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Any effort to localise an event in the vicinity of the Planck length scale, only where the quantum
gravitational effects are predicted to be observed, will invariably result in gravitational collapse.
One must postulate noncommutative (NC) algebra between space-time coordinates, which are
now elevated to the status of operators, in order to prevent such a situation from occurring.
On the other hand, a consistent formulation of Quantum mechanics itself, with time being an
operator is a challenging and longstanding problem. Here we have given a systematic way to
formulate non-relativistic quantum mechanics on 1+1 dimensional NC space-time (Moyal type
noncommutativity) in a user-friendly way, which mandates the formulation of an equivalent
commutative theory. Although the effect of noncommutativity of space-time should presumably
become significant at a very high energy scale, it is intriguing to speculate that there should be
some relics of the effects of quantum space-time even in a low-energy regime. With this motivation
in mind, we undertake the study of a time-dependent system, namely a forced harmonic oscillator
in NC space-time and have shown the emergence of a geometric phase, which vanishes if the
NC parameter is put to zero, proving the fact that, the occurrence of geometric phase is totally
dependent on the non-commutativity of space-time.
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1. Introduction

Over the past two decades, noncommutative geometry (NCG) has garnered a lot of theoretical
interest in particle physics and condensed matter physics and is crucial to the understanding of
quantum gravity models at the Planck scale. One can imagine a superposition of two mass
distributions to explain the development of NC space-time or, more generally, quantum space-time.
According to Penrose’s argument in [1], this as a feedback through Einstein’s GR, will result in
a superposed geometry. Now, such a quantum space-time is likely to loose its time-translational
symmetry resulting in the uncertainty of energy 𝛿𝐸 and time 𝛿𝑡, indicating a finite lifetime ∼ ℏ

𝛿𝐸

of the system. This heuristic argument indicates that one needs to reformulate the quantum theory
without classical time, rather time should be promoted to an operator-valued coordinate, along with
other operator-valued spatial coordinates (see also [2, 3]). The status of time in quantum gravity is
an age-old problem. In fact, its status in quantum mechanics (QM) itself is a bit ambiguous. One
can, in fact, recall Pauli’s objection in this context [4] and this ambiguity can result in other allied
problems (for example see [5]). So one clearly needs to take the first step towards the formulation
of a consistent version of Quantum Mechanics in quantum space-time first and eventually the QFT.
In this context, we can point out some earlier works in this direction [6–9] where some fascinating
results were obtained, like discretization of time [9, 10] corroborating similar observations made
earlier by ’t Hooft in the context of (2+1) dimensional quantum gravity [11] and correction of
spin-statistics theorem in NC spacetime leading to non-Pauli like transitions [12]. Although the
impacts of non-commutativity in the space-time sector should theoretically become substantial at
(or before) extremely high energy scales, such as close to Planck scale energy, it is fascinating to
imagine that some vestiges of the effects of non-commutativity in the low energy domain may exist
[13], because of the inadequate decoupling mechanism between the high and low energy sectors.
In [14], the authors have demonstrated a user-friendly method for formulating non-relativistic
non-commutative Quantum Mechanics (NCQM) in 1+1 dimensional Moyal space-time, which
necessitates the construction of an analogous commutative theory and also gets over the famous
Pauli’s argument [4]. Here we use the formulation to further show the effect of noncommutativity
in a time-independent system in the form of a geometric phase.
The analysis of a typical time-independent system on NC space results in new dynamics. The
system’s propagator’s form is altered, and the wave function of the system also gets deformed.
However, when such a system is placed in an NC space-time background (i.e. one in which time
also functions as an operator), no NC correction is obtained in the Hamiltonian or the spectrum of
the system (see Appendix-A.1 of [15]). This encourages us to investigate a time-dependent system
set up in an NC space time and search for any indications of noncommutativity, if any. Thus our
primary goal here is to look for the above mentioned signature, in the form of geometric phase in
time dependent forced harmonic oscillator (FHO). For that we first need to set up the formalism of
QM itself of NC space time with time also being an operator which is the main content of section-2.
Thereafter, in section-3, we discuss about the possibility of obtaining emergent Berry phase in a
FHO system inhabiting NC space-time. In section-4 we conclude with some remarks and future
directions.
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2. Formulation of noncommutative quantum mechanics

