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1. Introduction

String theory is usually formulated in terms of 2-dimensional conformal field theory sigma-
models with input data the target space, i.e. a Riemannian manifold (𝑃, 𝐺), and the Kalb–Ramond
𝐵-field, a connection on an abelian bundle gerbe G on 𝑃.1 In many cases, the target space 𝑃 is a
torus bundle over some Riemannian manifold 𝑋 , and the metric on 𝑃 is the Kaluza–Klein metric
derived from a connection on 𝑃 a the metric on the base space 𝑋 . T-duality [1, 2], see also [3] is now
a particular exchange of the data (𝑃,G ) with data (�̃�, G̃ ) such that the resulting sigma models are
physically equivalent. Under this exchange, radii of the torus fibers are inverted, and the momentum
and winding modes along the torus fibers are exchanged. The latter perspective highlights the fact

1In addition, one may consider the dilaton and Ramond–Ramond fields, but we will completely ignore them in our
discussion.
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that T-duality is a symmetry that truly sets apart string theory from particle physics, as only strings
can be wound around compact directions.

There are manifold reasons for studying T-duality, from seeking a better understanding of
strings themselves to finding physical realizations of the Fourier-Mukai transform. Our primary
motivation is that T-duality provides a very useful example to apply and test our notion of principal
2-bundles with adjusted connections [4–7]. A second motivation comes from the fact that higher
geometry seems to be able to “resolve” the non-geometric string backgrounds arising in the context
of T-duality.

1.1 Topological T-duality

In a T-duality, we can restrict ourselves to the topological information of the data (𝑃,G ), that
is to the equivalence classes of Čech cocycles describing the bundle 𝑃 and the gerbe G , without
referring to their differential refinement in the form of connections. Recall that a principal circle
bundle 𝑃 over a manifold 𝑋 is characterized topologically by its first Chern class 𝐹 ∈ H2(𝑋,Z),
whose image in de Rham cohomology can be represented by a closed 2-form2 𝐹 that is the
curvature of a connection on 𝑃. Analogously, an abelian gerbe G over a manifold 𝑃 is characterized
topologically by its Dixmier–Douady class 𝐻 ∈ H3(𝑃,Z), whose image in de Rham cohomology
can be represented by a closed 3-form 𝐻 which is the curvature of a connection on G , cf. e.g. [8].
The latter is often called “𝐻-flux” in the physics literature.

Mathematically, this topological T-duality [9–12] is due to the Gysin sequence [13], see also [14,
Prop. 14.33]. Given a principal circle bundle �̌� : �̌� → 𝑋 over a smooth manifold 𝑋 with first Chern
class �̌�, we have the following long exact sequence in cohomology:

. . . −−→ H𝑘 (𝑋,Z) �̌�∗
−−−→ H𝑘 (�̌�,Z) �̌�∗−−−→ H𝑘−1(𝑋,Z) �̌� ⌣−−−−→ H𝑘+1(𝑋,Z) −−→ . . . , (1)

where �̌� ⌣ denotes the (commutative) cup product3 with �̌�. For topological T-duality, we restrict
ourselves to the above window on the Gysin sequence for 𝑘 = 3. We start from a principal bundle
�̌� over 𝑋 with first Chern class �̌� as well as an abelian gerbe Ǧ over the total space of �̌� with
Dixmier–Douady class �̌� ∈ H3(�̌�,Z). The Gysin sequence provides us with the pushforward
�̂� = �̌�∗𝐻 ∈ H2(𝑋,Z), which we regard as the Chern class of a second principal fiber bundle
�̂� : �̂� → 𝑋 with �̌� ⌣ �̂� = �̂� ⌣ �̌� = 0. Because of the latter relation, the Gysin sequence for �̂�
tells us that there is an �̂� ∈ H3(�̌�,Z), such that �̂�∗�̂� = �̌�. This defines the Dixmier–Douady class
of another gerbe Ĝ on the total space of �̂�. Altogether, topological T-duality here amounts to the
exchange

(�̌�, �̌�) ↔ (�̂�, �̂�) . (2)

We note that in this process, the first Chern class and the Dixmier–Douady class swap roles, and
therefore the topology of the target spaces �̌� and �̂� can be different.

The last point makes it clear that Cartesian products 𝑋 × 𝑆1 are insufficient for discussing
T-duality, and for general topological T-dualities, we need to provide a complete global picture of
abelian gerbes on top of torus fibrations.

2We slightly abuse notation and denote topological classes, their images in de Rham cohomology, and even represen-
tatives of the latter by the same symbol. Note that de Rham cohomology misses torsion elements in Čech cohomology.

3When considering the image in de Rham cohomology, this simply amounts to the wedge product with the 2-form
curvature �̌�.
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In [11, 12], topological T-dualities were described in terms of T-correspondences, i.e. diagram

GC = p̌∗Ǧ ⊗ p̂∗Ĝ −1 � I

�̌� ×𝑋 �̂�

Ǧ �̌� �̂� Ĝ

𝑋

p̌ p̂

�̌� �̂�

(3)

where the fiber product �̌� ×𝑋 �̂� is the correspondence space, and the gerbe GC is isomorphic to the
trivial gerbe I with the isomorphism provided by the Poincaré bundle over the correspondence
space. These papers also led to a precise characterization of the situation in which geometric
T-dualities exist. The Serre spectral sequence associated to a torus fibration �̌� : �̌� → 𝑋 defines a
filtration

�̌�∗H𝑘 (𝑋) C 𝐹𝑘 ⊂ 𝐹𝑘−1 ⊂ · · · ⊂ 𝐹0 B H𝑘 (�̌�) (4)

relating the cohomologies of the base 𝑋 and the total space 𝑃, cf. [12, 15]. This gives a classification
of the Dixmier–Douady class �̌� ∈ H3(�̌�,Z). Concretely, a background is of type 𝐹𝑖 if the 3-form
image of the Dixmier–Douady class in de Rham cohomology �̌� vanishes after some contraction
with 3− 𝑖 vector fields along the fiber does not vanish. A geometric T-dual (�̂�, Ĝ ) only exists if the
gerbe Ǧ has Dixmier–Douady class �̌� of type 𝐹2 or 𝐹3.

1.2 Torus bundles with 𝐻-flux as principal 2-bundles

The fact that the topological input data (�̌�, Ǧ ) for the string sigma model consists of two separate
geometric structures is somewhat unsatisfying. An elegant geometric picture for topological T-
duality was developed in [16], where it was shown that the torus bundle �̌� and the abelian gerbe Ǧ

can be combined into a single principal 2-bundle P̌ , a categorified form of a principal bundle or a
“non-abelian” generalization of a gerbe. A T-duality can then be obtained from a span of principal
2-bundles,

PC

P̌ P̂

p̌ p̂ (5)

which fully subsumes the T-duality correspondences (3). A nice feature of this construction is
that the projections 𝑝 and 𝑝 are induced from 2-group homomorphism between the structure 2-
group TD𝑛 of PC and the structure 2-group TB𝑛 of P̌ and P̂: there is an obvious projection
Ψ : TD𝑛 → TB𝑛, which induces the map p̌. There is also a flip automorphism Φflip : TD𝑛 → TD𝑛,
and the composition Ψ ◦Φflip induces the map p̂.

