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1. Introduction

Not so long after the discovery of twistor theory [1], people realized that there is a profound
relation between [2]

Integrable systems in 4𝑑 spacetime ←→ Holomorphic structures on twistor space

For instance, self-dual Yang-Mills (SDYM) [3] and self-dual gravity (SDGRA) [4–6] can
be formulated as BF and Poisson-BF actions on twistor space [7], respectively.1 Despite these
successes, there were not many activities in finding interacting higher-spin theories from twistor
community compared to the developments in higher-spin community initiated by Fradkin-Vasiliev
[11, 12], Vasiliev [13, 14], Bengtsson-Bengtsson-Brink [15, 16] and Metsaev [17, 18]. The main
technical problem is encapsulated in encoding higher-spin symmetry into some geometrical datas
on the twistor space with the correct projective scaling so that we can obtain local higher-spin
interactions in spacetime. It is noteworthy that free equations of motion for massless higher-spin
fields have been known long time ago in twistor theory [1, 19] even before Fronsdal [20] and Fang
[21] wrote down their Lagrangians for free massless higher-spin fields.

Very roughly, if 𝐽𝑎 (𝑠) is a conserved higher-spin rank-𝑠 tensor associated with the higher-spin
current 𝑱𝑠 and 𝑡𝑎 (𝑠−1) is a rank-(𝑠−1) conformal Killing tensor, then the corresponding higher-spin
charge 𝑄𝑠 can be defined as2

𝑄𝑠 (𝑡) =
∫

𝑑𝑑−1𝑥 𝑱𝑠0 , where 𝑱𝑠𝑚(𝑡) = 𝐽𝑚𝑎 (𝑠−1) 𝑡
𝑎 (𝑠−1) , (1)

Since CFT axioms require, for instance

[𝑄2, 𝑄𝑠] = 𝑄𝑠 + ... , [𝑄𝑠, 𝑄𝑠] = 𝑄2 + ... , (2)

where we have other higher-spin charges in the ellipsis, unless there are higher-spin charges of all
spins (at least even) [25–29], the Ward/Jacobi identities will be violated. The tower of infinitely
many conserved charges 𝑄𝑠 form an associative higher-spin algebra which we will denote as hs

[11, 30]. Note that hs is an extended algebra of the usual conformal algebra, which has 𝐽𝑎 (2)
as the canonical conserved stress tensor. As a result, higher-spin symmetry requires all possible
interactions between higher-spin fields in the vertices. This is the main idea behind the construction
of interacting higher-spin theories.

In 4-dimension, the cubic vertices for any given triplet of helicities (ℎ1, ℎ2, ℎ3) can be uniquely
fixed by symmetry of the little group [15, 16, 31]. In particular, the anti-holomorphic cubic vertices
have the following form

�̄�3 = �̄�ℎ1,ℎ2,ℎ3 [12]ℎ1+ℎ2−ℎ3 [23]ℎ2+ℎ3−ℎ1 [31]ℎ3+ℎ1−ℎ2 , (ℎ1 + ℎ2 + ℎ3 > 0) . (3)

Note that when ℎ1 + ℎ2 + ℎ3 < 0, we simply replace the square brackets [𝑖 𝑗] by the angled brackets
〈𝑖 𝑗〉, and remove the bar over the coupling constant �̄�ℎ1,ℎ2,ℎ3 . Chiral higher-spin gravity (HSGRA)

1We refer the readers to e.g. [8–10] for a review on twistor theory.
2We invite the readers to the report [22] and the lecture notes [23, 24] for a review on higher-spin theories.
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[17, 18, 32] is a special class among all higher-spin theories where interactions stop at cubic order.
It has the following coupling constants

�̄�ℎ1,ℎ2,ℎ3 =
𝜅ℓ

ℎ1+ℎ2+ℎ3−1
𝑝

Γ[ℎ1 + ℎ2 + ℎ3]
. (4)

Here, ℓ𝑝 has the dimension of length, and 𝜅 is a dimensionless parameter. It is worth to note that
the coupling constants (4) have been discovered in various contexts. For instance, �̄�ℎ1,ℎ2,ℎ3 were
derived dynamically in [17, 18, 32–34], while in the work of [35–37] �̄�ℎ1,ℎ2,ℎ3 were understood
as built-in numerical factors coming from the Taylor expansion of the Moyal-Weyl ★-product on
twistor space. In addition, �̄�ℎ1,ℎ2,ℎ3 were also discovered in the context of celestial amplitudes
[38, 39]. Since the flat space chiral HSGRA has been shown to admit a smooth deformation to
its (𝐴)𝑑𝑆4 version [34, 37, 40, 41], it repels the common opinion that higher-spin theories can
only exist in (A)dS [12]. The results of [33, 34, 37] have resolved the mismatch between the cubic
vertices in the Fronsdal’s [42] and light-cone approaches [15, 16, 43].

Free differential algebra approach to the construction of equations of motion for chiral higher-
spin gravity (HSGRA) [33, 34, 44], and the twistor construction in [35–37, 45–47] are important
results of the covariantization program for chiral HSGRA and its contractions from their light-cone
descriptions [17, 18, 32, 40, 41, 48].3 In this note, we want to convey a formula for: (i) constructing
the dual twistor actions of various 4-dimensional local higher-spin theories, (ii) obtaining their
covariant spacetime actions from (non-commutative) twistor space [35–37, 45–47]. To date, most
of 4𝑑 local HSGRAs obtained from twistor space have complex action functionals and are (quasi)-
chiral type theories. Nevertheless, they are consistent theories that can avoid various No-go theorems
in flat space [52, 53] and AdS space [25] since some of the assumptions of the No-go theorems such
as unitarity and parity invariance are violated.

Note that 4𝑑 (quasi-)chiral higher-spin theories tend to have simple scattering amplitudes in
flat space. In fact, for quite some time there was a widespread belief that local higher-spin theories
can only have trivial scattering amplitudes in flat space due to various results in [54–60]. Depends
on the audience, the triviality of higher-spin scatterings can be either intriguing or completely
tedious. Therefore, it is instinctive to ask whether we can have any examples of non-trivial local
higher-spin theories. As luck may have it, twistor theory allows us to expand the realm of consistent
interacting higher-spin theories by perturbatively deforming away from the chiral sectors as in
[35, 36, 46, 47]. In [61], it is shown that higher-spin extension of Yang-Mills theory (HS-YM) has
non-trivial scattering amplitudes, which is a surprising result. In particular, the MHV amplitudes
of HS-YM between two negative helicity −𝑠 fields and the remaining positive helicity +1 fields read

M(1+1, ..., 𝑖−𝑠, ..., 𝑗−𝑠, ..., 𝑛+1) = 〈𝑖 𝑗〉4
〈12〉...〈𝑛1〉 〈𝑖 𝑗〉

2𝑠−2 . (5)

Observe that the above amplitude comprises a well-known Park-Taylor factor [62] and a part
addressing two external states with negative helicity −𝑠. The above amplitudes trigger a natural
question of whether non-self-dual higher-spin theories can be phenomenologically significant.

3See also [49–51] for supersymmetric version of chiral HSGRA.
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At high energy/short distance where quantum mechanics govern physics, it is reasonable to
assume that spacetime and fields should get quantized and have a unified description in one single
fundamental theory. The IKKT-matrix model [63] is a model that can offers such an opportunity
to realize the above idea. It is worth to note that the IKKT is one-loop finite [64], and it has non-
trivial connection with cosmology and black hole physics [65]. Since the natural background of the
IKKT-matrix model is a “fuzzy” (or quantized) twistor space P3

𝑁
[66], it induces a higher-spin gauge

theory (HS-IKKT) with a spectrum consisting of a finite number of spinning fields. In particular,
if 𝑍𝐴 is sp(4) (or su(4)) vector, and �̂�𝐴 is its dual, then the space of functions on P3

𝑁
is realized as

[47]

𝒞(P3
𝑁 ) = 𝐸𝑛𝑑 (H𝑁 ) = (𝑁, 0, 0)su(4) ⊗ (0, 0, 𝑁)su(4) =

𝑁∑︁
𝑛=1
(𝑛, 0, 𝑛)su(4)

=

𝑁∑︁
𝑛=0

𝑓𝐴(𝑛)𝐵 (𝑛)𝑍
𝐴...𝑍𝐴�̂�𝐵 ...�̂�𝐵 ,

(6)

where H𝑁 = (0, 0, 𝑁) = (0, 0, 1)⊗sym𝑁 is an 𝑁-particle Fock space where H𝑁 = �̂�𝐴
1 ...�̂�

𝐴
𝑁
|0〉.

Observe that we have a truncation of higher-spin modes on P3 [66] since it is clear from (6) that the
spectrum of the HS-IKKT on P3

𝑁
is bounded from above.4 As a consequence, it is expected that the

HS-IKKT can have non-trivial 𝑆-matrix since there is not enough symmetry to trivialize physical
scattering processes; and another reason is that it is a quasi-chiral theory.