The Hilbert-Schmidt (HS) operator based formulation of noncommutative QM was system-
atically devised, following [16], to formulate QM on ‘spatial’ 2D noncommutative Moyal plane
[17, 18]. In this article we provide a brief review of our recent works on the formulation of QM
on noncommutative (1+1)D Moyal space-time (based on the results in [14, 15]) where we show
how the HS operator formulation can be adapted to extract an effective, consistent and commutative
quantum-mechanical theory. Now, before considering the quantum theory, let’s first talk about the
advent of space-time bracket’s noncommuting nature at the classical level itself. In light of this,
take into account the following first-order form of a non-relativistic particle’s Lagrangian in (1+1)D
[19] :

𝐿𝜏,𝜃 = 𝑝𝜇 ¤𝑥𝜇 +
𝜃

2
𝜖 𝜇𝜈 𝑝𝜇 ¤𝑝𝜈 − 𝜎(𝜏) (𝑝𝑡 + 𝐻), 𝜇, 𝜈 = 0, 1 (1)

where 𝑥𝜇 = (𝑡, 𝑥) and 𝑝𝜇 = (𝑝𝑡 , 𝑝𝑥) are both considered as configuration space variables. The
evolution parameter 𝜏 is bit arbitrary, except from the fact that it should be a monotonically increasing
function of time ‘𝑡’. Note, all the over-head dots in (1) indicate 𝜏− derivatives. On carrying out
Dirac’s analysis of constraints, one arrives at the following Dirac brackets between the phase space
variables.

{𝑥𝜇, 𝑥𝜈}𝐷 = 𝜃𝜖 𝜇𝜈; {𝑝𝜇, 𝑝𝜈}𝐷 = 0; {𝑥𝜇, 𝑝𝜈}𝐷 = 𝛿𝜇 𝜈 (2)

Finally, the Lagrange multiplier 𝜎(𝜏) enforces the following first class constraint in the system,

Σ = 𝑝𝑡 + 𝐻 ≈ 0 (3)

and can be shown to generate the 𝜏 evolution of the system in the form of gauge transformation
of the theory. In order to begin the quantum mechanical analysis for this (1+1)D non-relativistic
quantum mechanical system in the presence of the Moyal type space-time noncommutativity, we
now raise the Dirac brackets in (2) to the level of commutator brackets:

[𝑡, 𝑥] = 𝑖𝜃 ; where, 𝜃 is the NC parameter (4)

along with
[𝑝𝑡 , 𝑝𝑥] = 0, [𝑡, 𝑝𝑡 ] = 𝑖 = [𝑥, 𝑝𝑥] . (5)

Note that we are working in the natural unit ℏ = 1 throughout this article.

2.1 Representation of the phase space algebra

A suitable representation of the NC coordinate algebra (4) can be shown to be furnished by the
following Hilbert space.

H𝑐 = 𝑆𝑝𝑎𝑛

{
|𝑛⟩ = (𝑏

†)𝑛
√
𝑛!
|0⟩; 𝑏 |0⟩ = 𝑡 + 𝑖𝑥

√
2𝜃
|0⟩ = 0

}
(6)

We now introduce the associative NC operator algebra (Â𝜃 ) generated by (𝑡, 𝑥) or equivalently by
(𝑏̂, 𝑏̂†) acting on this configuration spaceH𝑐 (6) as

Â𝜃 =

{
|𝜓) = 𝜓(𝑡, 𝑥) = 𝜓(𝑏̂, 𝑏̂†) =

∑︁
𝑚,𝑛

𝑐𝑛,𝑚 |𝑚⟩⟨𝑛|
}

(7)
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which is the set of all polynomials in the quotient algebra (Â/N ), subject to the identification
of [𝑏̂, 𝑏̂†] = 1. Thus, Â𝜃 = Â/N is essentially identified as the universal enveloping algebra
corresponding to (4), where Â is the free algebra generated by (𝑡, 𝑥) and N is the ideal generated
by (4). This Â𝜃 is not equipped with any inner product at this stage.
We can now introduce a subspace H𝑞 ⊂ B(H𝑐) ⊂ Â𝜃 as the space of ‘HS’ operators, which are
bounded and compact operators with finite HS norm | |.| |𝐻𝑆 , which acts onH𝑐 (6), and is given by,

H𝑞 =

{
𝜓(𝑡, 𝑥) ≡

���𝜓(𝑡, 𝑥)) ∈ B(H𝑐); | |𝜓 | |𝐻𝑆 :=
√︃
𝑡𝑟𝑐 (𝜓†𝜓) < ∞

}
⊂ Â𝜃 (8)

where 𝑡𝑟𝑐 denotes trace overH𝑐 and B(H𝑐) ⊂ Â𝜃 is a set of bounded operators onH𝑐. This space
can be equipped with the inner product(