4
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1.3 Open questions

The geometrically appealing picture of topological T-duality evidently begs to be extended
to a full version of T-duality4, involving the additional data provided by the connections on the
bundle and gerbe input data (�̌�, Ǧ ) and (�̂�, Ĝ ), or, equivalently, the full Riemannian metric 𝐺 as
well as the (locally defined) Kalb–Ramond 𝐵-field. It is similarly evident that we expect at least
some of this data to be contained in the differential refinement, i.e. the connections, of the principal
2-bundles P̌ , P̂ , and PC in the correspondence (5). The crucial obstacle to the construction of
such connections is the necessity to replace the fake-flat connections mostly used in the literature
with the relatively recent concept of adjusted connections [5, 7], see also [4, 6, 17]. As we will
show, this construction reproduces indeed expected examples and features. Moreover, it was shown
recently [18] that, locally, our construction also implies the Buscher rules. The latter describe the
expected relations between T-dual pairs of local metric and 𝐵-field data.

A second question is the extension of the correspondence (5) to non-geometric T-dualities.
Already in [16], half-geometric topological T-dualities were discussed; these are T-dualities in-
volving an 𝐹1-background. This was achieved by extending the structure 2-groups of the principal
2-bundles P̌ and PC by a discrete group and removing the non-geometric leg p̂ : PC → P̂ . In
this picture, the non-geometric background that would be described by P̂ is resolved in a higher
and doubled, but geometric background PC.

A differential refinement of this picture clearly requires more work; in particular, we expect
additional scalar fields to arise, and these need to be accounted for by switching from principal
2-group bundles to principal 2-groupoid bundles. Indeed, an elegant and physically motivated
picture can be developed [19], which we will review below.

2. Categorified principal bundles with adjusted connections

Let us start with a lightning introduction to categorified principal bundles with an emphasis on
adjusted connections.

2.1 Categorification

The Kalb–Ramond 𝐵-field is locally a 2-form on space-time and therefore describes a higher
dimensional parallel transport of strings or paths along surfaces, just as local gauge potential 1-
forms describe the parallel transport of a point particle along a path. Higher-dimensional parallel
transport is subtle as a number of consistency conditions have to be satisfied. One such condition
amounts to the following. Cut a string between two points • into two parts, represented by the two
top arrows in the following diagram:

• •
𝑔1

𝑔′1

𝑔2

𝑔′2

(6a)

Then we should be able to parallel-transport this string in two steps and two different ways to the
string given by the two bottom arrows: first along 𝑔1𝑔2 and then along 𝑔′1𝑔

′
2 or first along 𝑔′2𝑔2 and

4By “full,” we do not mean the inclusion of a dilaton or Ramond–Ramond fields via twisted 𝐾-theory cocycles.
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then along 𝑔′1𝑔1. The outcome should be independent of the choice of two-step parallel transport.
If 𝑔1,2 and 𝑔′1,2 were elements in an ordinary group G, this would impose the relation

(𝑔′1𝑔
′
2) (𝑔1𝑔2) = (𝑔′1𝑔1) (𝑔′2𝑔2) , (6b)

which would force G to be abelian by an old argument due to Eckmann and Hilton [20]. If, however,
we promote 𝑔1,2 and 𝑔′1,2 to 2-morphisms in a 2-category with horizontal and vertical compositions
⊗ and ◦, we obtain

(𝑔′1 ⊗ 𝑔
′
2) ◦ (𝑔1 ⊗ 𝑔2) = (𝑔′1 ◦ 𝑔1) ⊗ (𝑔′2 ◦ 𝑔2) , (6c)

which holds in any 2-category. In other words, an interesting compatible parallel transport along
requires us to work in higher categories.

Given a mathematical notion, we can consider its categorification. Recall that conventional
mathematical notions are defined in terms of sets, structure functions, and structure equations.
Categorification then amounts to the replacement

sets → categories
structure functions → structure functors
structure equations → structure isomorphisms

There is often a choice as to which structure isomorphisms we want to allow to be non-trivial.
Furthermore, one has to carefully develop the coherence relations, i.e. new axioms that the structure
isomorphisms have to satisfy. Homomorphisms of categorified notions correspondingly consist of
functors between the relevant categories, again satisfying the expected compatibility relations up to
natural transformations, i.e. morphisms between functors.

Consider the example of the notion of a group. Here, we have an underlying set G, structure
maps ◦ : G × G → G (the product), 1 : ∗ → G (the unit), and −−1 : G → G (the inverse). The
structure equations capture associativity, and the relations for the unit and the inverse:

𝑔1 ◦ (𝑔2 ◦ 𝑔3) = (𝑔1 ◦ 𝑔2) ◦ 𝑔3 , 1 ◦ 𝑔1 = 𝑔1 ◦ 1 = 𝑔1 , 𝑔1 ◦ 𝑔−1
1 = 𝑔−1

1 ◦ 𝑔1 = 1 (7)

for all 𝑔1,2,3 ∈ G. In a categorified group or 2-group, we have a category G = (G1 ⇒ G0) with
G0 the objects and G1 the morphisms, together with a product functor ⊗ : G × G → G , a unit
1 : (∗ ⇒ ∗) → G , and an inverse functor inv(−) : G → G . These functors satisfy analogous
relations to (7) up to natural transformations called associator, left- and right-unitors l and r, and
unit and counit:

𝑔1⊗ (𝑔2⊗𝑔3) ⇒ (𝑔1⊗𝑔2) ⊗𝑔3 , 1⊗𝑔1 ⇒ 𝑔1 , 𝑔1⊗1⇒ 𝑔1 , 1⇒ 𝑔1⊗𝑔−1
1 , 𝑔−1

1 ⊗𝑔1 ⇒ 1 (8)

for all 𝑔1, 𝑔2, 𝑔3 ∈ G1.
In the following, we will mostly work with strict 2-groups, for which the above natural

transformations are trivial. In these cases, we can restrict ourselves to 2-groups that have underlying
categories of the form (cf. [21])

G n H G , 𝑔 t(ℎ−1)𝑔

(𝑔,ℎ)

,

(𝑔1, ℎ1) ◦ (t(ℎ−1
1 )𝑔1, ℎ2) B (𝑔1, ℎ1ℎ2) ,

(9)

6
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where G and H are groups together with an action ⊲ : G×H → H of G on H. The structure functors
read as

(𝑔1, ℎ1) ⊗ (𝑔2, ℎ2) B (𝑔1𝑔2, (𝑔1 ⊲ ℎ2)ℎ1) ,
1 B (1G,1H) ,

inv(𝑔1, ℎ1) B (𝑔−1
1 , 𝑔−1

1 ⊲ ℎ−1
1 ) .