2. Constructing chiral HSGRA from twistor space

Twistor space. If 𝑆𝐿 (2,C) × 𝑆𝐿 (2,C) ⊂ 𝑆𝑝(4,C) is the local Lorentz group of a complexified
conformally flat spacetime MC ≡ M with cosmological constant Λ, then a null vector can be
described by a pair of bosonic Weyl spinors of opposite chiralities, which live in ( 12 , 0) and (0, 1

2 )
representations, i.e. 𝑉𝑎 = 𝜆𝛼𝜇 ¤𝛼. In what follow, we parametrize the homogeneous coordinate 𝑍𝐴

of P3 as 𝑍𝐴 = (𝜆𝛼, 𝜇 ¤𝛼) where spinor indices have values 0, 1. This is in accordance with the fact
that P3 can admits a spin structure since the second Stiefel-Whitney class of P3 is 𝑤2(𝑇P3) = 0.
Furthermore, since P3 is a compact symplectic manifold, there is a nature quaternionic conjugation
that maps

ˆ : 𝑍𝐴 = (𝜆𝛼, 𝜇 ¤𝛼) ↦→ �̂�𝐴 = (�̂�𝛼, �̂� ¤𝛼) , (7)

such that

𝜆𝛼 = (𝜆0, 𝜆1) ↦→ �̂�𝛼 = (−𝜆1, 𝜆0) , 𝜇 ¤𝛼 = (𝜇 ¤0, 𝜇 ¤1) ↦→ �̂� ¤𝛼 = (−𝜇 ¤1, 𝜇 ¤0) . (8)

In the affine patch of (𝐴)𝑑𝑆4 where the metric reads

𝑑𝑠2 =
𝑑𝑥𝜇𝑑𝑥

𝜇

(1 + Λ𝑥2)2
= Ω2𝑑𝑥𝜇𝑑𝑥

𝜇 , 𝜇 = 1, 2, 3, 4 , (9)

4A review on (HS)-IKKT can be found at e.g. [65].
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there is a natural object 𝐼𝐴𝐵 known as the infinity twistor [1] used to specify the conformal factor
Ω in (9). It has the following properties

1
2
𝐼𝐴𝐵𝜖𝐴𝐵𝐶𝐷 = 𝐼𝐶𝐷 , 𝐼𝐴𝐶 𝐼

𝐵𝐶 = Λ𝛿𝐴
𝐵 , (10)

and the following representatives

𝐼𝐴𝐵 =

(
Λ𝜖 𝛼𝛽 0

0 𝜖 ¤𝛼
¤𝛽

)
, 𝐼𝐴𝐵 =

(
𝜖𝛼𝛽 0
0 Λ𝜖 ¤𝛼 ¤𝛽

)
. (11)

The twistor space PT is then defined as an open subset of P3 where

PT = {𝑍𝐴 ∈ P3 | 𝐼𝐴𝐵𝑍𝐴�̂�𝐵 ≠ 0} . (12)

Note that in the flat limit where Λ→ 0, the condition 𝐼𝐴𝐵𝑍
𝐴�̂�𝐵 ≠ 0 reduces to the removal of the

projective line 𝜆𝛼 = 0 (which is a point at infinity inM).

By assuming 𝜇 ¤𝛼 = 𝐹 ¤𝛼 (𝑥, 𝜆) as in [67, 68], we can identify the projective undotted spinor
bundle PS ' M × P1 as the corresponding space between PT andM. This fact can be described
by the double fibration:

PS

PT M

←→𝜋1 ←

→

𝜋2 (13)

If a twistor line over a point 𝑥 ∈ M is 𝐿𝑥 ' P1, then the tangent space 𝑇𝑥M can be identified with
𝐻0(𝐿𝑥 , 𝑁𝐿𝑥

) ' C4 [67] by virtue of a horizontal lifting. Furthermore, the normal bundle wrt. 𝐿𝑥

𝑁𝐿𝑥
:= 𝑇 (PT) |𝐿𝑥

/𝑇 (𝐿𝑥) ' O(1) ⊕ O(1) (14)

can be obtained as a consequence of Birkhoff-Grothendieck Lemma. Note that in the flat limit
Λ→ 0, PT will be isomorphic to O(1) ⊕ O(1).

Next, taking the advantage of the fact that 𝑇 (𝐿𝑥) � O(2) and 𝑇∗(𝐿𝑥) � O(−2), where
O(𝑛) := O(1)⊗ 𝑛 is the usual line bundle over P1, we can define the following basis on PS [69]:

(0, 1)-vectors : 𝜕0 = 〈𝜆�̂�〉𝜆𝛼

𝜕

𝜕�̂�𝛼

, 𝜕 ¤𝛼 = −𝜆𝛼𝜕𝛼 ¤𝛼 , (15a)

(0, 1)-forms : 𝑒0 =
〈�̂�𝑑�̂�〉
〈𝜆�̂�〉2

, 𝑒 ¤𝛼 = − �̂�𝛼𝑑𝑥
𝛼 ¤𝛼

〈𝜆�̂�〉
, (15b)

Since 𝜕2 = 0 where 𝜕 := 𝑒0𝜕0 + 𝑒 ¤𝛼𝜕 ¤𝛼, we can take 𝜕 to be our definition of integrable complex
structure on PS. Strictly speaking, 𝜕0 and 𝜕 ¤𝛼 are (0, 1)-vector fields of Γ(𝑇0,1PT,O(2)) and
Γ(𝑇0,1PT,O(1)), respectively. Here, the Γ notation is an abbreviation of the set of 𝐶∞ sections
valued in O(𝑛) line bundle.

To obtain an explicit expression for 𝐹 ¤𝛼 (𝑥, 𝜆), we recall that (𝐴)𝑑𝑆4 with the metric (9) is

5
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described by the following system of equations [70]

0 = 𝑑𝑒𝛼 ¤𝛼 −𝜛𝛼
𝛾 ∧ 𝑒𝛾 ¤𝛼 −𝜛 ¤𝛼

¤𝛾 ∧ 𝑒𝛼 ¤𝛾 , (16a)
0 = 𝑑𝜛𝛼𝛽 −𝜛𝛼

𝛾 ∧𝜛𝛽𝛾 − Λ𝑒𝛼 ¤𝛾 ∧ 𝑒𝛽 ¤𝛾 , (16b)

0 = 𝑑𝜛 ¤𝛼 ¤𝛽 −𝜛 ¤𝛼
¤𝛾 ∧𝜛

¤𝛽 ¤𝛾 − Λ𝑒𝛾 ¤𝛼 ∧ 𝑒𝛾
¤𝛽 , (16c)

where 𝑒𝛼 ¤𝛼 = Ω𝜎𝛼 ¤𝛼 and 𝜎𝛼 ¤𝛼 are the Pauli’s matrices. The spin-connections 𝜛 read

𝜛𝛼𝛼 = ΛΩ𝜎𝛼 ¤𝛾𝑥𝛼 ¤𝛾 , 𝜛 ¤𝛼 ¤𝛼 = ΛΩ𝜎𝛾 ¤𝛼𝑥𝛾
¤𝛼 . (17)

The connection ∇ = 𝑑 +𝜛 onM is defined as

∇𝐴𝛼, ¤𝛼 = 𝑑𝐴𝛼, ¤𝛼 +𝜛𝛼
𝛽𝐴

𝛽, ¤𝛼 +𝜛 ¤𝛼
¤𝛽𝐴

𝛼, ¤𝛽 . (18)

The corresponding spin-connection on PS is then a (0, 1)-form �̄� = 𝜛0𝑒
0 + 𝜛 ¤𝛼𝑒 ¤𝛼 that has the

following property 𝜛0𝑒
0 |𝐿𝑥
∈ 𝐻0,1(𝐿𝑥 ,O(2)) = 0 [71, 72]. This allows us to define a background

connection as

𝜕 ¤𝛼 → ∇̄ ¤𝛼 := −𝜆𝛼∇𝛼 ¤𝛼 = 𝜕 ¤𝛼 − 𝜆𝛼𝜛𝛼 ¤𝛼 , (19)

where ∇𝛼 ¤𝛼 is the covariant derivative defined in (18). At the end of the day, the equations that we
use to solve for the incident relations 𝜇 ¤𝛼 = 𝐹 ¤𝛼 (𝑥, 𝜆) are

𝜆𝛼∇𝛼 ¤𝛼𝜇
¤𝛽 = 0 . (20)

We obtain

𝜇 ¤𝛼 = 𝑥𝛼 ¤𝛼 𝜆𝛼 ⇔ 𝑥𝛼 ¤𝛼 =
𝜆𝛼 �̂� ¤𝛼 − �̂�𝛼𝜇 ¤𝛼

〈𝜆�̂�〉
. (21)

Thus, each point 𝑥 ∈ M corresponds to a holomorphic, linearly embedded Riemann sphere
𝐿𝑥 � P

1 ⊂ PT, and any point 𝑍 ∈ PT corresponds to a self-dual null 𝛼-plane inM. Note that if we
consider

𝑁 = 𝐼𝐴𝐵 �̂�
𝐴𝑍𝐵 = 〈𝜆�̂�〉 + Λ[𝜇�̂�] , 𝑁 ∈ R+ , (22)

then a straightforward computation leads to

𝑥2 =
1
2
𝑥𝛼 ¤𝛼𝑥

𝛼 ¤𝛼 =
[𝜇�̂�]
〈𝜆�̂�〉

(23)

in empty (𝐴)𝑑𝑆4. Therefore, we can identify

〈𝜆�̂�〉 = 𝑁Ω , [𝜇�̂�] = 𝑁Ω 𝑥2 , (24)

where Ω is the conformal factor in the metric (9). From this point of view, the inner product 〈𝜆�̂�〉
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can be thought of as the conformal factor Ω as observed in [47]. This suggests us to parametrize
𝜆, �̂� projectively as

𝜆 = Ω1/2
(
𝑧𝑒𝑖 𝜃

−1

)
, �̂� = Ω1/2

(
1

𝑧𝑒−𝑖 𝜃

)
, (25)

where |𝑧 |2 + 1 = 𝑁 and 𝑧 ∈ R∗, 𝜃 ∈ [0, 2𝜋]. Next, plugging (21) to the basis (15), we recover the
usual definition of the Dolbeault operator on PT, i.e.

𝜕 = 𝑑𝜆𝛼 𝜕

𝜕𝜆𝛼
+ 𝑑𝜇 ¤𝛼 𝜕

𝜕𝜇 ¤𝛼
= 𝑑�̂�𝐴 𝜕

𝜕�̂�𝐴
. (26)

Hence, 𝜕 can play the role of the background on the twistor space PT associated to complex
conformally flat spacetimeM. For this reason, we will abusively denote ∇̄ also as 𝜕, where ∇̄ is
the corresponding connection of ∇ on PS.

Deformation of twistor geometry. In the study of deformation of complex structures on twistor
space [73, 74], one often deforms the “background” 𝜕 by some connection (0, 1)-form a with
homogeneity zero on PT , i.e.