𝜓(𝑡, 𝑥), 𝜙(𝑡, 𝑥)
)

:= 𝑡𝑟𝑐

(
𝜓†(𝑡, 𝑥)𝜙(𝑡, 𝑥)

)
(9)

and therefore has the structure of a Hilbert space on its own. We use a different notation to denote the
states ofH𝑐 and Â𝜃 by |.⟩ and |.) respectively. We now define the quantum space-time coordinates
(𝑇, 𝑋̂) (which can be thought of as a representation of (𝑡, 𝑥) and must be distinguished due to the
fact that their domains of action are different, i.e., while (𝑇, 𝑋̂) act onH𝑞, (𝑡, 𝑥) act onH𝑐), as well
as the corresponding momenta (𝑃𝑡 , 𝑃̂𝑥) by their actions on a state vector |𝜓(𝑡, 𝑥) ∈ H𝑞 as,

𝑇

���𝜓(𝑡, 𝑥)) = ���𝑡𝜓(𝑡, 𝑥)) , 𝑋̂

���𝜓(𝑡, 𝑥)) = ���𝑥𝜓(𝑡, 𝑥)) ,
𝑃̂𝑥

���𝜓(𝑡, 𝑥)) = −1
𝜃

���[𝑡, 𝜓(𝑡, 𝑥)]) , 𝑃̂𝑡

���𝜓(𝑡, 𝑥)) = 1
𝜃

���[𝑥, 𝜓(𝑡, 𝑥)]) (10)

Thus, the momenta (𝑃𝑡 , 𝑃𝑥) act adjointly and their actions are only defined in H𝑞 and not H𝑐. It
may be easily verified now that (𝑇, 𝑋̂, 𝑃̂𝑡 , 𝑃̂𝑥) satisfies algebra isomorphic to the NC Heisenberg
algebra just like (5).

2.2 Schrödinger equation and the physical Hilbert space

Now it is evident that we cannot identify a counterpart to the common space-time eigenstate
|𝑥, 𝑡⟩ in light of 𝜃 ≠ 0. However, by utilizing the coherent state, we are still able to reconstruct an
efficient commutative theory. We select the Sudarshan-Glauber coherent state (6) made up of the
Fock states |𝑛⟩ that correspond toH𝑐 as

|𝑧⟩ = 𝑒− 𝑧̄𝑏+𝑧𝑏
† |0⟩ ∈ H𝑐 ; 𝑏 |𝑧⟩ = 𝑧 |𝑧⟩ (11)

where 𝑧 is a dimensionless complex number and is given by,

𝑧 =
𝑡 + 𝑖𝑥
√

2𝜃
; 𝑡 = ⟨𝑧 |𝑡 |𝑧⟩, 𝑥 = ⟨𝑧 |𝑥 |𝑧⟩ (12)

Note that 𝑡 and 𝑥 are not eigen values of the time and position operators rather they are expectation
values of the respective operators in the coherent state basis (11) and will later be regarded as
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effective commutative coordinate variables. We can now construct the counterpart of coherent state
basis inH𝑞 (8), made out of the bases |𝑧⟩ ≡ |𝑥, 𝑡⟩ (11), by taking their outer product as

|𝑧, 𝑧) ≡ |𝑧) = |𝑧⟩⟨𝑧 | =
√

2𝜋𝜃 |𝑥, 𝑡) ∈ H𝑞 fulfilling 𝐵|𝑧) = 𝑧 |𝑧) (13)

where the annihilation operator 𝐵̂ = 𝑇̂+𝑖𝑋̂√
2𝜃

is a representation of the operator 𝑏 in H𝑞 (8). Note
that the space-time uncertainty is saturated in this situation by |𝑧) ∈ H𝑞 (13), which suggests that
such a state reflects a maximum localized “point" or an event in space-time. Being a pure density
matrix, this state can actually be thought of as an algebraic pure state. In fact this state being a
pure density matrix can be regarded as a pure state of the algebra Â𝜃 (7) and plays the role of a
point, represented by Dirac’s delta functional, in the corresponding commutative algebra 𝐶∞(R2)
describing (1+1) D commutative plane [20, 21].
It can also be checked that the basis |𝑧, 𝑧) satisfies the over-completeness property:∫