(10)

These strict 2-groups can alternatively be captured by crossed modules of Lie groups G = (H t−→
G, ⊲), where t : H → G is a group homomorphism and an action of G on H such that, for all 𝑔 ∈ G
and for all ℎ1,2 ∈ H, we have

t(𝑔 ⊲ ℎ1) = 𝑔t(ℎ1)𝑔−1 and t(ℎ1) ⊲ ℎ2 = ℎ1ℎ2ℎ
−1
1 . (11)

As an example, consider the Lie 2-group TD𝑛, which will play a major role in our discussion.
Its underlying groupoid is

R
2𝑛 × Z2𝑛 × U(1) R

2𝑛

𝜉 𝜉 − 𝑚1 𝜉 − 𝑚1 − 𝑚2 ,

( 𝜉 ,𝑚1,𝜙1) ( 𝜉−𝑚1,𝑚2,𝜙2)

( 𝜉 ,𝑚1+𝑚2,𝜙1+𝜙2)

id𝜉 B (𝜉, 0, 0) , (𝜉, 𝑚, 𝜙)−1 B (𝜉 − 𝑚,−𝑚,−𝜙) ,

(12a)

where 𝜉 ∈ R2𝑛, 𝑚1,2 ∈ Z2𝑛 and 𝜙1,2 ∈ U(1), and the monoidal structure is given by

(𝜉1, 𝑚1, 𝜙1) ⊗ (𝜉2, 𝑚2, 𝜙2) B (𝜉1 + 𝜉2, 𝑚1 + 𝑚2, 𝜙1 + 𝜙2 − 〈𝜉1, 𝑚2〉)
inv(𝜉, 𝑚, 𝜙) B (−𝜉,−𝑚,−𝜙 − 〈𝜉, 𝑚〉) ,

(12b)

where

〈𝜉, 𝑚〉 B 𝜉𝑇

(
0 0
1𝑛 0

)
𝑚 . (12c)

2.2 Categorified principal bundles

Essentially all definitions of principal bundles categorify, but one of the most convenient
pictures providing a concrete handle on a principal bundle is given by Čech cocycles. To obtain
this description, we consider a surjective submersion 𝜎 : 𝑌 → 𝑋 , and construct the corresponding
Čech groupoid

Č (𝑌 → 𝑋) B
(
𝑌 [2] 𝑌

)
, 𝑦1 𝑦2 ,

(𝑦2,𝑦1)

(𝑦1,𝑦2)

(13)

where 𝑌 [𝑘 ] B {(𝑦1, . . . , 𝑦𝑘) |𝜎(𝑦1) = . . . = 𝜎(𝑦𝑘)} is the fiber product over 𝑋 . In most cases, 𝑌
is the atlas of a manifold, and 𝑌 [2] contains the non-empty intersections. The Čech cocycle for a
principal G-bundle subordinate to the surjective submersion 𝜎 is then simply a functor

Φ : Č (𝑌 → 𝑋) → BG , (14)

7
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where BG = (G⇒ ∗) is the one-object groupoid with the group G as its set of morphisms. Clearly,
Φ is trivial on objects, and on morphisms it amounts to a map 𝑔 : 𝑌 [2] → G which satisfies

𝑔(𝑦1, 𝑦2)𝑔(𝑦2, 𝑦3) = 𝑔(𝑦1, 𝑦3) , (15)

the cocycle relation for transition functions 𝑔 of a principal G-bundle. One can also show that
bundle isomorphisms (i.e. physicists’ gauge transformations) arise from the corresponding natural
transformations.

This picture readily generalizes: we can trivially regard the Čech groupoid Č (𝑌 → 𝑋) as a
2-groupoid, and every 2-group G comes with a one-object Lie 2-groupoid BG . A principal 2-bundle
is then a 2-functor5

Φ : Č (𝑌 → 𝑋) → BG , (16)

and gauge transformations are natural 2-transformations between these.
In the case of a strict Lie 2-group of the form (9), the corresponding 2-functor amounts to data

ℎ ∈ 𝐶∞(𝑌 [3] ,H) and 𝑔 ∈ 𝐶∞(𝑌 [2] ,G) (17a)

satisfying
ℎ𝑖𝑘𝑙ℎ𝑖 𝑗𝑘 = ℎ𝑖 𝑗𝑙 (𝑔𝑖 𝑗 ⊲ ℎ 𝑗𝑘𝑙) ,

𝑔𝑖𝑘 = t(ℎ𝑖 𝑗𝑘)𝑔𝑖 𝑗𝑔 𝑗𝑘
(17b)

for all (𝑖 𝑗 𝑘) ∈ 𝑌 [3] and (𝑖 𝑗) ∈ 𝑌 [2] , where we have abbreviated 𝑔(𝑦𝑖 , 𝑦 𝑗) = 𝑔𝑖 𝑗 , etc.
We note that, up to technical difficulties, higher generalizations to principal 𝑛-bundles are

straightforward. Moreover, it is also immediately clear how to define principal groupoid and
2-groupoid bundles in terms of functors.

2.3 Fake-flat connections

The definition of higher connections is somewhat more involved. One can define them from a
number of different perspectives; see e.g. the approaches in the original literature [22], [23]. The
differential refinement of the cocycle data (17) found in these papers consists of the following set
of maps for a 2-group of the form (9):

ℎ ∈ Ω0(𝑌 [3] ,H) , Λ ∈ Ω1(𝑌 [2] , h) , 𝐵 ∈ Ω2(𝑌, h) , 𝛿 ∈ Ω2(𝑌 [2] , h) ,
𝑔 ∈ Ω0(𝑌 [2] ,G) , 𝐴 ∈ Ω1(𝑌, g) ,

(18a)

where g and h are the Lie algebras of the Lie groups G and H, respectively. We clearly see the usual
pattern, familiar e.g. from Deligne cohomology or simply the Čech–de Rham correspondence, that
one can trade one Čech-degree for a de Rham-degree. Only the datum 𝛿 does not fit this pattern.
Studies of the resulting notion of higher parallel transport [24–26] suggested that 𝛿 is spurious, and
it has been dropped in much of the work on higher gauge theory, following [24]. In addition to (17),
one then has the cocycle relations

Λ𝑖𝑘 = Λ 𝑗𝑘 + 𝑔−1
𝑗𝑘 ⊲ Λ𝑖 𝑗 − 𝑔−1

𝑖𝑘 ⊲ (ℎ𝑖 𝑗𝑘∇𝑖ℎ
−1
𝑖 𝑗𝑘) ,

𝐴 𝑗 = 𝑔−1
𝑖 𝑗 𝐴𝑖𝑔𝑖 𝑗 + 𝑔−1

𝑖 𝑗 d𝑔𝑖 𝑗 − t(Λ𝑖 𝑗) ,
𝐵 𝑗 = 𝑔−1

𝑖 𝑗 ⊲ 𝐵𝑖 + dΛ𝑖 𝑗 + 𝐴 𝑗 ⊲ Λ𝑖 𝑗 + 1
2 [Λ𝑖 𝑗 ,Λ𝑖 𝑗]

(18b)

5Even if the gauge 2-group is strict, we allow for weak 2-functors (sometimes called pseudofunctors).
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for all (𝑖 𝑗 𝑘) ∈ 𝑌 [3] and (𝑖 𝑗) ∈ 𝑌 [2] . Contrary to ordinary principal bundles, the consistency
condition that the local 𝐵-field components glue correctly together over 𝑌 [3] leads to the constraint