𝜕 ↦→ D̄ = 𝜕 + a , a ∈ Ω0,1(PT ,O) . (27)

The integrability condition for the deformed complex structure D̄ is the Kodaira-Spencer equation:

F := D̄ ∧ D̄ = 𝜕a + a ∧ a = 0 , F ∈ Ω0,2(PT ) , (28)

In this situation, the deformed twistor space PT will corresponds to a self-dual background
associated with the deformation a, and is defined as

PT =
{
Z𝐴 = (𝜆𝛼, 𝜇 ¤𝛼 = 𝐹 ¤𝛼 (𝑥, 𝜆)) ∈ P3 �� 𝜕𝐹 ¤𝛼 |𝐿𝑥

= a ¤𝛼 |𝐿𝑥

}
. (29)

While the twistor lines 𝐿𝑥 ⊂ PT are sections of 𝜋 : PT → P1 with the same normal bundle
O(1) ⊕ O(1) as before, deforming 𝜕 leads to a distortion of 𝐿𝑥 away from the original twistor line
𝑥𝛼 ¤𝛼𝜆𝛼 by a displacement (𝐹 ¤𝛼 − 𝑥𝛼 ¤𝛼𝜆𝛼) 𝜕

𝜕𝜇 ¤𝛼 . This deformation can be depicted by the following
cartoon:

7
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As shown in [67], the moduli space of solutions to the PDE (29) has complex dimensions 4,
and is identified with a self-dual background ℳ =M ⊕ (deformations). Furthermore, the incident
relations are no longer of the form (21) but rather a solution of

𝜆𝛼∇̃𝛼 ¤𝛼𝐹
¤𝛽 (𝑥, 𝜆) = 0 . (30)

where ∇̃ is a self-dual connection onM. The operator ℓ ¤𝛼 := 𝜆𝛼∇̃𝛼 ¤𝛼 is known as Lax pair whose
integrability, i.e. [ℓ ¤𝛼, ℓ ¤𝛽] = 0, is equivalent to the self-dual vacuum equations on ℳ. Note that
depends on the nature of a, we have either: (i) a radiative self-dual background [74], (ii) gravitational
self-dual background [73], (iii) higher-spin extension of self-dual radiative background [46], etc.
Furthermore, in the radiative cases, the incident relations reduce to the usual ones in (21), while it
is more complicated for higher-derivative deformations, see e.g. [73, 75].

To this end, let us introduce a Poisson structure induced by the infinity twistor 𝐼𝐴𝐵 on PT :

Π̃ = 𝐼𝐴𝐵
←−
𝜕

𝜕Z𝐴
∧
−→
𝜕

𝜕Z𝐵
= Λ

←−
𝜕

𝜕𝜆𝛼
∧
−→
𝜕

𝜕𝜆𝛼

+
←−
𝜕

𝜕𝜇 ¤𝛼
∧
−→
𝜕

𝜕𝜇 ¤𝛼
. (31)

A nice feature of the above Poisson structure is that it can act naturally on holomorphic objects on
curved twistor space. Furthermore, it also induces the following star-product on PT [35–37]

𝑓 ★ 𝑔 := 𝑓 𝑒ℓ𝑝Π̃ ∧ 𝑔 =

∞∑︁
𝑘=0

ℓ𝑘𝑝

𝑘!
𝑓 Π̃𝑘 𝑔 , (32)

where ℓ𝑝 is some natural length scale that plays the role of a deformation parameter. Note that the
expansion of the★-product at order 𝑘 has weight −2𝑘 for 𝑘 ∈ N. This allows us to obtain the (+++)
cubic vertices in chiral HSGRA on twistor space since all twistor fields at the cubic vertex can have
positive weights. We also note that (𝐴)𝑑𝑆4 can be realized in terms of the following generators

𝐿𝛼𝛽 = 𝜆𝛼𝜆𝛽 , 𝑃𝛼 ¤𝛼 = 𝜆𝛼𝜇 ¤𝛼 , 𝐿 ¤𝛼
¤𝛽 = 𝜇 ¤𝛼𝜇

¤𝛽 , (33)

where due to the definition of the ★-product, we have

[𝐿𝛼𝛼, 𝐿𝛽𝛽]★ = Λ𝜖 𝛼𝛽𝐿𝛼𝛽 , [𝐿 ¤𝛼 ¤𝛼, 𝐿 ¤𝛽 ¤𝛽]★ = 𝜖 ¤𝛼
¤𝛽𝐿 ¤𝛼

¤𝛽 , (34a)

[𝐿𝛼𝛼, 𝑃𝛽 ¤𝛽]★ = Λ𝜖 𝛼𝛽𝑃𝛼 ¤𝛽 , [𝐿 ¤𝛼 ¤𝛼, 𝑃𝛽 ¤𝛽]★ = 𝜖 ¤𝛼
¤𝛽𝑃𝛽 ¤𝛼 , (34b)

[𝑃𝛼 ¤𝛼, 𝑃𝛽 ¤𝛽]★ = Λ𝜖 𝛼𝛽𝐿 ¤𝛼
¤𝛽 + 𝜖 ¤𝛼 ¤𝛽𝐿𝛼𝛽 . (34c)

Intriguingly, in the flat limit, only ‘half’ of the above relations remain. In addition, the above
realization of (𝐴)𝑑𝑆4 algebra does not reduce to the usual Poincare algebra in flat space but rather
a Maxwell algebra [76–79] that describes self-dual spacetime.

The twistor action for chiral HSGRA. Since we are working with PT , everything must have
appropriate projective scalings. Therefore, it is useful to define the following Euler operator

E = Z𝐴 𝜕

𝜕Z𝐴
, (35)

8
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to keep track of the homogeneity inZ for any twistor expression.
It is well-known that the canonical bundle of P3 is O(−4). This fact motivates us to choose the

following 𝑆𝑈 (4)-invariant measure

𝐷3Z = 𝜖𝐴𝐵𝐶𝐷Z𝐴𝑑Z𝐵 ∧ 𝑑Z𝐶 ∧ 𝑑Z𝐷 = 〈𝜆𝑑𝜆〉 ∧ [𝑑𝜇 ∧ 𝑑𝜇] (36)

as the canonical measure on PT where E(𝐷3Z) = 4. The twistor action for chiral HSGRA in
(anti)de-Sitter space which admits a smooth flat limit is [37]

𝑆[A] = 𝑆ℎ𝐶𝑆 + 𝑆𝑐 =

∫
𝐷3Z Tr

[ ∑︁
ℎ∈Z
A−ℎ ★ 𝜕Aℎ +

2
3

∑︁
ℎ𝑖 ∈Z
Aℎ1 ★Aℎ2 ★Aℎ3

]
+ 𝑆𝑐 , (37)

where the twistor field Aℎ ∈ Ω0,1(PT ,End(𝐸) ⊗ O(2ℎ − 2)) corresponds to a matrix-valued
higher-spin fields of helicity ℎ in spacetime. Furthermore, we must have at least one positive-
helicity field in (37) so that the constraint E (𝐿 [A]) = −4 can be fulfilled. Here, 𝐿 [A] is the
Lagrangian associated with the action (37). Note that the measure (36) is not gauge-invariant under
the higher-spin diffeomorphism:

𝛿Z𝐴 =
∑︁
ℎ∈Z
{Z𝐴, 𝜉ℎ} =

∑︁
ℎ∈Z
(Λ𝜕𝛼𝜉ℎ + 𝜕 ¤𝛼𝜉ℎ) , 𝜉ℎ ∈ Γ(PT ,O(2ℎ − 2)) . (38)

For this reason, a correction denoted as 𝑆𝑐 has to be added to the above action (c.f. (37)).

Scattering amplitudes. Remarkably, by doing integration by parts, the number of the star-
products in each term of the action 𝑆ℎ𝐶𝑆 can be reduced by one [37]. Accordingly, in finding
amplitudes from twistor space, it is convenient to choose the following twistor representative for
momentum eigenstates [35, 36]

Aℎ𝑖 =

∫
𝑑𝑡𝑖

𝑡
2ℎ𝑖−1
𝑖

𝛿2(𝑡𝑖𝜆 − 𝜆𝑖)𝑒𝑡𝑖 [𝜇�̃�𝑖 ] , ℎ𝑖 ∈ Z , (39)

in terms of the on-shell four-momentum 𝑘𝛼 ¤𝛼
𝑖

= 𝜆𝛼
𝑖
�̃� ¤𝛼
𝑖

, which is a null vector on the tangent space
of (𝐴)𝑑𝑆4. Here,

𝛿(𝑎𝑧 − 𝑏) = 1
2𝜋𝑖

𝑑𝑧
𝜕

𝜕𝑧

( 1
𝑎𝑧 − 𝑏

)
, (40)

is a (0, 1)-form holomorphic delta function [80]. If we consider 𝜆𝛼 = (1, 𝑧) and 𝜆′𝛼 = (𝑏, 𝑎), the
above can be recast into:

𝛿(〈𝜆𝜆′〉) = 1
2𝜋𝑖

𝑑𝜆 ¤𝛼
𝜕

𝜕𝜆 ¤𝛼

1
〈𝜆𝜆′〉 (41)

In addition, we can define a projective version of the holomorphic delta function:

𝛿𝑚(𝜆, 𝜆′) =
[ 〈𝜉𝜆〉
〈𝜉𝜆′〉

]𝑚
𝛿(〈𝜆𝜆′〉) =

∫
C

𝑑𝑡

𝑡𝑚
𝛿2(𝑡𝜆 − 𝜆′) (42)

9
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for (0, 1)-form ‘currents’ that can have different scaling. As shown in [81, 82], the plane wave
solutions in the affine patch of (𝐴)𝑑𝑆4 have the same structures with the ones in flat space. This
explains why the above above twistor representative can be chosen. We arrive at (up to some overall
factor)

MΛ
3 (ℎ1, ℎ2, ℎ3) =

ℓ𝑘𝑝

𝑘!