𝑑2𝑧

𝜋
|𝑧, 𝑧) ★𝑉 (𝑧, 𝑧 | =

∫
𝑑𝑡𝑑𝑥 |𝑥, 𝑡) ★𝑉 (𝑥, 𝑡 | = 1𝑞, (14)

where ∗𝑉 represents the Voros star product and is given by,

★𝑉 = 𝑒
←−
𝜕𝑧
−→
𝜕𝑧̄ = 𝑒

𝑖𝜃
2 (−𝑖 𝛿𝑖 𝑗+𝜖𝑖 𝑗 )

←−
𝜕𝑖
−→
𝜕𝑗 ; 𝑖, 𝑗 = 0, 1; 𝑥0 = 𝑡, 𝑥1 = 𝑥 (15)

Then the coherent state representation or the symbol of an abstract state 𝜓(𝑡, 𝑥) gives the usual
coordinate representation of a state just like ordinary QM:

𝜓(𝑥, 𝑡) = 1
√

2𝜋𝜃

(
𝑧, 𝑧

���𝜓(𝑥, 𝑡)) = 1
√

2𝜋𝜃
𝑡𝑟𝑐

[
|𝑧⟩⟨𝑧 |𝜓(𝑥, 𝑡)

]
=

1
√

2𝜋𝜃
⟨𝑧 |𝜓(𝑥, 𝑡) |𝑧⟩ (16)

The corresponding representation of a composite operator say 𝜓(𝑥, 𝑡)𝜙(𝑥, 𝑡) is given by,(
𝑧

���𝜓(𝑥, 𝑡)𝜙(𝑥, 𝑡)) = (
𝑧

���𝜓(𝑥, 𝑡)) ★𝑉

(
𝑧

���𝜙(𝑥, 𝑡)) . (17)

This establishes an isomorphism between the space of HS operators H𝑞 and the space of their
respective symbols. Using (14) the overlap of two arbitrary states (|𝜓), |𝜙)) in the quantum Hilbert
spaceH𝑞 can be written in the form

(𝜓 |𝜙) =
∫

𝑑𝑡𝑑𝑥 𝜓∗(𝑥, 𝑡) ★𝑉 𝜙(𝑥, 𝑡) (18)

Therefore, to each element |𝜓(𝑥, 𝑡)) ∈ H𝑞, the corresponding symbol is 𝜓(𝑥, 𝑡) ∈ 𝐿2
★(R2), where

the ★-occurring in the subscript is a reminder to the fact that the corresponding norm has to
be computed by employing the Voros star product. In order to obtain an effective commutative
Schrödinger equation in coordinate space, we will introduce coordinate representation of the phase
space operators. To begin with, note that the coherent state representation of the actions of space-
time operators {𝑋̂, 𝑇} on |𝜓) can be written by using (17) as,(

𝑥, 𝑡

���𝑋̂ ���𝜓(𝑥, 𝑡)) = 1
√

2𝜋𝜃

(
𝑧, 𝑧

���𝑥𝜓) = 1
√

2𝜋𝜃
⟨𝑧 |𝑥 |𝑧⟩ ★𝑉 (𝑧, 𝑧 |𝜓(𝑥, 𝑡)) (19)

Finally on using (16), we have(
𝑥, 𝑡

���𝑋̂ ���𝜓(𝑥, 𝑡)) = 𝑋𝜃

(
𝑥, 𝑡

���𝜓(𝑥, 𝑡)) = 𝑋𝜃 𝜓(𝑥, 𝑡) ; 𝑋𝜃 = 𝑥 + 𝜃

2
(𝜕𝑥 − 𝑖𝜕𝑡 ) (20)
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Proceeding exactly in the same way, we obtain the representation of 𝑇 as

𝑇𝜃 = 𝑡 + 𝜃

2
(𝜕𝑡 + 𝑖𝜕𝑥), (21)

so that [𝑇𝜃 , 𝑋𝜃 ] = 𝑖𝜃 is trivially satisfied. It is now trivial to prove the self-adjointness property
of both 𝑋𝜃 and 𝑇𝜃 , w.r.t. the inner product (18) inH𝑞 by considering an arbitrary pair of different
states |𝜓1), |𝜓2) ∈ H𝑞 and their associated symbols, just by exploiting associativity of Voros star
product. Since momenta operators act adjointly, their coherent state representations are,(

𝑥, 𝑡

���𝑃̂𝑡𝜓(𝑥, 𝑡)
)
= −𝑖𝜕𝑡𝜓(𝑥, 𝑡) ;