(𝑔−1
𝑗𝑘𝑔

−1
𝑖 𝑗 ) ⊲ (ℎ−1

𝑖 𝑗𝑘 (F𝑖 ⊲ ℎ𝑖 𝑗𝑘)
!
= 0 (19)

over 𝑌 [3] , where
F𝑖 B d𝐴𝑖 + 1

2 [𝐴𝑖 , 𝐴𝑖] + t(𝐵𝑖) (20)

is the so-called fake curvature. This is guaranteed if we impose fake flatness, i.e. the condition
F𝑖 = 0. As shown in [25, 26], fake flatness is not only sufficient but also necessary for render-
ing the corresponding higher parallel transport reparameterization-invariant. Finally, the gauge
transformation of the non-abelian 3-form curvature

𝐻𝑖 B d𝐵𝑖 + 𝐴𝑖 ⊲ 𝐵𝑖 (21)

is of the form
𝐻𝑖 → �̃�𝑖 = 𝑔𝑖 ⊲ 𝐻𝑖 − F𝑖 ⊲ Λ𝑖 (22)

for gauge parameters 𝑔 ∈ Ω0(𝑌,G) and Λ ∈ Ω1(𝑌, h). This implies that the self-duality equation
𝐻 = ★𝐻 believed to be a vital ingredient in 6d superconformal field theories (cf. e.g. [27] and
references therein) is only covariant for fake-flat connections.

Unfortunately, the condition F𝑖 = 0 implies that, locally, the gauge potential 1-form 𝐴𝑖 can be
gauged away [4] (see also [28]), which in turn reduces the principal 2-bundle to an abelian gerbe.
This situation is simply too restrictive for most applications in physics.

2.4 Adjusted connections

In a special case and at an infinitesimal level, a solution to this problem, but formulated in a
much less mathematical language, had been known for a long time [29, 30], and this was developed
mathematically in the context of higher gauge theory in [17, 31, 32] for the case of the skeletal string
Lie 2-algebra. This picture was then extended in [4, 4–6, 33], and the complete, global definition
of the notion of adjusted connection including finite gauge transformations was given in [7]. In
this picture, the definition of the 3-form curvature is modified, which implies a change in gauge
transformations and cocycle relations that allows to drop the fake flatness condition consistently.

As a perhaps familiar example from physics, let us consider a slight generalization of the in-
finitesimal, local adjustment encountered in heterotic supergravity6. For each metric (i.e. quadratic)
Lie algebra (g, (−,−)), there is a corresponding skeletal string Lie 2-algebra, a 2-term 𝐿∞-algebra
whose explicit form is irrelevant here. It is important that, on a patch 𝑈, the resulting gauge
potentials are of the form

𝐴 ∈ Ω1(𝑈, spin(𝑛)) and 𝐵 ∈ Ω2(𝑈) , (23)

and the curvatures read as
𝐹 B d𝐴 + 1

2 [𝐴, 𝐴]
𝐻 B d𝐵 − 1

3! (𝐴, [𝐴, 𝐴]) + (𝐴, 𝐹)
= d𝐵 + (𝐴, d𝐴) + 1

3 (𝐴, [𝐴, 𝐴]) = d𝐵 + cs(𝐴) .
(24)

6The explicit formulas for this example were derived already in [29, 30], albeit without reference to gerbes or higher
algebra.
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Here, the term (𝐴, 𝐹) is the adjustment of the unadjusted curvature 𝐻 = d𝐵 − 1
3! (𝐴, [𝐴, 𝐴]), and

we obtain the familiar Bianchi identities:

d𝐹 + [𝐴, 𝐹] = 0 , d𝐻 = (𝐹, 𝐹) . (25)

The above adjustment is hard to integrate explicitly, and it is beneficial to switch to the
equivalent strict model, as done in [4, 33]. The resulting adjustment induces an adjustment of the
cocycle condition for 𝐵 in (18b), and for a generic strict gauge 2-group, this modification takes the
form [7]

𝐵 𝑗 = 𝑔
−1
𝑖 𝑗 ⊲ 𝐵𝑖 + dΛ𝑖 𝑗 + 𝐴 𝑗 ⊲ Λ𝑖 𝑗 + 1

2 [Λ𝑖 𝑗 ,Λ𝑖 𝑗] − 𝜅(𝑔𝑖 𝑗 , 𝐹𝑖) . (26)

Here, 𝜅 : G × g → h is the adjustment datum, a map linear in g, which satisfies the relation

(𝑔−1
2 𝑔−1

1 ) ⊲ (ℎ−1(𝑋 ⊲ ℎ)) + 𝑔−1
2 ⊲ 𝜅(𝑔1, 𝑋)

+ 𝜅(𝑔2, 𝑔
−1
1 𝑋𝑔1 − t(𝜅(𝑔1, 𝑋))) − 𝜅(t(ℎ)𝑔1𝑔2, 𝑋) = 0

(27)

for all 𝑔1, 𝑔2 ∈ G, ℎ ∈ H, and 𝑋 ∈ g [7].
The most important example of an adjustment, namely an adjustment for the strict 2-group

model of the string group, was given in given [7]. Another large class of (infinitesimal) adjustments,
also for principal 𝑛-bundles with 𝑛 > 2, was found in the context of the tensor hierarchies of gauged
supergravity [6]. In this case, the algebraic origin of the adjustment datum is particularly clear.

For our discussion, we are mostly in interested in the strict 2-group TD𝑛 defined in (12). A
corresponding adjustment is given by the pairing (12c), extended to

𝜅 : R2𝑛 ×R2𝑛 → U(1) ,

(𝜉1, 𝜉2) ↦→ 𝜉𝑇1

(
0 0
1𝑛 0

)
𝜉2 ,

(28)

and one readily verifies that 𝜅 satisfies (27). Just as in the case of the 2-group model of the string
group, it is remarkable that the adjustment datum is already part of the description of the 2-group
TD𝑛 itself.

2.5 Non-trivial example: higher non-abelian instantons

To reassure the reader that the above theory indeed comes with non-trivial and interesting
examples, let us briefly sketch the main example of [7], see also [34], where the higher analogue of
an instanton was constructed. Recall that the fundamental SU(2)-instanton on 𝑆4 is described by
the Hopf fibration

𝑆3 ↩→ 𝑆7 → 𝑆4 . (29)

We can now double the gauge group to Spin(4) � SU(2) × SU(2) to obtain the principal Spin(4)-
bundle

Spin(5) → Spin(5)/Spin(4) � 𝑆4 . (30)

The Maurer–Cartan form on Spin(5) induces a connection on this bundle, which splits into the
two su(2) components. This connection is a pair of a fundamental instanton and a fundamental
anti-instanton. The contribution of these two components to the first Pontryagin class are equal but

10
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of opposite sign, an important condition for being able to lift this Spin(4)-bundle to a String(4)-
bundle. The latter is a 2-group which can be regarded as a particular categorified central extension
of Spin(4).

The resulting String(4)-bundle can be seen as a 2-group coset space, which fibers over 𝑆4,
trivially regarded as a categorified or 2-space:

String(5) → String(5)/String(4) � (𝑆4 ⇒ 𝑆4) , (31)

and the connection on this space requires adjustment [7]. This principal 2-bundle can be seen as the
higher analogue of an instanton as it is literally the lift of an instanton bundle to a 2-group bundle.
On the other hand, it also describes a non-abelian self-dual string in the sense of [33], the higher
analogue of a monopole.

