ 𝑎𝑘 𝑗 𝜖 (𝑎𝑖 𝑗) := 𝛿𝑖 𝑗 . (6)

Definition 3.3. Define the quantum general linear supergroup GL𝑞 (𝑟 |𝑠) as:

GL𝑞 (𝑟 |𝑠) := M𝑞 (𝑟 |𝑠) [𝐷−1
1 , 𝐷−1

2 ]

where 𝐷1 and 𝐷2 denotes the quantum determinants of the upper and lower even blocks respectively:

𝐷1 :=
∑︁
𝜎∈𝑆𝑟

(−𝑞)−𝑙 (𝜎)𝑎1𝜎 (1) ...𝑎𝑟 𝜎 (𝑟 )

𝐷2 :=
∑︁
𝜎∈𝑆𝑠

(−𝑞)−𝑙 (𝜎)𝑎𝑟+1,𝑟+𝜎 (1) ...𝑎𝑟+𝑠,𝑟+𝜎 (𝑠) .

Remark 3.4. It turns out that GL𝑞 (𝑟 |𝑠) is a Hopf superalgebra where the comultiplication and the
counit is induced from M𝑞 (𝑟 |𝑠) as in 6. However, the antipode 𝑆 is a bit more involved. Moreover,
one also have a notion of quantum Berezinian Ber𝑞. We do not need an explicit description of these
for this note; we refer interested readers to [13, 15, 16].

Definition 3.5. Define the quantum special linear supergroup SL𝑞 (𝑟 |𝑠) as the quotient

SL𝑞 (𝑟 |𝑠) := GL𝑞 (𝑟 |𝑠)/(Ber𝑞 − 1)

where Ber𝑞 denotes the quantum Berezianian [13].

We can now define the quantum Grassmannian Gr𝑞 (2|0, 4|2) in analogy to our euristic classical
derivation (4), see also [9–11] for a theoretical motivation in the quantum ordinary i.e. non super
case, holding also here.

6
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Definition 3.6. The quantum super Grassmannian Gr𝑞 := Gr𝑞 (2|0, 4|2) is the subalgebra of
SL𝑞 (4|2) generated by the elements (quantum determinants):

𝐷𝑖 𝑗 := 𝑎𝑖1𝑎 𝑗2 − 𝑞−1𝑎𝑖2𝑎 𝑗1 𝐷𝑖𝑛 := 𝑎𝑖1𝑎𝑛2 − 𝑞−1𝑎𝑖2𝑎𝑛1

𝐷55 := 𝑎51𝑎52 𝐷66 := 𝑎61𝑎62

𝐷56 = 𝑎51𝑎62 − 𝑞−1𝑎52𝑎61 (7)

with 1 ≤ 𝑖 < 𝑗 ≤ 4 and 𝑛 = 5, 6.

To give a presentation of the graded ring Gr𝑞 in terms of generators and relations, we need
to find a quantum version of the commutation relations and super Plücker relations. After some
tedious calculations we arrive at the following quantum commutation relations:

• Let 1 ≤ 𝑖, 𝑗 , 𝑘, 𝑙 ≤ 6 be not all distinct, and 𝐷𝑖 𝑗 , 𝐷𝑘𝑙 not both odd,

𝐷𝑖 𝑗𝐷𝑘𝑙 = 𝑞−1𝐷𝑘𝑙𝐷𝑖 𝑗 , (8)

for (𝑖, 𝑗) < (𝑘, 𝑙), 𝑖 < 𝑗 , 𝑘 < 𝑙 where the ordering ‘<’ of pairs is the lexicographical ordering.

• Let 1 ≤ 𝑖, 𝑗 , 𝑘, 𝑙 ≤ 6 be all distinct, and 𝐷𝑖 𝑗 , 𝐷𝑘𝑙 not both odd and 𝐷𝑖 𝑗 , 𝐷𝑘𝑙 ≠ 𝐷56. Then

𝐷𝑖 𝑗𝐷𝑘𝑙 = 𝑞−2𝐷𝑘𝑙𝐷𝑖 𝑗 , 1 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 6,
𝐷𝑖 𝑗𝐷𝑘𝑙 = 𝑞−2𝐷𝑘𝑙𝐷𝑖 𝑗 − (𝑞−1 − 𝑞)𝐷𝑖𝑘𝐷 𝑗𝑙 1 ≤ 𝑖 < 𝑘 < 𝑗 < 𝑙 ≤ 6,
𝐷𝑖 𝑗𝐷𝑘𝑙 = 𝐷𝑘𝑙𝐷𝑖 𝑗 1 ≤ 𝑖 < 𝑘 < 𝑙 < 𝑗 ≤ 6, (9)