(
𝑥, 𝑡

���𝑃̂𝑥𝜓(𝑥, 𝑡)
)
= −𝑖𝜕𝑥𝜓(𝑥, 𝑡) (22)

The effective commutative Schrödinger equation in NC space-time is then obtained by imposing
the condition that the physical states |𝜓𝑝ℎ𝑦) = 𝜓𝑝ℎ𝑦 (𝑥, 𝑡) are annihilated by the operatorial version
of (3):

(𝑃̂𝑡 + 𝐻̂) |𝜓𝑝ℎ𝑦) = 0; 𝜓𝑝ℎ𝑦 (𝑥, 𝑡) ∈ H𝑝ℎ𝑦 ⊂ Â𝜃 (23)

where 𝐻̂ =
𝑃̂2
𝑥

2𝑚 + 𝑉 ( 𝑋̂, 𝑇). We are now ready to write down the effective commutative time
dependent Schrödinger equation in quantum space-time by taking the representation of (23) in |𝑥, 𝑡)
basis. Using (20,21,22) we finally get,

𝑖𝜕𝑡𝜓𝑝ℎ𝑦 (𝑥, 𝑡) =
[
− 1

2𝑚
𝜕2
𝑥 +𝑉 (𝑥, 𝑡)★𝑉

]
𝜓𝑝ℎ𝑦 (𝑥, 𝑡) (24)

One can now obtain the continuity equation as,

𝜕𝑡 𝜌𝜃 + 𝜕𝑥𝐽𝑥𝜃 = 0 (25)

where

𝜌𝜃 (𝑥, 𝑡) = 𝜓∗𝑝ℎ𝑦 (𝑥, 𝑡) ★𝑉 𝜓𝑝ℎ𝑦 (𝑥, 𝑡) > 0; 𝐽𝑥𝜃 =
1
𝑚
Im

(
𝜓∗𝑝ℎ𝑦 ★𝑉 (𝜕𝑥𝜓𝑝ℎ𝑦)

)
(26)

Now 𝜌𝜃 (𝑥, 𝑡) can be interpreted as the probability density at point 𝑥 at time 𝑡 given that it is positive
definite. However, to achieve that and for a consistent QM formulation, we ought to have 𝜓𝑝ℎ𝑦 (𝑥, 𝑡)
to be “well-behaved" in the sense that it should be square integrable at a constant time slice:

⟨𝜓𝑝ℎ𝑦 |𝜓𝑝ℎ𝑦⟩★𝑡 =

∫ ∞

−∞
𝑑𝑥 𝜓∗𝑝ℎ𝑦 (𝑥, 𝑡) ★𝑉 𝜓𝑝ℎ𝑦 (𝑥, 𝑡) < ∞, (27)

so that 𝜓𝑝ℎ𝑦 (𝑥, 𝑡) ∈ 𝐿2
★(R1) which is naturally distinct from 𝐿2

★(R2). Equivalently , at the operator
level, 𝜓𝑝ℎ𝑦 (𝑥, 𝑡) should belong to a suitable subspace of Â𝜃 (7) which is distinct from H𝑞, as the
associated symbol for the latter is obtained from inner product defined for 𝐿2

★(R2) (18). This is
the main point of departure from the standard HS operator formulation of NCQM in (1+2)D Moyal
plane with only spatial noncommutativity where time is treated as a c-parameter and one works
withH𝑞 or equivalently with a Hilbert space 𝐿2

★(R2) for the corresponding symbols [17, 18].

6



P
o
S
(
C
O
R
F
U
2
0
2
2
)
3
4
2

Emergent geometric phase in noncommutative space-time Anwesha Chakraborty

3. Forced harmonic oscillator and emergence of Berry phase

We have used forced harmonic oscillator as a prototype system to look for any potential
emergent geometric phases that could be signs of space-time noncommutativity. We therefore
take the up the Hamiltonian of the forced harmonic oscillator in the following hermitian form for
carrying out our analysis:

𝐻̂ =
𝑃̂2
𝑥

2𝑚
+ 1

2
𝑚𝜔2 𝑋̂2 + 1

2
[ 𝑓 (𝑇) 𝑋̂ + 𝑋̂ 𝑓 (𝑇)] + 𝑔(𝑇)𝑃̂𝑥 (28)

The corresponding effective commutative Schrödinger equation can be obtained by taking overlap
of (23) in coherent state basis (13,16),