3. Geometric T-duality with principal 2-bundles

After this lengthy prelude, let us come to the description of T-duality with principal 2-bundles,
starting from the picture of [16].

3.1 Topological T-duality from principal 2-bundles

Categorified principal bundles over a manifold 𝑋 with structure 2-group TB𝑛 are in one-to-one
correspondence with geometric T-backgrounds, i.e. abelian gerbes on principal torus fibrations over
𝑋 [16]. The crossed module of the 2-group TB𝑛 is given by

TB𝑛 =
(
Z
𝑛 × 𝐶∞(T𝑛, 𝑆1) t−→ R

𝑛
)
,

t(𝑚, 𝑓 ) = 𝑚 , 𝜉 ⊲ (𝑚, 𝑓 ) = (𝑚, 𝑐 ↦→ 𝑓 (𝑐 − 𝜉)) = (𝑚, 𝑓 ◦ s𝜉 )
(32)

for all 𝜉 ∈ R𝑛, 𝑚 ∈ Z𝑛, and 𝑓 ∈ 𝐶∞(T𝑛, 𝑆1), where s𝜉 denotes the function s𝜉 𝑡 ↦→ 𝑡 − 𝜉.
T-duality along the torus directions is then a span of principal 2-bundles

PC

P̌ P̂

p̌ p̂ (33)

where P̌ and P̂ are principal TB𝑛-bundles, encoding geometric T-backgrounds. The 2-bundle
PC, however, is a principal TD𝑛-bundle. The cocycle descriptions of these principal 2-bundles are
obtained from specializations of the cocycles (17). For principal TD𝑛-bundles, we have

ℎ = (𝑚𝑖 𝑗𝑘 , 𝜙𝑖 𝑗𝑘) ∈ 𝐶∞(𝑌 [3] ,Z2𝑛 × U(1)) and 𝑔 = (𝜉𝑖 𝑗) ∈ 𝐶∞(𝑌 [2] ,R2𝑛) (34a)

with (𝑖 𝑗) ∈ 𝑌 [2] and (𝑖 𝑗 𝑘) ∈ 𝑌 [3] , which satisfy7

𝜙𝑖𝑘𝑙 + 𝜙𝑖 𝑗𝑘 = 𝜙𝑖 𝑗𝑙 + 𝜙 𝑗𝑘𝑙 − 〈𝜉𝑖 𝑗 , 𝑚 𝑗𝑘𝑙〉 ,
𝑚𝑖𝑘𝑙 + 𝑚𝑖 𝑗𝑘 = 𝑚𝑖 𝑗𝑙 + 𝑚 𝑗𝑘𝑙 ,

𝜉𝑖𝑘 = 𝑚𝑖 𝑗𝑘 + 𝜉𝑖 𝑗 + 𝜉 𝑗𝑘

(34b)

7We use additive notation for the group U(1).
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on 𝑌 [4] and 𝑌 [3] , respectively. We thus see that a principal TD𝑛-bundle P contains a principal
U(1)2𝑛-bundle P◦. Because U(1)2𝑛 is identified with R2𝑛/Z2𝑛, the cocycle (𝑚, 𝜉) takes the form
of a principal 2-bundle for a structure 2-group given by a crossed module of the form (Z2𝑛 ↩→ R

2𝑛).
Note that our description of principal 2-bundles as functors makes it evident that a morphism

Φ : G1 → G2 between 2-groups G1,2 induces a bundle morphism from a principal G1-bundle to a
principal G2-bundle. For T-duality, we have the strict 2-group homomorphism8

Ψ : TD𝑛 → TB𝑛 , Ψ1

((
𝜉

𝜉

)
,

(
�̂�

�̌�

)
, 𝜙

)
= (𝜉, �̌�, 𝑐 ↦→ 𝜙 + �̂�T�̌�𝑐) , (35)

which induces the projection p̌. On the other hand, there is a (weak) 2-group automorphism

Φflip : TD𝑛 → TD𝑛 , (36a)

which in particular interchanges the two 𝑛-dimensional components inR2𝑛 and Z2𝑛:

Φflip

((
𝜉

𝜉

)
,

(
�̂�

�̌�

)
, 𝜙

)
=

((
𝜉

𝜉

)
,

(
�̌�

�̂�

)
, . . .

)
, (36b)

and the projection p̂ is induced by the concatenation Ψ ◦Φflip.

3.2 Differential refinement of principal TD𝑛-bundles

Let us directly come to the differential refinement of this picture. The explicit form of
differentially refined cocycles for principal TD𝑛-bundles is given by (17) and (18), where the
unadjusted cocycle relation for the 𝐵𝑖 is replaced by its adjusted form (26) with the adjustment
given in (28). The flip automorphism (36) of the 2-group TD𝑛 induces an action on the differentially
refined cocycle data.

Interestingly, the strict structure 2-group TB𝑛 of the principal 2-bundles P̌ and P̂ in the
span of 2-bundles (33) does not admit an adjustment, as one sees after specializing (27) to this
case [19]. However, it was shown in [16, Remark 3.4.6] that the classifying spaces BTD𝑛 and BTB𝑛

are equivalent, which means that for any principal TB𝑛-bundle, there is an equivalence class of
principal TD𝑛-bundles. In this sense, it is sufficient to restrict ourselves to TD𝑛-bundles and to study
T-duality purely in terms of those. For non-geometric T-dualities, this is necessary in any case,
even without differential refinement.

Losing the two legs p̌ and p̂ in the correspondence (33) is not a problem as one can still recover
the data of two principal torus bundles with gerbes on their total spaces from a principal TD𝑛-bundle.
This is clear for the topological cocycles as we could simply restrict to topological data an use (33).
There is, however, a more elegant method. We can pull back P along the projection P◦ → 𝑋

of the principal U(1)2𝑛-bundle P◦ that P contains, which then gives us explicit cocycles for a
torus fibration with connection and an abelian gerbe on its total space with connection [19]. A
second background is obtained in this fashion after first applying the flip automorphism (36) to the
differentially refined cocycle data.

8See the appendix of [19] for details.
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3.3 The T-duality 2-group GO (𝑛, 𝑛;Z) and its manifest action

While T-duality is often explained in terms of a Z2-action or involution, this picture is in-
complete even in the case of a single T-duality direction. Generically, for T-duality along an
𝑛-dimensional torus 𝑇𝑛, there is the discrete group O(𝑛, 𝑛;Z) of transformations acting on the
T-background data leading to physically equivalent sigma models, cf. [35, 36].

Recall that a successful strategy for studying symmetries is to make them manifest. Making
the T-duality group O(𝑛, 𝑛;Z) manifest for T-backgrounds is one of the goals of double field theory;
see [37–39] for reviews. As we will explain below, the principal TD𝑛-bundles perform the same
task for principal TB𝑛-bundles and hence for general T-backgrounds.

First, we note that the group O(𝑛, 𝑛;Z) is still not general enough since orientation reversal
requires extension to the group GO(𝑛, 𝑛;Z) = O(𝑛, 𝑛;Z) o Z2, where the nontrivial element of Z2

acts as conjugation by
(

0 1𝑛

−1𝑛 0

)
.