• Let 1 ≤ 𝑖 < 𝑗 ≤ 4, 5 ≤ 𝑛 ≤ 𝑚 ≤ 6. Then

𝐷𝑖𝑛𝐷 𝑗𝑛 = −𝑞−1𝐷 𝑗𝑛𝐷𝑖𝑛 − (𝑞−1 − 𝑞)𝐷𝑖 𝑗𝐷𝑛𝑛 = −𝑞𝐷 𝑗𝑛𝐷𝑖𝑛,

𝐷𝑖 𝑗𝐷𝑛𝑚 = 𝑞−2𝐷𝑛𝑚𝐷𝑖 𝑗 ,

𝐷𝑖5𝐷 𝑗6 = −𝑞−2𝐷 𝑗6𝐷𝑖5 + (𝑞−1 − 𝑞)𝐷𝑖 𝑗𝐷56,

𝐷𝑖6𝐷 𝑗5 = −𝐷 𝑗5𝐷𝑖6,

𝐷𝑖5𝐷𝑖6 = −𝑞−1𝐷𝑖6𝐷𝑖5,

𝐷𝑖5𝐷𝑖6 = −𝑞−1𝐷𝑖6𝐷𝑖5,

𝐷55𝐷66 = −𝑞−2𝐷66𝐷55 ,

𝐷55𝐷56 = 0 . (10)

Moreover, the super Plücker relations get quantized as follows: One has for 1 ≤ 𝑖 < 𝑗 ≤ 4 and
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𝑛 = 5, 6:

𝐷12𝐷34 − 𝑞−1𝐷13𝐷24 + 𝑞−2𝐷14𝐷23 = 0,
𝐷𝑖 𝑗𝐷𝑘𝑛 − 𝑞−1𝐷𝑖𝑘𝐷 𝑗𝑛 + 𝑞−2𝐷𝑖𝑛𝐷 𝑗𝑘 = 0,
𝐷𝑖5𝐷 𝑗6 + 𝑞−1𝐷𝑖6𝐷 𝑗5 = 𝑞𝐷𝑖 𝑗𝐷56,

𝐷𝑖𝑛𝐷 𝑗𝑛 = 𝑞𝐷𝑖 𝑗𝐷𝑛𝑛,

𝐷𝑖𝑛𝐷𝑛𝑛 = 0,
𝐷𝑖5𝐷66 = −𝑞−1𝐷𝑖6𝐷56,

𝐷𝑖6𝐷55 = −𝑞2𝐷𝑖5𝐷56,

𝐷2
𝑛𝑛 = 0, 𝐷55𝐷56 = 0, 𝐷66𝐷56 = 0,

𝐷56𝐷56 = (𝑞−1 − 3𝑞)𝐷55𝐷66. (11)

We end this section with the observation that we can also view Gr𝑞 (2|0, 4|2) as quantum
homogeneous space (by which we mean, it admits a coaction of a quantum group SL𝑞 (4|2)).

Theorem 3.7. The restriction of the comultiplication in SL𝑞 (4|2) to Gr𝑞 (2|0, 4|2) is of the form:

Gr𝑞 (2|0, 4|2) −→ SL𝑞 (4|2) ⊗ Gr𝑞 (2|0, 4|2).

The proof is just a calculation, see [14].

4. 𝑁 = 2 Minkowski Superspace and its Quantization

In this section, we mimic the construction of Minkowski space as the big cell inside Gr(2, 4)
in this super and quantum setting. A similar treatment for a quantization of the classical (complex)
Minkowski space is described in [12, 13].

Consider the set 𝑆 of (4|2) × 2 matrices:

𝑎11 𝑎12
𝑎21 𝑎22
𝑎31 𝑎32
𝑎41 𝑎42
𝛼51 𝛼52
𝛼61 𝛼62


with 𝑎11𝑎22 − 𝑎12𝑎21 invertible. There is a natural right action of GL2(C) on 𝑆. Under this action,
every element of 𝑆 can be written uniquely as:

1 0
0 1
𝑢31 𝑢32
𝑢41 𝑢42
𝜈51 𝜈52
𝜈61 𝜈62


8
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In other words, the quotient of 𝑆 under the action of GL2(C) is an affine superspaceM � C4 |4. One
can easily compute 𝑢𝑖 𝑗 and 𝜈𝑘𝑙 for an arbitrary element of 𝑆:

𝑢𝑖1 = −𝑑2𝑖𝑑
−1
12 and 𝑢𝑖2 = 𝑑1𝑖𝑑

−1
12

𝜈𝑘1 = −𝑑2𝑘𝑑
−1
12 and 𝑢𝑘2 = 𝑑1𝑘𝑑

−1
12 (12)

where 𝑖 = 3, 4 and 𝑘 = 5, 6 and 𝑑𝑟𝑠 := 𝑎𝑟1𝑎𝑠2 − 𝑎𝑟2𝑎𝑠1.