𝑖𝜕𝑡𝜓𝑝ℎ𝑦 (𝑥, 𝑡) =
[
𝑃2
𝑥

2𝑚
+ 1

2
𝑚𝜔2𝑋2

𝜃 +
1
2
{ 𝑓 (𝑇𝜃 )𝑋𝜃 + 𝑋𝜃 𝑓 (𝑇𝜃 )} + 𝑔(𝑇𝜃 )𝑃𝑥

]
𝜓𝑝ℎ𝑦 (𝑥, 𝑡) (29)

At this stage, it will be interesting to note that 𝑋𝜃 and 𝑇𝜃 can be related to commutative 𝑥 and 𝑡,
defined in (12), by making use of similarity transformations,

𝑋𝜃 = 𝑆𝑥𝑆−1, 𝑇𝜃 = 𝑆†𝑡 (𝑆†)−1; 𝑆 = 𝑒
𝜃
4 (𝜕

2
𝑡 +𝜕2

𝑥 )𝑒−
𝑖𝜃
2 𝜕𝑡𝜕𝑥 (30)

This 𝑆, a non-unitary operator, can be used to define the following map,

𝑆−1 : 𝐿2
∗ (R1) → 𝐿2(R1) ; 𝑖.𝑒. 𝑆−1 (𝜓𝑝ℎ𝑦 (𝑥, 𝑡)

)
:= 𝜓𝑐 (𝑥, 𝑡) ∈ 𝐿2(R1) (31)

Now one can easily verify at this stage,〈
𝜓𝑝ℎ𝑦 , 𝜙𝑝ℎ𝑦

〉
★, 𝑡

= ⟨𝜓𝑐 , 𝜙𝑐⟩𝑡 ∀𝜓𝑝ℎ𝑦 , 𝜙𝑝ℎ𝑦 ∈ 𝐿2
∗ (R1) (32)

where we have made use of integration by parts and dropped some boundary terms. This equality
shows that, we can replace non-local Voros star product, with the local point-wise multiplication
only within the integral. It should be emphasised here that, although the results of the integration
as a whole are equal in both sides of (32), the integrands, by themselves are not : 𝜌𝜃 (𝑥, 𝑡) =
𝜓∗
𝑝ℎ𝑦
(𝑥, 𝑡) ★𝜓𝑝ℎ𝑦 (𝑥, 𝑡) ≠ 𝜓∗𝑐 (𝑥, 𝑡)𝜓𝑐 (𝑥, 𝑡) = |𝜓𝑐 (𝑥, 𝑡) |2. Thus here, one can’t interpret |𝜓𝑐 (𝑥, 𝑡) |2

as the probability density at point 𝑥 at time 𝑡, unlike (𝜓∗
𝑝ℎ𝑦

★𝑉𝜓𝑝ℎ𝑦) (𝑥, 𝑡). It is also important to keep
in mind that the integrands themselves are components of two distinct algebras: non-commutative
and commutative. These algebras are not clearly ★-isomorphic [22] to one another, and the effect
of non-commutativity is manifested through the considered dynamical model in a different way,
as shown by the non-unitary transformation from 𝐿2

∗ (R1) to 𝐿2(R1) with help of the non-unitary
transformation 𝑆−1.
Now, using (30,31) in (29) and retaining terms upto linear in 𝜃, finally (29) can now be recast as,

𝑖𝜕𝑡𝜓𝑐 (𝑥, 𝑡) = 𝐻𝑐𝜓𝑐 (𝑥, 𝑡) (33)

where the corresponding effective commutative Hamiltonian 𝐻𝑐 is given by

𝐻𝑐 = 𝛼(𝑡)𝑝2
𝑥 + 𝛽𝑥2 + 𝛾(𝑡) (𝑥𝑝𝑥 + 𝑝𝑥𝑥) + 𝑓 (𝑡)𝑥 + 𝑔(𝑡)𝑝𝑥 = 𝐻𝐺𝐻𝑂 + 𝑓 (𝑡)𝑥 + 𝑔(𝑡)𝑝𝑥 (34)
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Here 𝐻𝐺𝐻𝑂 stands for the Hamiltonian of a generalised time-dependent harmonic oscillator rep-
resenting the first three terms. The last two terms represent perturbations linear in position and
momentum in coordinate basis. And the various coefficients in (34) are given by,