There is now an evident notion of the automorphism 2-group Aut(G ) of a 2-group G , which
allows us to define the action of a 2-group H on G as a 2-group homomorphism Φ : H →
Aut(G ), cf. [40]. The automorphism 2-group of TD𝑛 was characterized as a non-central extension
of GO(𝑛, 𝑛;Z) in [41], and an explicit description as a weak 2-group was given in [19]. As observed
in [19], neither the group GO(𝑛, 𝑛;Z) nor the group O(𝑛, 𝑛;Z), trivially regarded as 2-groups, admit
an action on TD𝑛 with the required properties. This implies that the T-duality group GO(𝑛, 𝑛;Z)
has to be replaced by the T-duality 2-group GO (𝑛, 𝑛;Z).

This 2-group now acts directly on TD𝑛, making T-duality manifest. The action further induces
an action on principal TD𝑛-bundles by postcomposing the functors defining the latter with the 2-
group action. Preserving this GO (𝑛, 𝑛;Z)-covariance is a useful constraint when further extending
the above description by scalar fields. Moreover, GO (𝑛, 𝑛;Z) contains the flip automorphism (36);
thus having an GO (𝑛, 𝑛;Z)-action indicates the action of T-dualities.

3.4 Scalar fields

Recall the relation between the Gysin sequence (1) and topological T-duality. The first Chern
class of the circle bundle in the T-dual T-background was obtained by a pushforward of the Dixmier–
Douady class of the abelian gerbe in the original T-background. At the level of differential forms,
this amounts to an integration of the gerbe curvature �̌� along the fiber direction, leading to the
curvature �̂� of the T-dual circle bundle. More physically, this is simply a Kaluza–Klein (KK)
reduction in the T-duality directions.

Clearly, KK reducing a 2-form 𝐵 along the circle fiber yields a 1-form 𝐴. Similarly, a KK
reduction of the metric yields a second 1-form 𝐴 together with a scalar field 𝜙. We also note that
KK reductions along several circle directions will produce additional scalar fields also from the
2-form 𝐵. For a full geometric T-duality between input data of sigma models, it therefore remains
to consistently incorporate all these scalar fields.

Fortunately, there is a clear physical description of the target space of the scalar fields, namely
the Narain moduli space [42], the moduli of the Riemannian metric and the Kalb–Ramond 𝐵-field
on 𝑇𝑛. This space is given by

𝑀𝑛 = O(𝑛, 𝑛;Z) \ O(𝑛, 𝑛;R) /
(
O(𝑛;R) × O(𝑛;R)

)
= O(𝑛, 𝑛;Z) \ 𝑄𝑛 (37)

13
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with 𝑄𝑛 B O(𝑛, 𝑛;R) /
(
O(𝑛;R) × O(𝑛;R)

)
. As explained above, we should really replace

O(𝑛, 𝑛;Z) with GO(𝑛, 𝑛;Z) to allow for orientation reversing. Also, we follow the strategy familiar
from gauge theory of resolving the quotient GO(𝑛, 𝑛;Z)\𝑄𝑛 in its corresponding action groupoid.
That is, we consider the groupoid

(
GO(𝑛, 𝑛;Z) n𝑄𝑛 𝑄𝑛

)
, 𝑞 𝑔−1 ⊲ 𝑞 ,

(𝑔,𝑞)−1

(𝑔,𝑞)

(38)

and the quotient space GO(𝑛, 𝑛;Z)\𝑄𝑛 is given by the isomorphism classes in this groupoid.
The scalar groupoid (38) can now be nicely combined with the 2-group TD𝑛 into a 2-groupoid:

first, we trivially extend the group GO(𝑛, 𝑛;Z) to the T-duality 2-group GO (𝑛, 𝑛;Z). Then we
extend the morphisms for every 𝑞 ∈ 𝑄𝑛 by a copy of TD𝑛 and have GO(𝑛, 𝑛;Z) act diagonally on
both 𝑄𝑛 and TD𝑛. The resulting Lie 2-groupoid TD𝑛 has the following 2-, 1-, and 0-cells:

(TD𝑛)2 = GO(𝑛, 𝑛;Z) × Z2𝑛 ×R2𝑛 × Z2𝑛 × U(1) ×𝑄𝑛 ,

(TD𝑛)1 = GO(𝑛, 𝑛;Z) ×R2𝑛 ×𝑄𝑛 ,

(TD𝑛)0 = 𝑄𝑛 ,

𝑞 𝑔−1 ⊲ 𝑞

(𝑔, 𝜉−𝑚,𝑞)

(𝑔, 𝜉 ,𝑞)

(𝑔
, 𝜉

,𝑧
,𝑚

,𝜙
,𝑞
)

(39)
In the 2-cells, the factor GO(𝑛, 𝑛;Z) ×Z2𝑛 arises from GO (𝑛, 𝑛;Z), and the factorR2𝑛×Z2𝑛×U(1)
stems from the copy of TD𝑛.

Our definition of categorified principal bundles now readily extends to principal TD𝑛-bundles:
these are weak 2-functors from the Čech groupoid Č (𝑌 → 𝑋) of some surjective submersion𝑌 → 𝑋

to TD𝑛. Similarly, it is not hard to extend the definitions of adjusted connection, see [19].

3.5 Full geometric T-duality

From our perspective, a full9 geometric T-duality is now a geometric principal TD𝑛-bundle
P over 𝑋 with adjusted connection. By geometric, we mean here such principal TD𝑛-bundles,
for which the GO(𝑛, 𝑛;Z)-valued component of the cocycle takes values in the geometric subgroup
GL(𝑛;Z) of the T-duality group GO(𝑛, 𝑛;Z).

We note that we have an explicit action of the group GO(𝑛, 𝑛;Z) on these bundles, that
among other transformations also induces the action of the T-duality involution by the flip automor-
phism (36). To make this action manifest, it is convenient to arrange the scalar fields originating
from KK reduction of the metric𝐺 and the 𝐵-field of a T-background in the form of the generalized
metric

H B
(
𝐺 − 𝐵𝐺−1𝐵 𝐵𝐺−1

−𝐺−1𝐵 𝐺−1

)
, (40)

as usually done in generalized geometry and double field theory. The action of GO(𝑛, 𝑛;Z) on the
scalar fields is then simply the adjoint action on H .

9again neglecting the dilaton and Ramond–Ramond-fields
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The crucial test for this description of T-duality is certainly that it reproduces the Buscher rules.
The corresponding cumbersome computation was performed in [18], where it was shown that this
expectation is met.

Instead of giving the picture we sketched above in all details (which can be found in [19]), let
us consider the instructive example of T-dualities with T-backgrounds given by abelian gerbes Gℓ

over three-dimensional nilmanifolds 𝑁𝑘 . The latter are principal circle bundles over the 2-torus
𝑇2 characterized by their first Chern numbers 𝑘 ∈ H2(𝑇2,Z) � Z. Subordinate to the convenient
surjective submersion 𝑌 = R2 → 𝑇2, we have the differentially refined cocycle

𝑔 ∈ Ω0(𝑌 [2] ,U(1)) and 𝐴 ∈ Ω1(𝑌, u(1)) ,
𝑔(𝑥, 𝑦; 𝑥 ′, 𝑦′) B 𝑘 (𝑥 ′ − 𝑥)𝑦 and 𝐴(𝑥, 𝑦) B 𝑘𝑥 d𝑦 ,

(41)

In addition, we have a scalar field 𝜓 : 𝑌 → R
+ that parameterizes the size of the circle direction.