∫
𝑑2𝜆 𝑑𝑡1𝑑𝑡2𝑑𝑡3 𝑡

1−2ℎ1
1 𝑡

𝑘+1−2ℎ2
2 𝑡

𝑘+1−2ℎ3
3

(
[23] + Λ

〈 𝜕

𝜕𝜆2

𝜕

𝜕𝜆3

〉) 𝑘
× 𝛿2(𝑡1�̃�1 + 𝑡2�̃�2 + 𝑡3�̃�3)𝛿2(𝑡1𝜆 − 𝜆1)𝛿2(𝑡2𝜆 − 𝜆2)𝛿2(𝑡3𝜆 − 𝜆3) .

(43)

The three-point amplitudes read

MΛ
3 (ℎ1, ℎ2, ℎ3) = [12]ℎ1+ℎ2−ℎ3 [23]ℎ2+ℎ3−ℎ1 [31]ℎ3+ℎ1−ℎ2

[
ℓ𝑝 (1 − Λ�𝑃)

]ℎ1+ℎ2+ℎ3−1

Γ[ℎ1 + ℎ2 + ℎ3]
𝛿4(𝑃) . (44)

From this, we can extract the celebrated coupling constants of chiral HSGRA

C̄ℎ1,ℎ2,ℎ3 =
ℓ
ℎ1+ℎ2+ℎ3−1
𝑝

Γ[ℎ1 + ℎ2 + ℎ3]
, ℎ1 + ℎ2 + ℎ3 > 0 . (45)

Note that in our construction, the coupling constant C̄ℎ1,ℎ2,ℎ3 naturally comes from the definition of
the ★-product.

Reduction to spacetime. While obtaining the scattering amplitudes from twistor space is a
reasonably simple task, integrating out fibre coordinates is quite complicated. The reason is that
we have to take into account what is so-called “frame-dragging” effects on PS since the pullback
𝜋∗1 : PT → PS is not holomorphic. To illustrate how this subtle effect affects the process of
integrating out fibre coordinates, it is enough for us to consider a PT associated with a flat target
space. To begin, let us define the following (1, 0)-vector fields and their dual (1, 0)-forms:

(1, 0)-vectors : 𝜕0 :=
�̂�𝛼

〈𝜆�̂�〉
𝜕

𝜕𝜆𝛼

, 𝜕 ¤𝛼 := − �̂�𝛼

〈𝜆�̂�〉
𝜕𝛼 ¤𝛼 , (46a)

(1, 0)-forms : 𝑒0 := 〈𝜆𝑑𝜆〉 , 𝑒 ¤𝛼 := 𝜆𝛼𝑑𝑥
𝛼 ¤𝛼 . (46b)

where 𝜕0 and 𝜕 ¤𝛼 are elements of Γ(𝑇1,0PT,O(−2)) and Γ(𝑇1,0PT,O(−1)), respectively. Using
(15) and (46), we can check that

[𝜕0, 𝜕 ¤𝛼] = 𝜕 ¤𝛼 , [𝜕 ¤𝛼, 𝜕0] = 𝜕 ¤𝛼 . (47)

Note that when 𝜕 ¤𝛼 = 𝜕
𝜕𝜇 ¤𝛼 acts on functions, it is sufficient to use the definition of 𝜕 ¤𝛼 in (46a)

when we pull it back from PT to PS. However, when the 𝜕 ¤𝛼-vector field acts on differential forms,
we must think of this operation as a Lie derivative generated by a flow along 𝜕 ¤𝛼. This fact motivates
us to introduce the following Poisson structure [83]:

𝜔Π 𝜂 := {𝜔, 𝜂}ℎ = 𝜖 ¤𝛼
¤𝛽L𝜕 ¤𝛼𝜔 ∧ L𝜕 ¤𝛽𝜂 , (48)

that acts any (𝑝, 𝑞)-forms 𝜔, 𝜂 on PS to work with higher-spin extension of Penrose transform. The
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holomorphic Poisson structure (48) naturally induces the following star-product

𝜔 ∗ 𝜂 := 𝜔 𝑒ℓ𝑝Π ∧ 𝜂 =

∞∑︁
𝑘=0

ℓ𝑘𝑝

𝑘!
𝜔Π𝑘 𝜂 , (49)

where 𝜔 and 𝜂 are differential forms.

Instead of working directly with PS, it will be more convenient to work with the non-projective
undotted spinor bundle S since we can skip the step of trivializing line bundles in different patches
of PS, i.e. we do not need to find a holomorphic frame e where

D̄
��
𝐿𝑥

e = 0 . (50)

The tradeoff is that we need to project all functions/forms from S to PS appropriately with the help
of the following Euler operator

Σ̂ = 𝜆𝛼 𝜕

𝜕𝜆𝛼
(51)

on C2\{0} to pick out the correct projective scaling. Any 𝜔 ∈ Ω𝑝,𝑞 (PT ,O(𝑛)) is demanded to
satisfy

Σ̂ ¬ 𝜔 = 0 , LΣ̂𝜔 = 𝑛 𝜔 . (52)

Here, the notation Σ̂¬ ≡ 𝜄Σ̂ is the interior product wrt. to the Σ̂ vector field. Furthermore,
𝐿𝑥 ' P1 ∼ 𝑆2 is endowed with a hermitian Fubini-Study metric of the form

K := 𝑒0 ∧ 𝑒0 =
〈𝜆𝑑𝜆〉 ∧ 〈�̂�𝑑�̂�〉
〈𝜆�̂�〉2

. (53)

The usual exterior derivative on PS, denoted as 𝑑PS ≡ ð, gets lifted to a unique Chern connection
on the bundle O(𝑛) → P1 where [84, 85]

𝑑PS ≡ ð := 𝑑S + 𝑛
〈�̂�𝑑𝜆〉
〈𝜆�̂�〉

∧ . (54)

Here,

𝑑S := 𝑒0𝜕0 + 𝑒0𝜕0 + 𝑑𝑥𝛼 ¤𝛼
𝜕

𝜕𝑥𝛼 ¤𝛼
= 𝑑𝜆𝛼 𝜕

𝜕𝜆𝛼
+ 𝑑�̂�𝛼 𝜕

𝜕�̂�𝛼
+ 𝑑𝑥𝛼 ¤𝛼 𝜕

𝜕𝑥𝛼 ¤𝛼
(55)

is the exterior derivative on the unprojective spinor bundle S. The Lie derivative L𝜕 ¤𝛼 acting on
O(𝑛)-valued (𝑝, 𝑞)-forms can be defined via the Cartan’s magic formula by

L𝜕 ¤𝛼𝜔 = 𝜕 ¤𝛼 ¬ ð𝜔 + ð(𝜕 ¤𝛼 ¬ 𝜔) . (56)
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It is easy to check that

ð𝑒0 = ð𝑒0 = 0 , ð𝑒 ¤𝛼 = 𝑒0 ∧ 𝑒 ¤𝛼 , ð𝑒 ¤𝛼 = 𝑒 ¤𝛼 ∧ 𝑒0 . (57)

Furthermore, since ð := 𝜕 + 𝜕, we find

𝜕𝑒0 = 0 , 𝜕𝑒 ¤𝛼 = 𝑒 ¤𝛼 ∧ 𝑒0 . (58)

This is what is so-called the “frame-dragging” effect that occurs on twistor space whenever we
deform twistor space with a potential that contains derivatives along the fibres O(1) ⊕ O(1) of the
fibration 𝜋 : PT → 𝐿𝑥 . Let us now focus on holomorphic form on PS where we can decompose
A = A0𝑒

0 + A ¤𝛼𝑒 ¤𝛼. A simple computation provides

𝜕A = (𝜕0A ¤𝛼 − 𝜕 ¤𝛼A0)𝑒0 ∧ 𝑒 ¤𝛼 + 𝜕 ¤𝛼A ¤𝛽𝑒 ¤𝛼 ∧ 𝑒
¤𝛽 , (59a)

𝜕A = 𝜕0A0𝑒
0 ∧ 𝑒0 + 𝜕0A ¤𝛼𝑒

0 ∧ 𝑒 ¤𝛼 − (𝜕 ¤𝛼A0 + A ¤𝛼)𝑒0 ∧ 𝑒 ¤𝛼 + 𝜕 ¤𝛼A ¤𝛽𝑒 ¤𝛼 ∧ 𝑒
¤𝛽 , (59b)

which can be used to obtain

L𝜕 ¤𝛼A = (𝜕 ¤𝛼A0 + A ¤𝛼)𝑒0 + 𝜕 ¤𝛼A ¤𝛽𝑒
¤𝛽 , (60)

where 𝜕 ¤𝛼 ¬ A = 0; and vector fields ‘eat’ differential forms according to the following menu:

𝜕0
¬ 𝑒0 = 1 , 𝜕0

¬ 𝑒0 = 1 , 𝜕 ¤𝛼 ¬ 𝑒
¤𝛽 = 𝛿 ¤𝛼

¤𝛽 , 𝜕 ¤𝛼 ¬ 𝑒
¤𝛽 = 𝛿 ¤𝛼

¤𝛽 . (61)

Due to the holomorphicity of A, we can show that

L𝜕 ¤𝛼1
...L𝜕 ¤𝛼𝑘

A = (𝜕 ¤𝛼1 ...𝜕 ¤𝛼𝑘
A0 + 𝑘𝜕( ¤𝛼1 ...𝜕 ¤𝛼𝑘−1A ¤𝛼𝑘 ) )𝑒0 + 𝜕 ¤𝛼1 ...𝜕 ¤𝛼𝑘

A ¤𝛽𝑒
¤𝛽 . (62)

We will choose the following gauge condition [85]

L𝜕 ¤𝛼A
¤𝛼 = 𝜕 ¤𝛼A

¤𝛼 = 0 , (63)

to reduce the number of ∗-product by one. Indeed, one can show that L𝜕 ¤𝛼L𝜕 ¤𝛼A = 0 if (63) holds.
Once again, we have only one derivative, i.e. 𝜕, in the kinetic term. Pulling (37) back to PS, we get