𝛼(𝑡) = 1
2𝑚
− 𝜃 ¤𝑔(𝑡); 𝛽 =

1
2
𝑚𝜔2; 𝛾(𝑡) = −1

2
𝜃 ¤𝑓 (𝑡) (35)

In order to diagonalize the whole Hamiltonian we try to diagonalize 𝐻𝐺𝐻𝑂 [23] first. And for that
we introduce annihilation and creation operators as follows:

𝑎(𝑡) = 𝐴(𝑡) [𝑥 + (𝐵(𝑡) + 𝑖𝐶 (𝑡))𝑝𝑥] (36)

One can also write down the corresponding creation operator 𝑎† satisfying [𝑎(𝑡), 𝑎†(𝑡)] = 1. The
coefficients 𝐴, 𝐵, 𝐶 and Ω are time dependent1, as they depend upon 𝛼, 𝛾 and thus ¤𝑓 (𝑡) and ¤𝑔(𝑡).
Now note that ¤𝑓 (𝑡) and ¤𝑔(𝑡) are also periodic functions of ‘𝑡’ like 𝑓 (𝑡) and 𝑔(𝑡). We just impose
the condition that ¤𝑓 (𝑡) and ¤𝑔(𝑡) are slowly varying function of time. This will facilitate the use of
adiabatic approximation in the system under consideration. So we can say that 𝐴, 𝐵, 𝐶 are slowly
varying function of time and we shall in future neglect the second and higher order time derivative
of these variables in our adiabatic approximation. With this, the Hamiltonian (34) can be written
in terms of the ladder operator as,

𝐻𝑐 = Ω(𝑡)
(
𝑎†(𝑡)𝑎(𝑡) + 1

2

)
+ 𝑃(𝑡)𝑎(𝑡) + 𝑃̄(𝑡)𝑎†(𝑡) (37)

where,

𝑃(𝑡) = 𝐴(𝑡) [𝐶 (𝑡) 𝑓 (𝑡) + 𝑖(𝐵(𝑡) 𝑓 (𝑡) − 𝑔(𝑡))] =

√︄
𝛽

Ω(𝑡)

[
Ω

2𝛽
𝑓 (𝑡) + 𝑖

(
𝛾(𝑡) 𝑓 (𝑡)

𝛽
− 𝑔(𝑡)

)]
andΩ(𝑡) can be identified with the “instantaneous frequency". Although thisΩ(𝑡) can be considered
to be a slowly changing function of time, compatible with the adiabatic nature, the other time
dependent functions 𝑃(𝑡) and 𝑃̄(𝑡) are somewhat unclear because they include phrases like the
product of a fast varying and a slow varying function. Thus, we cannot claim that the whole
Hamiltonian evolves slowly under temporal development. In order to circumvent this problem, let
us try to find a suitable time dependent unitary transformationU(𝑡), transforming the wave function
𝜓𝑐 (𝑥, 𝑡) in (33) as,

𝜓𝑐 (𝑥, 𝑡) → 𝜓̃𝑐 (𝑥, 𝑡) = U(𝑡)𝜓𝑐 (𝑥, 𝑡); U†(𝑡)U(𝑡) = 1 (38)

With this, the corresponding Hamiltonian will transform under this time-dependent unitary trans-
formation as

𝐻𝑐 → 𝐻̃𝑐 = U(𝑡)𝐻𝑐U†(𝑡) − 𝑖U(𝑡)𝜕𝑡U†(𝑡) (39)

This demonstrates that an effective Hamiltonian H̃𝑐, which is obtained by supplementingU𝐻𝑐U†
by an appropriate “connection" like term −𝑖U𝜕𝑡U†, now governs the time evolution of the trans-
formed states 𝜓̃𝑐 (𝑥, 𝑡).

𝑖𝜕𝑡 𝜓̃𝑐 (𝑥, 𝑡) = 𝐻̃𝑐𝜓̃𝑐 (𝑥, 𝑡) (40)

1The explicit forms of these functions can be found in [15]
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Indeed, there exists aU(𝑡) given byU(𝑡) = 𝑒−(𝑤𝑎−𝑤̄𝑎†+𝑖𝑙) , which can be identified with an element
of non-abelian Heisenberg group h. 𝑤 and 𝑙 are some time-dependent complex and real functions
[15]. Now the Hamiltonian 𝐻̃𝑐 can be put into the diagonal form

𝐻̃𝑐 = Ω(𝑡) (𝑎†𝑎 + 1
2
) = 𝐻𝐺𝐻𝑂 (41)