For simplicity, we assume a constant scalar field,

𝜓 = 2𝜋𝑅 . (42)

The above data combines into the usual Kaluza–Klein metric 𝐺KK for 𝑁𝑘 on 𝑇2,

𝐺KK = 𝜋∗𝐺𝑇 2 + 𝜓2𝐴 � 𝐴 , (43)

where 𝜋 : 𝑁𝑘 → 𝑇2 is the bundle projection and 𝐺𝑇 2 is the usual flat metric on 𝑇2 with radii 1.
The Dixmier–Douady class of Gℓ is an element ℓ ∈ H3(𝑁𝑘 ,Z) � Z. Subordinate to the

surjective submersion10 𝑍 = R3 → 𝑁𝑘 , the abelian gerbe is described by the differentially refined
cocycle

ℎ ∈ Ω0(𝑍 [3] ,U(1)) , Λ ∈ Ω1(𝑍 [2] , u(1)) , and 𝐵 ∈ Ω2(𝑍, u(1)) ,
ℎ(𝑥, 𝑦, 𝑧; 𝑥 ′, 𝑦′, 𝑧′; 𝑥 ′′, 𝑦′′, 𝑧′′) B ℓ(𝑥 − 𝑥 ′) (𝑦′ − 𝑦′′)𝑧 ,

Λ(𝑥, 𝑦, 𝑧; 𝑥 ′, 𝑦′, 𝑧′) = ℓ(𝑥 − 𝑥 ′)𝑦d𝑧 , and 𝐵(𝑥, 𝑦, 𝑧) = ℓ𝑥 d𝑦 ∧ d𝑧 .
(45)

A T-duality along the fiber direction in𝑁𝑘 leads to another gerbe on a nilmanifold with an interchange
of the topological invariants and an inversion of the fiber radius:

(𝑁𝑘 ,Gℓ , 𝜓) ↔ (𝑁ℓ ,G𝑘 , 𝜓
−1) . (46)

To describe this T-duality in terms of higher geometry, we work with principal TD1-bundles
(there is one T-duality direction) over 𝑇2. Subordinate again to 𝑌 = R

2 → 𝑇2, we have the

10The nilmanifold 𝑁𝑘 can also be seen as the quotient ofR3 by the relations

(𝑥, 𝑦, 𝑧) ∼ (𝑥, 𝑦 + 1, 𝑧) ∼ (𝑥, 𝑦, 𝑧 + 1) ∼ (𝑥 + 1, 𝑦, 𝑧 − 𝑘𝑦) . (44)
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differentially refined cocycles [19]

𝜙(𝑥, 𝑦; 𝑥 ′, 𝑦′; 𝑥 ′′, 𝑦′′) = 1
2 𝑘ℓ

(
𝑦′(𝑥𝑥 ′′ − 𝑥𝑥 ′ − 𝑥 ′𝑥 ′′) − (𝑥 ′′ − 𝑥 ′) (𝑦′2 − 𝑦2)𝑥

)
,

𝑚(𝑥, 𝑦; 𝑥 ′, 𝑦′; 𝑥 ′′, 𝑦′′) =
(
−ℓ(𝑥 ′′ − 𝑥 ′) (𝑦′ − 𝑦)
−𝑘 (𝑥 ′′ − 𝑥 ′) (𝑦′ − 𝑦)

)
, and 𝑔(𝑥, 𝑦; 𝑥 ′, 𝑦′) =

(
ℓ(𝑥 ′ − 𝑥)𝑦
𝑘 (𝑥 ′ − 𝑥)𝑦

)
,

Λ(𝑥, 𝑦; 𝑥 ′, 𝑦′) = 1
2 𝑘ℓ(𝑥𝑥

′ d𝑦 + (𝑥𝑦 + 𝑥 ′𝑦′ + 𝑦2(𝑥 ′ − 𝑥)) d𝑥) ,

𝐴 =

(
𝑘𝑥 d𝑦
ℓ𝑥 d𝑦

)
, and 𝐵(𝑥, 𝑦) = 0 ,

𝜓(𝑥) =
(
2𝜋𝑅 0

0 1
2𝜋𝑅

)
,

(47a)

where we identified the scalar field in 𝑄1 B O(1, 1;R)/(O(1,R) × O(1,R)) � R+ with the
corresponding generalized metric (40). We note that all expressions are explicit and relatively
simple. Furthermore, the topological charges 𝑘 and ℓ appear completely on equal footing, as do the
fiber radius and its inverse. A T-duality is then described by an action of the flip automorphism (36)
on this data. Following our above prescription of recovering the individual T-backgrounds then
yields indeed the pair (𝑁𝑘 ,Gℓ , 𝜓) and (𝑁ℓ ,G𝑘 ,

1
𝜓
).

4. Non-geometric T-dualities

There are two steps in the generalization of geometric T-dualities with 𝐹2-backgrounds to
general backgrounds. The first one involves T-folds, which are spaces that are locally abelian gerbes
over ordinary manifolds but whose local data is glued together by T-duality transformations, i.e. they
have transition functions with values in O(𝑛, 𝑛;Z). These can be produced by T-dualities involving
𝐹1-backgrounds. The second step is to go even beyond those, which leads to the R-spaces obtained
e.g. by T-dualizing 𝐹0-backgrounds. These do not even come with a local geometric description,
and interpretations in terms of non-associative geometry [43] and double field theory (cf. [44, 45])
have been put forward. In [19], a description in terms of higher geometry has been proposed which
we will sketch in the following, focusing on the big picture.

4.1 T-duality with T-folds

The generalization to T-folds is particularly straightforward: we simply remove the restric-
tion to geometric principal TD𝑛-bundles, and consider general such bundles, allowing T-duality
transformations to glue together the scalar fields.

We note that the description of half-geometric topological T-dualities presented in [16] is
subsumed in our proposal. In a half-geometric T-duality, one of the T-dual backgrounds is still
purely geometric, while our description allows for both backgrounds to be T-duals. Moreover, for
trivial scalar fields, we recover our above description of geometric T-dualities in terms of principal
TD𝑛-bundles.

As a concrete example, let us again consider the popular example of the nilmanifold we
encountered in section 3.5. Here, we wish to perform a T-duality along both the fiber and the
𝑦-direction. This is well-known to produce a T-fold. In our proposal, this amounts to a principal
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TD𝑛-bundle PC over the circle 𝑆1. Principal torus bundles over the circle are trivial; similarly,
most of the cocycle data trivializes. Eventually, the bundle PC reduces to a functor from the Čech
groupoid to the scalar groupoid (38). Explicitly, we have

𝑞 : 𝐶∞(𝑌,𝑄2) and 𝑔 : 𝐶∞(𝑌 [2] ,GO(𝑛, 𝑛;Z)) ,
𝑔𝑖 𝑗 ⊲ 𝑞 𝑗 = 𝑞𝑖 and 𝑔𝑖 𝑗𝑔 𝑗𝑘 = 𝑔𝑖𝑘 .