Definition 4.1. We callM the quotient 𝑆/GL2(C) � C4 |4 as the 𝑁 = 2 Minkowski superspace.

We also viewed it as a trivial quantum principal bundle. We follow [4] section 2, in giving the
definition of quantum principal bundle in the super category.

Definition 4.2. • Let (𝐻,Δ, 𝜖 , 𝑆) be a Hopf superalgebra and 𝐴 be an𝐻-comodule superalgebra
with coaction 𝛿 : 𝐴 −→ 𝐴 ⊗ 𝐻. Let

𝐵 := 𝐴𝑐𝑜𝑖𝑛𝑣 (𝐻 ) := {𝑎 ∈ 𝐴 | 𝛿(𝑎) = 𝑎 ⊗ 1}

The extension 𝐴 of the superalgebra 𝐵 is called 𝐻-Hopf-Galois (or simply Hopf-Galois) if
the map

𝜒 : 𝐴 ⊗𝐵 𝐴 −→ 𝐴 ⊗ 𝐻, 𝜒 = (𝑚𝐴 ⊗ id) (id ⊗𝐵 𝛿)

called the canonical map, is bĳective (𝑚𝐴 denotes the multiplication in 𝐴).

• We define quantum principal superbundle as a pair (𝐴, 𝐵), where 𝐴 is an 𝐻-Hopf Galois
extension and 𝐴 is 𝐻-equivariantly projective as a left 𝐵-supermodule.

• Let 𝐻 be a Hopf superalgebra and 𝐴 an 𝐻-comodule superalgebra. The algebra extension
𝐴𝑐𝑜𝑖𝑛𝑣 𝐻 ⊂ 𝐴 is called a cleft extension if there is a right 𝐻-comodule map 𝑗 : 𝐻 −→ 𝐴,
called cleaving map, that is convolution invertible, , i.e. there exists a map ℎ : 𝐻 −→ 𝐴 such
that the convolution product 𝑗 ★ ℎ satisfies:

( 𝑗 ★ ℎ) ( 𝑓 ) := (𝑚𝐴 ◦ ( 𝑗 ⊗ ℎ) ◦ Δ) ( 𝑓 ) = 𝜖 ( 𝑓 ).1

for all 𝑓 ∈ 𝐻.

• An extension 𝐴𝑐𝑜𝑖𝑛𝑣 𝐻 ⊂ 𝐴 is called a trivial extension if there is an 𝐻-comodule algebra
map 𝑗 : 𝐻 → 𝐴. In this case, the convolution inverse is just ℎ = 𝑗 ◦ 𝑆.

With these definitions we prove the following result (see [14]).

Theorem 4.3. The natural projection 𝑝 : 𝑆 −→ 𝑆/GL2(C) � M is a trivial principal bundle.

Finally, we move towards the quantization. Let C𝑞 [𝑆] be the quantization of 𝑆 obtained by
taking the Manin relations among the entries with 𝐷12 invertible. By getting a quantum version of
(12) we give following definition.
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Definition 4.4. The 𝑁 = 2 quantum chiral Minkowski superspace C𝑞 [M] is the superalgebra in
C𝑞 [GL(4|2)] generated by the elements:

𝑢̃𝑖1 := −𝑞−1𝐷2𝑖𝐷
−1
12 𝑢̃𝑖2 := 𝐷1𝑖𝐷

−1
12 𝑖 = 3, 4

𝜈̃𝑘1 := −𝑞−1𝐷2𝑘𝐷
−1
12 𝑢̃𝑘2 := 𝐷1𝑘𝐷

−1
12 𝑘 = 5, 6. (13)

By computing the commutation relations, we arrive at the following proposition, which is
tedious, yet straightforward.

Theorem 4.5. C𝑞 [M] is isomorphic as a superalgebra to the superalgebra of matrices M𝑞 (2|2)
(as defined in 3).

Moreover, we also viewed it as quantum principal bundle, as we prove in [14] (see also [4, 5, 13]
for more details).

Theorem 4.6. The quantum superalgebra C𝑞 [𝑆] is a trivial quantum principal bundle over 𝑁 = 2
quantum chiral Minkowski superspace C𝑞 [M]. Moreover it carries a natural action of the quantum
Poincaré supergroup.
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