Carrying out the analysis in the Heisenberg picture where we make use of the adiabaticity of the
parameters 𝛼 and 𝛾 by dropping their second and higher order time derivatives, we find after
evolution through a cycle of time period 𝑡 = T the creation operator takes the following form,

𝑎†(T ) = 𝑎†(0)𝑒𝑥𝑝
[
𝑖

∫ T

0
Ω 𝑑𝜏 + 𝑖

∫ T

0

(
1
Ω

)
𝑑𝛾

𝑑𝜏
𝑑𝜏

]
(42)

The second term in the exponential of (42) represents an additional phase over and above the
dynamical phase 𝑒𝑖

∫
Ω(𝑡 )𝑑𝑡 . This phase can now be written in a more familiar form of Berry phase

[24], given as a functional of the closed loop Γ,

Φ𝐺 [Γ] =
∮
Γ=𝜕𝑆

1
Ω
∇R𝛾.𝑑R = −𝜃

2

∫ ∫
𝑆

∇R

(
1
Ω

)
× ∇R

(
¤𝑓 (𝑡)

)
. 𝑑S (43)

We would like to make some pertinent observations before we conclude this section:

• The expression (43) explicitly depends on the NC parameter 𝜃 and disappears in the 𝜃 →
0 commutative limit. Hence, the non-commutativity of space-time is necessary for the
emergence of the geometric phase in this context. In this respect, it should be noted that
the authors in [23] have demonstrated that a system must have the dialatation term in the
Hamiltonian in order to produce the geometric phase. The forced harmonic oscillator in
usual space-time, does not contain such term, but putting the system in an NC space-time
automatically gave rise to a dialatation term in the effective commutative Hamiltonian (34).

• Finally observe that, had we worked in the Schrödinger’s picture, we would have obtained
the same geometric phase Φ𝐺 [Γ] acquired by the wave function 𝜓̃𝑐 (𝑥, 𝑡) (38) in time T .
Eventually since the original wave function 𝜓𝑐 (𝑥, 𝑡) is simplyU†(𝑡)𝜓̃𝑐 (𝑥, 𝑡) withU(𝑡) being
a linear and unitary operator, it is clear that 𝜓𝑐 (𝑥, 𝑡) too will acquire the same Berry phase in
time T , as the Berry phase, being a simple number (43) will not be affected by action of the
Heisenberg group.

4. Remarks

It is difficult to experimentally detect Planck scale phenomena in a non-relativistic (NR)
system that involve the quantum structure of space-time. Yet, researchers have attempted to
develop convincing theories in some earlier studies in the literature [25, 26] in an effort to
determine the implications of the quantum structure of space-time in the low energy regime.
That inspired us to conduct this current work, which is to examine the fingerprints of Planck
scale physics in the NR quantum system. Here, we’ll sum up our research in a few sentences.
We have demonstrated that a time-dependent forced harmonic oscillator system experiences
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a geometric phase shift when it is placed into a non-commutative space-time. It is demon-
strated that the Hamiltonian of the effective commutative system is that of a time-dependent
generalised harmonic oscillator. We then came up with the equation of motion for the lad-
der operators in the Heisenberg picture, which demonstrates that when a system is moved
adiabatically around a closed loop, it can produce an additional phase in addition to the
dynamical phase, depending on the geometry of the parameter space. This phase depends
on the non-commutative parameter 𝜃 and vanishes in commutative limit 𝜃 → 0, proving its
origin in the noncommutative nature of space-time.
Finally, we would like to comment on some future prospects of our work. It was demonstrated
in [27] that a coherent state continues to be coherent at all times if the system Hamiltonian
is that of a time-varying forced harmonic oscillator. We can extend this computation for
our system, which is essentially FHO in NC space-time. The effective commutative system
which is a generalised forced harmonic oscillator (GFHO), will create squeezed coherent
states [28]. This motivates us to study the evolution of squeezed coherent states and its
possible implications for quantum optics and quantum information theory.
Furthermore, note that the idea of noncommutativity in the space-time sector may also be
introduced through the non-relativistic, second quantization formalism. This would in fact be
a good place to start when thinking about NC space-time because, unlike in QM, here, space
and time can naturally be treated equally in the sense that they are simply c-number param-
eters. Crucially, the second quantization formalism enables us to do an analysis similar to
NC quantum mechanical analysis in the first quantized formalism of the effects of space-time
noncommutativity on the one-particle sector of quantum field theory [29].
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