𝑆[A] =
∫
PS

Tr
[ ∑︁
ℎ∈Z
A−ℎ𝜕Aℎ +

2
3

∑︁
ℎ𝑖 ∈Z
Aℎ1Aℎ2 ∗ Aℎ3

]
. (64)

With a little more effort, we end up at

L𝜕 ¤𝛼1
...L𝜕 ¤𝛼𝑘

A ∧ L𝜕 ¤𝛼1 ...L𝜕 ¤𝛼𝑘A

= (𝜕 ¤𝛼1 ...𝜕 ¤𝛼𝑘
A0 + 𝑘𝜕( ¤𝛼1 ...𝜕 ¤𝛼𝑘−1A ¤𝛼𝑘 ) )𝜕 ¤𝛼1 ...𝜕 ¤𝛼𝑘A ¤𝛽𝑒

0𝑒
¤𝛽 + 𝜕 ¤𝛼1 ...𝜕 ¤𝛼𝑘

A ¤𝛽𝜕
¤𝛼1 ...𝜕 ¤𝛼𝑘A ¤𝛾𝑒

¤𝛽𝑒 ¤𝛾 .
(65)

Observe that Woodhouse gauge (fixing A0 ∈ Ω0,1(P1,O(𝑛)) = 0 for 𝑛 ≥ −1 [72]) is no longer a
suitable gauge choice since there is an in-homogeneous contribution to the 𝑒0 ∧ 𝑒 ¤𝛼 component of
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the equation of motion

𝜕A + A ∗ A = 0 . (66)

In terms of components, the above decomposes into two sub-equations:

0 = 𝜕0A ¤𝛼 − 𝜕 ¤𝛼A0 + (𝜕 ¤𝛽1
...𝜕 ¤𝛽𝑘A0 + 𝑘𝜕( ¤𝛽1

...𝜕 ¤𝛽𝑘−1
A ¤𝛽𝑘 ) )𝜕

¤𝛽1 ...𝜕
¤𝛽𝑘A ¤𝛼 , (67a)

0 = 𝜕 ¤𝛼A ¤𝛽 + 𝜕 ¤𝛾1 ...𝜕 ¤𝛾𝑘A ¤𝛼𝜕
¤𝛾1 ...𝜕 ¤𝛾𝑘A ¤𝛽 . (67b)

It can be shown that if we assume A ¤𝛼 to have the usual Woodhouse representative for positive-
helicity higher-spin fields, then the solution of (67a) is

𝜕 ¤𝛼A0 = −A ¤𝛼 , (68)

This implies that A ¤𝛼,A0 are holomorphic in 𝜆 when they have positive weight since 𝜕0𝜕 ¤𝛼 = −𝜕 ¤𝛼.
As a result, we have the following equations

𝜕0A ¤𝛼 = 0 , 𝜕0A0 = 0 (69)

that address the holomorphicity of A0,A ¤𝛼 ∈ Ω0,1(PT ,O(𝑛)) when 𝑛 ≥ 0. If we consider the
dotted component of A with the usual Woodhouse representative [72]

Aℎ, ¤𝛼𝑒
¤𝛼 = 𝜆𝛼(2ℎ−1)𝐴𝛼(2ℎ−1) , ¤𝛼 𝑒 ¤𝛼 , (70)

then the zero component of A takes the following form [37]

A+ℎ,0𝑒
0 = −𝜕

¤𝛼

�
A ¤𝛼𝑒

0 , ℎ > 0 , (71a)

A−ℎ,0𝑒
0 =

�̂�𝛼(2 |ℎ |)

〈𝜆�̂�〉2 |ℎ |
𝐵𝛼(2 |ℎ |)𝑒0 , ℎ ≤ 0 , (71b)

where we used the convention 𝜆𝛼(𝑠) = 𝜆 (𝛼1 ...𝜆𝛼𝑠) etc. to shorten our expressions. As always, the
scalar field is the most problematic piece to be inserted into the spectrum of HSGRAs, given that it
has to respect higher-spin symmetry. Let us consider the following twistor field

Aℎ=0+ := 𝜗 =
�̂�𝛼

〈𝜆�̂�〉
𝜗𝛼
¤𝛼𝑒
¤𝛼 . (72)

Here, 𝜗𝛼 ¤𝛼 is the auxiliary field associated to the scalar field, which can be integrated out by its own
equation of motion as observed in [86]. As a straightfoward exercise, we can show that

𝜗𝛼
¤𝛼 =

(
𝜕𝛼
¤𝛼 + A𝛼

¤𝛼 ∗
)
A0 +

1
𝑘!
𝜕 ¤𝛾1 ...𝜕 ¤𝛾𝑘+1A ¤𝛼𝜕

( ¤𝛾1 ...𝜕 ¤𝛾𝑘A ¤𝛾𝑘+1) , (73)
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whereA𝛼 ¤𝛼 ∈ {⊕𝑠Γ(PT,End(𝐸) ⊗ O(2𝑠−2)) | 𝑠 ≥ 1} . With this information, we can write (64) as

𝑆 =

∫
PS
fTr

[
A0 (𝜕 ¤𝛼 + A ¤𝛼∗)A ¤𝛼 +

𝜆𝛼�̂�𝛽

〈𝜆�̂�〉
𝜗𝛼 ¤𝛼 𝜗𝛽

¤𝛼
]
+ 𝑆𝑐 , (74)

where the measure f is [69]

f = 𝐷3𝑍 𝑒0 ∧ [𝑒 ¤𝛼 ∧ 𝑒 ¤𝛼] = 𝑑4𝑥
〈𝜆𝑑𝜆〉 ∧ 〈�̂�𝑑�̂�〉
〈𝜆�̂�〉2

= 𝑑4𝑥 K , (75)

and K is the top form on P1. To obtain the spacetime action for chiral HSGRA, we can use the
following integral over P1 [8, 72, 86]:∫

P1
K
�̂�𝛼(𝑚) 𝜆

𝛽 (𝑚)

〈𝜆�̂�〉𝑚
= − 2𝜋𝑖
(𝑚 + 1) 𝜖

𝛽
𝛼 ...𝜖

𝛽
𝛼 . (76)

The final details of this step can be found in [37].
The upshot of the presented approach is that we can work with holomorphic forms and Poisson

structure. As a consequence, it somewhat simplifies the structures of higher-spin interactions after
integrating out fibre coordinates using (76) as compared to the fuzzy twistor construction approach
(see the next section). However, as it stands, this approach is designed mainly for self-dual theories
written in terms of 𝐵𝐹 or holomorphic Chern-Simons forms, see e.g. [7, 69, 87]. To go beyond
self-dual sectors with this approach is rather involved and requires further technical details on
Wilson loops, see e.g. [88, 89]. This situation can be circumvented by using a more practical
approach known as fuzzy twistor construction [47].

3. HS-IKKT from fuzzy twistor space

There is a fundamental difference between the fuzzy twistor construction, and the usual twistor
construction. Namely, the primary objects of the former are functions, while they are holomorphic
forms in the latter. By working directly with functions, we do not need to deal with the frame-
dragging effect as before (cf. (57)). Furthermore, everything is naturally higher-spin extensible.
The only downside of this approach is that we need to have a correct action to start with. Here, we
discuss how to find the higher-spin extension of the IKKT-matrix model (HS-IKKT).

The action. The 𝑆𝑂 (10)-invariant Euclidean IKKT model has the following action functional:

𝑆 = Tr
(
[𝑌 𝑰 , 𝑌 𝑱 ] [𝑌𝑰 , 𝑌𝑱 ] + Ψ̄A𝛾𝑰

AB [𝑌𝑰 ,Ψ
B]

)
, 𝑰 = 1, ..., 10 , (77)

where 𝑌 𝑰 are 𝑁 × 𝑁 hermitian matrices, and ΨB are matrix-valued spinors. A coordinate 𝑦𝑰 in the
target space R10 may be defined via localized quasi-coherent states |𝑦〉 ∈ H as [90–93]:

𝑦𝑰 = 〈𝑦 |𝑌 𝑰 |𝑦〉 ∈ R10 , (78)

14



P
o
S
(
C
O
R
F
U
2
0
2
2
)
3
2
3

Twistor approach to higher-spin theories and matrix model Tung Tran

where H is some Hilbert space. In this sense, 𝑦𝑰 can be used to define some fuzzy manifold
M ↩→ R10. Thus, it is possible to associate classical functions to matrices through the map

Mat(H) ∼ C(M)
Φ ∼ 〈𝑦 |Φ|𝑦〉 = 𝜙(𝑦) .

(79)

The matrix algebra Mat(H) generated by𝑌 𝑰 is interpreted as quantized algebra of functions onM.
Since 𝑌 𝑰 is not commutative onM, it breaks Lorentz invariance. This is mitigated on covariant
quantum spaces such as a fuzzy 4-sphere [66] (denoted as 𝑆4

𝑁
), where the non-commutativity of

𝑌 𝑎 ∈ R5 is measured by a quantized Poisson structure

[𝑌 𝑎, 𝑌𝑏] =: 𝑖𝜃𝑎𝑏 , 𝑎, 𝑏 = 1, 2, 3, 4, 5 . (80)

Decomposing𝑌 𝑎 = 𝑌 𝑎 + 𝐴𝑎 where𝑌 𝑎 is the background 𝑆4
𝑁

, the action defines a non-commutative
Yang-Mills-type gauge theory onM [94], with the gauge transformations 𝑈−1(𝑌 𝑎 + 𝐴𝑎)𝑈.