(48)

The 𝑞𝑖 are the local scalar fields, and, as expected for a T-fold, this local data is glued together
with a T-duality transformation 𝑔𝑖 𝑗 . The target space of the scalar fields 𝑄𝑛 � R

4 arises from
the dimensional reduction of the metric and the Kalb–Ramond field in two directions, with the
components 𝑔𝑦𝑦 , 𝑔𝑦𝑧 , 𝑔𝑧𝑧 , and 𝐵𝑦𝑧 . In order to manifest the action of GO(2, 2;Z), we again arrange
these moduli in the form of a generalized metric. In the example at hand, we can write

H𝐻 (𝑥) =
©«
1 + 𝐵2

𝑦𝑧 0 0 𝐵𝑦𝑧

0 1 + 𝐵2
𝑦𝑧 −𝐵𝑦𝑧 0

0 −𝐵𝑦𝑧 1 0
𝐵𝑦𝑧 0 0 1

ª®®®®¬
, 𝐵𝑦𝑧 = ℓ𝑥 , (49)

and GO(2, 2;Z) acts by conjugation. Recall that the T-duality transformations given by the flip
automorphism (36) are themselves elements of GO(2, 2;Z). We can now use these to act on the
above generalized metric H𝐻 (𝑥) to obtain two further generalized metrics:

H 𝑓 (𝑥) =
©«

1 −𝐵2
𝑦𝑧 0 0

−𝐵𝑦𝑧 1 + 𝐵2
𝑦𝑧 0 0

0 0 1 + 𝐵2
𝑦𝑧 𝐵𝑦𝑧

0 0 𝐵𝑦𝑧 1

ª®®®®¬
, H𝑄 (𝑥) =

©«
1 0 0 −𝐵𝑦𝑧

0 1 𝐵𝑦𝑧 0
0 𝐵𝑦𝑧 1 + 𝐵2

𝑦𝑧 0
−𝐵𝑦𝑧 0 0 1 + 𝐵2

𝑦𝑧

ª®®®®¬
.

(50)
Comparing these generalized metrics to the general form (40) allows us to interpret these back-
grounds as follows. The generalized metric H𝐻 describes a 3-torus 𝑇3 since 𝑔 = 12, carrying
a gerbe with non-trivial 𝐵-field 𝐵𝑦𝑧 = ℓ𝑥. The generalized metric H 𝑓 has trivial 𝐵-field, but a
non-trivial metric, indicating a non-trivial principal circle bundle over 𝑇2, but the corresponding
𝐵-field is trivial. This is the case of the nilmanifold 𝑁ℓ . The last generalized metric H𝑄 comes
with a metric which is not globally defined but glued together by GO(2, 2;Z)-transformations.
This describes the T-fold derived in the literature by T-dualizing a 3-torus carrying 𝐻-flux in two
directions.

4.2 T-duality with R-spaces

There remains one more step, namely T-dualities potentially involving 𝐹0-backgrounds. For
such backgrounds, the 3-form curvature 𝐻 aligns completely with the T-duality directions. Our
proposal for this description is physically speculative, but mathematically quite elegant.

In this case, the dimensional reduction that reduces the Kalb–Ramond field 𝐵 to 1-forms and
scalar fields produces additional −1-forms, which are clearly non-sensical. Note, however, that
the 2-, 1-, and 0-forms all come with corresponding curvatures, which are global exact differential
forms of one degree higher. Analogously, we can replace the non-existing −1-forms with a global
“curvature” 0-form. It remains to clarify in which space these 0-forms should take values. The
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crucial input here is the observation that non-geometric fluxes essentially define (at least parts of)
the embedding tensor [46–48] in the tensor hierarchy of gauged supergravity.

Without going into further details, we note that this tensor hierarchy produces the kinematic
data of an adjusted higher gauge theory that then becomes part of a supergravity theory. Moreover,
it provides the best understood and very rich class of examples of adjusted connections [6]. A
detailed analysis of the constraints that one would impose on the space of embedding tensors �̄�𝑛

then shows that it carries precisely the expected symmetry structure [19].
It remains to extend the Lie 2-groupoid by the space �̄�𝑛, for which we will need to introduce

augmented Lie 2-groupoids. Recall that simplicial sets can be augmented by introducing additional
−1-simplices. A very natural example of this augmentation is the nerve of the Čech groupoid of a
surjective submersion 𝑌 → 𝑋 , which comes with the natural augmentation by the manifold 𝑋:

Čaug(𝑌 → 𝑋) B
(
. . . 𝑌 [3] 𝑌 [2] 𝑌 𝑋

)
. (51)

Similarly, we augment the 2-groupoid TD𝑛 by �̄�𝑛, where we have an additional action of
GO(𝑛, 𝑛;Z), and hence of GO (𝑛, 𝑛;Z), on �̄�𝑛. This action is induced from the interpretation
of this space as the space of embedding tensors. The result is the augmented 2-groupoid TDaug

𝑛 .
Our proposal is then that a non-geometric T-duality is captured by a principal TDaug

𝑛 -bundle
with adjusted connection, which is essentially straightforward to define given the above data, cf. [19].
We note that such a bundle contains indeed a global map from the manifold 𝑋 into the space of
embedding tensors. We identify these with the 𝑅-fluxes in the physics literature.

5. Conclusions

We have reviewed a proposal for a description of geometric and non-geometric T-dualities in
terms of higher groupoid bundles with connection, which passes a number of non-trivial consistency
checks and possesses many expected properties.

Our proposal for the most general T-dualities in terms of principal TDaug
𝑛 -bundle (with adjusted

connections) can capture 𝑅-fluxes as global scalar fields and naturally specializes to T-dualities
with locally geometric backgrounds given in terms of principal TD𝑛-bundles. This specialization
incorporates the additional scalar fields expected from the Kaluza–Klein reduction underlying T-
duality, and we reproduce the sequence of T-dualities taking a 3-torus 𝑇3 with 𝐻-flux to a T-fold.
Moreover, the principal TD𝑛-bundles contain in particular the topological description of half-
geometric T-dualities of [16]. Our proposal further specializes to the purely geometric T-dualities,
which are described by geometric principal TD𝑛-bundles. In this case, we reproduce the well-
known T-dualities between nilmanifolds carrying 𝐻-flux. Also, as shown in [18], our picture locally
yields the Buscher rules. Finally, we note that in the original paper [19], the geometric T-dualities
were extended to affine torus bundles in the sense of [15]; we have dropped these from our discussion
here for pedagogical reasons.

Our proposal clearly needs much further study, mostly in the non-geometric cases. In particular,
one should verify the consistency with the various physical expectations found in the literature.
An interesting point is that the constructions suggest that non-commutative and non-associative
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geometries, at least those associated with non-geometric backgrounds arising from T-dualities, may
be resolved into ordinary but higher geometries.

In the future, we plan to study various extensions; in particular, non-abelian and Poisson Lie
T-duality come to mind. The long-term goal is certainly a description of U-duality along similar
lines.
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