Fuzzy 4-sphere in the semi-classical limit. ConsiderR5 with the metric 𝜂𝑎𝑏 = diag(+, +, +, +, +).
By requiring 𝑌 𝑎 to transform as vectors under 𝑆𝑂 (5) equipped with the generators 𝑀𝑎𝑏, we have
the following so(6) algebra

[𝑀𝑎𝑏, 𝑀𝑐𝑑] = 𝑖(𝑀𝑎𝑑𝛿𝑏𝑐 − 𝑀𝑎𝑐𝛿𝑏𝑑 − 𝑀𝑏𝑑𝛿𝑎𝑐 + 𝑀𝑏𝑐𝛿𝑎𝑑) , (81a)
[𝑀𝑎𝑏, 𝑌𝑐] = 𝑖(𝑌𝑎𝛿𝑏𝑐 − 𝑌𝑏𝛿𝑎𝑐) , (81b)
[𝑌𝑎, 𝑌𝑏] = 𝑖ℓ2

𝑝𝑀𝑎𝑏 , (81c)
𝑌𝑎𝑌

𝑎 = 𝑅2 , (81d)

which defines a fuzzy 4-sphere with a radius 𝑅.
In practice, we will work mostly with almost-commutative/semi-classical limit where the

natural length scale ℓ𝑝 ' 2𝑅
𝑁
∼ 0. In this limit, we replace [65]

𝑌 𝑎 → 𝑦𝑎 (these are commutative coordinates) , (82a)
[ , ] → 𝑖{ , } . (82b)

Note that the Poisson bracket { , } is not the same with the holomorphic holomorphic Poisson
structure defined in (48); and we shall define { , } the moment we discuss about almost-non-
commutative twistor space.

Affine patch. What we gain from the semi-classical limit is a proper notion of geometry. Consider

𝑦𝜇𝑦
𝜇 + 𝑦2

5 = 𝑅2 , 𝜇 = 1, 2, 3, 4 , (83)

where

𝑦𝜇 =
2𝑅2𝑥𝜇

(𝑅2 + 𝑥2)
, 𝑦5 =

𝑅(𝑅2 − 𝑥2)
(𝑅2 + 𝑥2)

, 𝑥2 = 𝑥𝜇𝑥
𝜇 . (84)
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The conformally flat metric that corresponds to 𝑆4 is obtained by the pullback:

𝑑𝑠2 =

(𝜕𝑦𝑎
𝜕𝑥𝜇

𝜕𝑦𝑏

𝜕𝑥𝜈
𝜂𝑎𝑏

)
𝑑𝑥𝜇𝑑𝑥𝜈 := 𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 =
4𝑅4𝜂𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈

(𝑅2 + 𝑥2)2
, (85)

where 𝜂𝜇𝜈 = diag(+, +, +, +). Though this coordinate system does not give us the desired Lorentzian
signature as in [82], the metric (85) admits a smooth flat limit when 𝑅 →∞.

Almost-commutative twistor space. Since, so(6) ' su(4) we can consider the maps:

𝑌 𝐴𝐵 = −𝑌𝐵𝐴 = ℓ−1
𝑝 𝑌 𝑎 (𝛾𝑎)𝐴𝐵 , 𝐿𝐴𝐵 = 𝐿𝐵𝐴 =

1
2
𝑀𝑎𝑏Σ𝐴𝐵

𝑎𝑏 , (86)

where

Σ𝐴𝐵
𝑎𝑏 = −Σ𝐴𝐵

𝑏𝑎 = Σ𝐴𝐵
𝑎𝑏 =

𝑖

4
[𝛾𝑎, 𝛾𝑏]𝐴𝐵 (87)

provide the spinorial representation of so(5) ' sp(4). The su(4) algebra reads [95]

[𝐿𝐴𝐵, 𝐿𝐶𝐷] = 𝑖(𝐿𝐴𝐶𝐶𝐵𝐷 + 𝐿𝐴𝐷𝐶𝐵𝐶 + 𝐿𝐵𝐷𝐶𝐴𝐶 + 𝐿𝐵𝐶𝐶𝐴𝐷) , (88a)
[𝐿𝐴𝐵, 𝑌𝐶𝐷] = 𝑖(𝑌 𝐴𝐶𝐶𝐵𝐷 + 𝑌𝐵𝐶𝐶𝐴𝐷 − 𝑌 𝐴𝐷𝐶𝐵𝐶 − 𝑌𝐵𝐷𝐶𝐴𝐶) , (88b)
[𝑌 𝐴𝐵, 𝑌𝐶𝐷] = 𝑖(𝐿𝐴𝐶𝐶𝐵𝐷 − 𝐿𝐴𝐷𝐶𝐵𝐶 − 𝐿𝐵𝐶𝐶𝐴𝐷 + 𝐿𝐵𝐷𝐶𝐴𝐶) . (88c)

Here, we recognize the 𝐿𝐴𝐵 as sp(4) generators, and 𝑌 𝐴𝐵 as “vectors” that transform under sp(4).
This realization allows us to view 𝑆4

𝑁
as a non-commutative twistor space spanned by sp(4) vectors

𝑍𝐴 and their dual �̂�𝐴. Note that [73, 96–98]

𝑖{𝑍𝐴, �̂�𝐵} = 𝐶𝐴𝐵 , 𝐶𝐴𝐵 = diag(𝜖 𝛼𝛽 , 𝜖 ¤𝛼 ¤𝛽) . (89)

In terms of Weyl spinors, the above relations decompose into

𝑖{𝜆𝛼, �̂�𝛽} = 𝜖 𝛼𝛽 , 𝑖{𝜇 ¤𝛼, �̂� ¤𝛽} = 𝜖 ¤𝛼
¤𝛽 . (90)

It is crucial to note that all Weyl spinors are dimensionless in the approach of almost-commutative
twistor construction. In addition, the incident relations (21) remain the same, i.e.

𝜇 ¤𝛼 = x𝛼 ¤𝛼𝜆𝛼 , (91)

where x𝛼 ¤𝛼 is also dimensionless. Its relation to the dimensionful 𝑥𝜇 reads

𝑥2 =
𝑅2

4
x2 , x2 := x𝛼 ¤𝛼x𝛼 ¤𝛼 . (92)

Consider the following symplectic form on almost-commutative twistor space P3
𝑁

:

Ω = 𝑑�̂�𝐴 ∧ 𝑑𝑍𝐴 = (1 + x2)
[
𝐷�̂�𝛼 ∧ 𝐷𝜆𝛼 + �̂�𝛼

𝑑x𝛼 ¤𝛼 ∧ 𝑑x𝛽

¤𝛼
(1 + x2)2

𝜆𝛽

]
, (93)
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where we have used the incident relation (21) and

𝐷�̂�𝛼 = 𝑑�̂�𝛼 +
𝑑x𝛽 ¤𝛽x𝛼 ¤𝛽

(1 + x2)
�̂�𝛽 , 𝐷𝜆𝛼 = 𝑑𝜆𝛼 +

x𝛼 ¤𝛽𝑑x𝛽 ¤𝛽

(1 + x2)
𝜆𝛽 . (94)

This means that P3 can be identified as the total space of P1-bundle over 𝑆4, which is in the same
spirit with (12). Thus, any generating function 𝑓 (x|𝑍, �̂�) on almost commutative twistor space can
be written as5

𝑓 (x|𝑍, �̂�) → 𝑓 (x|𝜆, �̂�) =
∑︁
𝑖, 𝑗

𝑓𝛼(𝑖)𝛽 (𝑖) (x)𝜆𝛼(𝑖) �̂�𝛽 (𝑖) . (95)

It is clear from the above that the fuzzy Riemann sphere with coordinates (𝜆, �̂�) is responsible for
the internal quantized structure of spacetime.

The correspondence between almost-commutative twistor space and spacetime is expressed
via the Hopf fibration [99]

P1 ↩−→ P3 ' 𝑆7/𝑈 (1) → 𝑆4 ,

𝑍𝐴 ↦→ 𝑦𝑎 := −
ℓ𝑝

2
�̂�𝐴(𝛾𝑎)𝐴𝐵𝑍𝐵 ,

(96)

where 𝑆7 is defined by (22), and a convenient basis for the 𝛾-matrices is:

(𝛾𝑚)𝐴𝐵 = 𝑖

(
0 −(𝜎𝑚)𝛼¤𝛽

(𝜎𝑚) ¤𝛼𝛽 0

)
(𝛾4)𝐴𝐵 =

(
0 1l2
1l2 0

)
, (𝛾5)𝐴𝐵 =

(
1l2 0
0 −1l2

)
(97)

for 𝑚 = 1, 2, 3, where 𝜎𝜇 = (𝑖𝜎𝑚, 1l2). Another way to express the above basis is to lower their
indices down:

(𝛾𝑚)𝐴𝐵 =

(
0 (�̃�𝑚)𝛼 ¤𝛽

−(�̃�𝑚) ¤𝛽𝛼 0

)
, (𝛾4)𝐴𝐵 =

(
0 −𝜖𝛼 ¤𝛼

𝜖𝛼 ¤𝛼 0

)
, (𝛾5)𝐴𝐵 =

(
−𝜖𝛼𝛽 0

0 𝜖 ¤𝛼 ¤𝛽

)
(98)

where �̃�𝑚
𝛼 ¤𝛼 = −𝑖(𝜎𝑚)•¤𝛼𝜖•𝛼.

Spinorial representation of the IKKT model. The twistor representation of the action (77) in
the semi-classical limit reads:

𝑆 =

∫
f

(
𝑖{𝑦𝐴𝐵, 𝑦𝐶𝐷}{𝑦𝐴𝐵, 𝑦𝐶𝐷} + Ψ̄𝐴{𝑌𝐴𝐵,Ψ

𝐵}
)

(
𝑖{𝜙IJ , 𝜙MN}{𝜙IJ , 𝜙MN} + Ψ̄I{𝜙IJ ,ΨJ}

)
,

(99)

where the remaining five coordinates of 𝑆𝑂 (10) are treated as scalar fields 𝜙IJ , which carry
I,J = 1, 2, 3, 4 indices of the internal symmetry group 𝑆𝑈 (4) ofN = 4 SYM. Since 𝑦5 transforms
under the external 𝑆𝑂 (5), the model breaks supersymmetries explicitly when it is placed on non-

5Recall that there will always be an equal number of 𝜆 and �̂� by virtue of (6).
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commutative twistor space. However, note that the internal group 𝑆𝑈 (4) can be recovered in the
flat limit, see e.g. [100].

From (98), we can decompose

𝑦𝐴𝐵 = 𝑝𝐴𝐵 + 𝑞𝐴𝐵 =

(
0 𝑝𝛼 ¤𝛽

−𝑝 ¤𝛽𝛼 0

)
+

(
𝑞𝛼𝛽 0
0 𝑞 ¤𝛼

¤𝛽

)
, (100)

where 𝑝𝐴𝐵 are off-diagonal, and 𝑞𝐴𝐵 stands for the fifth direction. In particular,

𝑝𝛼 ¤𝛼 = 𝑝𝜇�̂�𝛼 ¤𝛼
𝜇 , �̂�𝛼 ¤𝛼

𝜇 = (𝑖𝜎3, 1l2,−𝑖𝜎1, 𝑖𝜎2) (101a)

𝑞𝛼𝛽 = −𝑦5𝜖
𝛼𝛽 , 𝑞 ¤𝛼

¤𝛽 = +𝑦5𝜖
¤𝛼 ¤𝛽 . (101b)

Now, we can consider the following decompositions of 𝑝 and 𝑞 in terms of ‘background’ plus
fluctuations. (

𝑝𝛼 ¤𝛼

𝑞𝛼𝛽

)
=

(
y𝛼 ¤𝛼

y5𝜖
𝛼𝛽

)
+

(
𝐴𝛼 ¤𝛼

𝜙𝜖 𝛼𝛽

)
, (102)

where 𝜙 is the scalar field that the external 𝑆𝑂 (5) acts on.

For simplicity, let us consider the semi-classical and flat limit of the IKKT matrix. It can be
checked that all contributions related to the background y5 vanish in this limit [47]. Furthermore,
the external scalar 𝜙 will rejoin with the other 5 internal scalars to form the 6 adjoint scalars of
the internal group 𝑆𝑈 (4). Due to the non-commutativity of coordinates/fields, there will be more
terms (some of which we do not have a clear interpretation of) in the IKKT action, as illustrated
in [66, 99]. This makes it difficult to deal explicitly with the mixtures between backgrounds and
fluctuations. For illustrative reason, consider the ‘Yang-Mills’ term in the IKKT matrix model
where

1
2
𝐹𝛼𝛼𝐹

𝛼𝛼 = 2{y𝛼
¤𝛾 , 𝐴

𝛼 ¤𝛾}{y𝛼 ¤𝜁 , 𝐴𝛼
¤𝜁 } + {y𝛼

¤𝛾 , y𝛼 ¤𝛾}{𝐴𝛼 ¤𝜁 , 𝐴𝛼
¤𝜁 }

+ 2{y𝛼
¤𝛾 , 𝐴

𝛼 ¤𝛾}{𝐴𝛼 ¤𝜁 , 𝐴𝛼
¤𝜁 } + 1

2
{𝐴𝛼

¤𝛾 , 𝐴
𝛼 ¤𝛾}{𝐴𝛼 ¤𝜁 , 𝐴𝛼

¤𝜁 } .
(103)

The troublesome term that we mentioned about is the second term in the above expression. To
circumvent this problem, one can introduce an auxiliary 𝐵𝛼𝛼 field to absorb these troublesome
terms:

𝑆YM =

∫
f

(
𝐵𝛼𝛼𝐹

𝛼𝛼 + 𝑖

2
𝐵𝛼𝛼𝐵

𝛼𝛼
)
. (104)

As a result, we obtain the following action for the IKKT-matrix model in the semi-classical and flat
limit

𝑆 =

∫
f

[
𝐵𝛼𝛼𝐹

𝛼𝛼 + 𝑖

2
𝐵𝛼𝛼𝐵

𝛼𝛼 + 𝑖{𝑝𝛼 ¤𝛼, 𝜙IJ}{𝑝𝛼 ¤𝛼, 𝜙IJ} + 2�̄�𝛼{𝑝𝛼 ¤𝛽 , �̃�
¤𝛽}

+ �̄�I{𝜙IJ , 𝜒J} + ˜̄𝜒I{𝜙IJ , �̃�J} + 𝑖

2
{𝜙IJ , 𝜙MN}{𝜙IJ , 𝜙MN}

]
,

(105)
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where Ψ𝐴 = (𝜒𝛼, �̃� ¤𝛼) and ΨI = (𝜒I , �̃�I). Note that the spacetime action of the IKKT model
is already recognized in the above action without the need of referring to the twistor cohomology.
This is main advantage of this approach compared to the previous section.

Note that by dropping some terms in (105) while retaining gauge-invariance, we can obtain the
self-dual sector of IKKT-matrix model:

𝑆𝑆𝐷 =

∫
f

[
𝐵𝛼𝛼𝐹

𝛼𝛼 + 𝑖{𝑝𝛼 ¤𝛼, 𝜙IJ}{𝑝𝛼 ¤𝛼, 𝜙IJ} + 2�̄�𝛼{𝑝𝛼 ¤𝛽 , �̃�
¤𝛽} + ˜̄𝜒I{𝜙IJ , �̃�J}] . (106)

To obtain the spacetime action of the twistor actions (105) and (106), one can proceed as before
by integrating out all fiber coordinates. However, before doing that let us show the structure of
interactions coming from the Poisson brackets { , }.

Spinorial effective vielbein and derivativation. Essentially, since everything can be expressed
in terms of spinors, all derivatives thereof can be obtained by (90). For example, if we consider
y𝛼 ¤𝛼 = −(�̂�𝛼𝜇 ¤𝛼 − 𝜆𝛼 �̂� ¤𝛼), then

{y𝛼 ¤𝛼, 𝜆𝛽} = +𝑖𝜖 𝛼𝛽𝜇 ¤𝛼 , (107a)
{y𝛼 ¤𝛼, �̂�𝛽} = −𝑖𝜖 𝛼𝛽 �̂� ¤𝛼 . (107b)

As a result,

{y𝛼 ¤𝛼, y𝛽 ¤𝛽} = 2𝑖(𝜆 (𝛼�̂�𝛽)𝜖 ¤𝛼
¤𝛽 + 𝜇 ( ¤𝛼 �̂� ¤𝛽)𝜖 𝛼𝛽) , (108)

Using the above information, we can define

{y𝛼 ¤𝛼, 𝜑(y|𝜆, �̂�)} : =
(
{y𝛼 ¤𝛼, y𝛽 ¤𝛽} 𝜕

𝜕y𝛽 ¤𝛽
+ {y𝛼 ¤𝛼, 𝜆𝛽} 𝜕

𝜕𝜆𝛽
+ {y𝛼 ¤𝛼, �̂�𝛽} 𝜕

𝜕�̂�𝛽

)
𝜑

= E𝛼 ¤𝛼 |𝛽 ¤𝛽𝜕𝛽 ¤𝛽𝜑 + E𝛼 ¤𝛼 |𝛽 𝜕

𝜕𝜆𝛽
𝜑 + Ê𝛼 ¤𝛼 |𝛽 𝜕

𝜕�̂�𝛽
𝜑 .

(109)

The objects E are referred to as the effective spinorial vielbeins. There are two E that are particularly
important to us since they are used to construct the effect metric:

E𝛼 ¤𝛼 |𝛽 ¤𝛽 : = {y𝛼 ¤𝛼, y𝛽 ¤𝛽} = 2𝑖(𝜆 (𝛼�̂�𝛽)𝜖 ¤𝛼
¤𝛽 + 𝜇 ( ¤𝛼 �̂� ¤𝛽)𝜖 𝛼𝛽) , (110a)

E5 |𝛼 ¤𝛼 : = {y5, y𝛼 ¤𝛼} = −𝑖(�̂�𝛼𝜇 ¤𝛼 + 𝜆𝛼 �̂� ¤𝛼) . (110b)

Note that in the flat limit, all expression involved dotted spinor 𝜇, �̂� will vanish (recall that the
incident relations (91) contain dimensionless spinors; so 𝜇 roughly scales as 1/

√
𝑅 in this picture).

The effective metric. Consider some scalar field 𝜗(y) and the kinetic term

{y𝜁 ¤𝜁 , 𝜗}{y𝜁 ¤𝜁 , 𝜗} + {y5, 𝜗}{y5, 𝜗} = E𝜁 ¤𝜁 |𝛼 ¤𝛼𝜕𝛼 ¤𝛼𝜗 E𝜁 ¤𝜁 |𝛽 ¤𝛽𝜕𝛽 ¤𝛽𝜗 + E5 |𝛼 ¤𝛼𝜕𝛼 ¤𝛼𝜗 E5 |𝛽 ¤𝛽𝜕
𝛽 ¤𝛽𝜗

=: 𝐺𝛼 ¤𝛼𝛽 ¤𝛽𝜕𝛼 ¤𝛼𝜗 𝜕𝛽 ¤𝛽𝜗 .
(111)
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This gives us the effective metric:

𝐺𝛼 ¤𝛼𝛽 ¤𝛽 (y) = 𝑁2𝜖 𝛼𝛽𝜖 ¤𝛼
¤𝛽 − y𝛼 ¤𝛼y𝛽 ¤𝛽 . (112)

In terms of x𝛼 ¤𝛼 ∈ 𝑆4, the effective metric reads

𝐺𝛼 ¤𝛼𝛽 ¤𝛽 (x) = 〈𝜆�̂�〉2
( 𝑁2

〈𝜆�̂�〉2
𝜖 𝛼𝛽𝜖 ¤𝛼

¤𝛽 − x𝛼 ¤𝛼x𝛽 ¤𝛽
)
. (113)

EoM, DoF and plane-wave solution in the flat limit. Since we started with a 5-dimensional
system, it is important to ask whether the higher-spin spacetime fields will carry only two degrees
of freedom. To answer this question, it is good enough to look at the free action in (106) and extract
the free equations of motion for the higher-spin valued gauge fields 𝐴𝛼 ¤𝛼 and 𝐵𝛼𝛼:

{y𝛼
¤𝛼, 𝐴

𝛼 ¤𝛼} = 0 , 𝛿𝐴𝛼 ¤𝛼 = {y𝛼 ¤𝛼, 𝜉} , (114a)
{y𝛾 ¤𝛼, 𝐵𝛾𝛼} = 0 . (114b)

Here, 𝜉 is some hs-valued section on 𝒦 = (P1)𝑁 × R4. As alluded to above, 𝐴𝛼 ¤𝛼 is a hs-valued
function; and it has the following mode expansion

𝐴𝛼 ¤𝛼 (x) =
∑︁
𝑠

𝐴𝜅 (𝑠)𝜏 (𝑠) |𝛼 ¤𝛼 (x)𝜆𝜅 (𝑠) �̂�𝜏 (𝑠) , (115)

with (𝛼, ¤𝛼) are independent indices. This gives 4 independent tangential modes of the 𝐴 field [101].
We can decompose 𝐴𝛼 ¤𝛼 into two eigenmodes

𝐴𝛼 ¤𝛼
(1) = 𝐴(𝜅 (2𝑠)𝛼) ¤𝛼𝜆𝜅 (𝑠) �̂�𝜅 (𝑠) , (116a)

𝐴𝛼 ¤𝛼
(2) = 𝜖 𝛼𝜅A𝜅 (2𝑠−1) ¤𝛼𝜆𝜅 (𝑠) �̂�𝜅 (𝑠) = 𝜆𝛼A𝜅 (2𝑠−1) ¤𝛼𝜆𝜅 (𝑠−1) �̂�𝜅 (𝑠) + �̂�𝛼A𝜅 (2𝑠−1) ¤𝛼𝜆𝜅 (𝑠) �̂�𝜅 (𝑠−1) . (116b)

The gauge field 𝐴𝛼 ¤𝛼 transforms as

𝛿𝜉 ,𝜗𝐴
𝜅 (2𝑠) |𝛼 ¤𝛼 = {y𝛼 ¤𝛼, 𝜉 𝜅 (2𝑠) } + 𝜖 𝜅𝛼𝜗𝜅 (2𝑠−1) ¤𝛼 . (117)

where 𝜉 and 𝜗 are some hs-valued sections on 𝒦. Here, the algebraic symmetry, whose gauge
parameter is 𝜗, is used to gauge away the (unwanted) second eigenmode 𝐴(2) .

On the other hand, the 𝐵𝛼𝛼 field can be decomposed as

𝐵𝛼•
(1) = 𝐵𝜅 (2𝑠)𝛼•𝜆𝜅 (𝑠) �̂�𝜅 (𝑠) , (118a)

𝐵𝛼•
(2) = 𝜖•𝜅B𝜅 (2𝑠−1)𝛼𝜆𝜅 (𝑠) �̂�𝜅 (𝑠) , (118b)

where • is the index that contract to y• ¤𝛼. Note that the second mode 𝐵𝛼𝛼
(2) plays the role of a

Lagrangian multiplier and provides us a non-commutative version of the Lorenz gauge condition:∫
f B𝛼(2𝑛−1) {y𝛼 ¤𝛼, 𝐴

𝛼(2𝑛) ¤𝛼} . (119)

20



P
o
S
(
C
O
R
F
U
2
0
2
2
)
3
2
3

Twistor approach to higher-spin theories and matrix model Tung Tran

Therefore, only the first eigenmodes of 𝐴𝛼 ¤𝛼 and 𝐵𝛼𝛼 propagate. Since there are 2𝑠 + 1 equations
in {y𝛼 ¤𝛼, 𝐴𝛼(2𝑠−1) ¤𝛼} and there are 2𝑠 − 1 number of components in the gauge symmetry generator
𝜉, the number of degree of freedom the 𝐴𝛼 ¤𝛼

(1) eigenmodes has is [102]:

2𝑠 + 1 − (2𝑠 − 1)
2

= 1 . (120)

For the 𝐵 field, there are in total 4𝑠 equations in {y𝛾 ¤𝛼, 𝐵𝛾𝛼(2𝑠−1) } and there are (2𝑠 − 1) 2nd order
fuzzy Bianchi identities

{y𝛾 ¤𝛼, {y𝛾 ¤𝛼, 𝐵𝛾𝛾𝛼(2𝑠−2) }} ' 0 . (121)

Thus, the number of degree of freedom that 𝐵 (1) possesses is

4𝑠 − 2(2𝑠 − 1)
2

= 1 . (122)

Together, 𝐴 and 𝐵 (which correspond to positive/negative helicity ‘spacetime’ fields) describe
massless higher-spin fields in complexified Euclidean spacetime. Note that besides the affine
patch considered in [47], there is also the FLRW patch where the intrinsic signature is Minkowski
[103, 104]. This is the patch that is relevant for matrix-model type cosmology.

Next, we can use (90) to solve the free equations of motion for the 𝐴𝛼 ¤𝛼 and 𝐵𝛼𝛼 fields. First
of all,

0 = {y𝛼
¤𝛼, 𝐴

𝛼 ¤𝛼
(1) } = {y

𝛼
¤𝛼, 𝐴

𝜅 (2𝑠)𝛼 ¤𝛼 (x)𝜆𝜅 (𝑠) �̂�𝜅 (𝑠) }

=
1
〈𝜆�̂�〉
E𝛼 |𝛽 ¤𝛽
¤𝛼

𝜕

𝜕x𝛽 ¤𝛽
𝐴𝜅 (2𝑠)𝛼 ¤𝛼 (x)𝜆𝜅 (𝑠) �̂�𝜅 (𝑠) .

(123)

This is equivalent to saying that

E𝛼 |𝛽 ¤𝛽
¤𝛼

𝜕𝐴𝜅 (2𝑠)𝛼 ¤𝛼

𝜕x𝛽 ¤𝛽
' 𝜆 (𝛼�̂�𝛽) 𝜕𝐴

𝜅 (2𝑠)𝛼 ¤𝛼

𝜕x𝛽 ¤𝛼 = 0 (124)

in the flat limit. The solution of the above reads

𝐴𝛼(2𝑠+1) ¤𝛼 =
𝜁 𝛼...𝜁 𝛼�̃� ¤𝛼

〈𝜁𝜐〉2𝑠+1
𝑒𝑖𝜐

𝛼x𝛼 ¤𝛼 �̃� ¤𝛼 (125)

in terms of on-shell four momentum 𝑘𝛼 ¤𝛼 = 𝜐𝛼�̃� ¤𝛼.6 Note that 𝐴(1) satisfies the gauge-fixing
condition

𝜕

𝜕x𝛼 ¤𝛼 𝐴𝛼 ¤𝛼
(1) = 0 . (126)

For the 𝐵𝛼𝛼
(1) eigenmodes, we find

𝐵𝛼(2𝑠) = 𝜐𝛼...𝜐𝛼𝑒𝑖𝜐
𝜅x𝜅 ¤𝜅 �̃� ¤𝜅 . (127)

6We assume there is a suitable analytic continuation or complexification.
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Reduction to spacetime. Let us now show the structure of the cubic vertices 𝐵{𝐴, 𝐴} for the
self-dual YM sector of the HS-IKKT in spacetime. Since {𝐴𝛼 ¤𝛼, 𝐴𝛼 ¤𝛼} involves both the fibers
and spacetime derivatives on 𝒦 = (P1)𝑁 × R4, there will be more terms in spacetime compared
to the holomorphic case (cf., (48)) due to the structure of the effective vielbein E. However,
as discussed, the advantage of this almost-commutative twistor construction is that everything is
naturally higher-spin extensible and the fibers does not get deformed by the Poisson bracket (89).
The leading contributions in 𝐵{𝐴, 𝐴} read

𝜆𝛽 (𝑠) �̂�𝜌(𝑠) 𝐵𝛼𝛼𝛽 (𝑠)𝜌(𝑠)𝜆𝛾 (𝑚) �̂�𝛿 (𝑚)𝜆𝜅 (𝑛) �̂�𝜏 (𝑛) {𝐴𝛾 (𝑚) 𝛿 (𝑚)𝛼
¤𝛼, 𝐴

𝜅 (𝑛)𝜏 (𝑛)𝛼 ¤𝛼 (x)}
∼ 𝜆𝛽 (𝑠) �̂�𝜌(𝑠)𝐵𝛼𝛼𝛽 (𝑠)𝜌(𝑠)𝜆𝛾 (𝑚) �̂�𝛿 (𝑚)𝜆𝜅 (𝑛) �̂�𝜏 (𝑛)E◦¤◦•¤•𝜕◦¤◦𝐴𝛾 (𝑚) 𝛿 (𝑚)𝛼

¤𝛼 𝜕•¤•𝐴
𝜅 (𝑛)𝜏 (𝑛)𝛼 ¤𝛼 .

(128)

Using (76), we obtain the following spacetime expression

𝑉 lead
3 =

∑︁
𝑚+𝑛=2𝑠−2

𝐵𝛼(2𝑠)𝜕𝛼¤•𝐴
𝛼(𝑚)

¤𝛼𝜕𝛼
¤•𝐴𝛼(𝑛) ¤𝛼 +𝑉 irrelevant . (129)

Here, 𝑉 irrelevant are contributions that vanish when we plugging in the asymptotic states (125) and
(127). It is remarkable that the cubic vertex (129) is closely related to the one of the higher-spin
extension of self-dual gravity in [45]. For this reason, HS-IKKT is a gravitational theory of higher
spins.

Besides the leading term, we also get the following subleading contributions:

𝑉 sub
3 = 2

∑︁
𝑚+𝑛=2𝑠−2

𝑚𝑛 𝐵𝛼(2𝑠−2)𝐴
𝛼(𝑚)

•¤•𝐴
𝛼(𝑛)•¤• . (130)

Their contributions to the scattering amplitudes vanish upon substituting the plane-wave solutions
(125). Furthermore, one can check that this vertex vanishes identically in the light-cone gauge. As
an observation, we see that the only non-vanishing contributions coming from the Poisson bracket
between two twistor fields contains terms with derivatives acting on fields but the fiber coordinates.
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