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We summarize our recent construction [1–3] of new fuzzy hyperspheres 𝑆𝑑
Λ

of arbitrary dimension
𝑑 ∈ N covariant under the full orthogonal group 𝑂 (𝐷), 𝐷 = 𝑑+1. We impose a suitable energy
cutoff on a quantum particle in R𝐷 subject to a confining potential well 𝑉 (𝑟) with a very sharp
minimum on the sphere of radius 𝑟 = 1; the cutoff and the depth of the well diverge with
Λ ∈ N. Consequently, the commutators of the Cartesian coordinates 𝑥𝑖 are proportional to the
angular momentum components 𝐿𝑖 𝑗 , as in Snyder’s noncommutative spaces. The 𝑥𝑖 generate
the whole algebra of observables AΛ and thus the whole Hilbert space HΛ when applied to
any state. HΛ carries a reducible representation of 𝑂 (𝐷) isomorphic to the space of harmonic
homogeneous polynomials of degree Λ in the Cartesian coordinates of (commutative) R𝐷+1; the
latter carries an irreducible representation 𝝅Λ of 𝑂 (𝐷+1) ⊃ 𝑂 (𝐷). Moreover, AΛ is isomorphic
to 𝝅Λ (𝑈𝑠𝑜(𝐷+1)). We identify the subspace CΛ ⊂ AΛ spanned by fuzzy spherical harmonics.
We interpret {HΛ}Λ∈N, {CΛ}Λ∈N as fuzzy deformations of the space H𝑠 ≡ L2 (𝑆𝑑) of square
integrable functions and the space 𝐶 (𝑆𝑑) of continuous functions on 𝑆𝑑 respectively, {AΛ}Λ∈N

as fuzzy deformation of the associated algebra A𝑠 of observables, because they resp. go to
H𝑠 , 𝐶 (𝑆𝑑),A𝑠 as Λ diverges (with fixed ℏ). With suitable ℏ = ℏ(Λ) Λ→∞−→ 0, in the same limit
AΛ goes to the (algebra of functions on the) Poisson manifold 𝑇∗𝑆𝑑; more formally, {AΛ}Λ∈N

yields a fuzzy quantization of a coadjoint orbit of 𝑂 (𝐷+1) that goes to the classical phase space
𝑇∗𝑆𝑑 . These models might be useful in quantum field theory, quantum gravity or condensed
matter physics.
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General 𝑂 (𝐷)-equivariant fuzzy hyperspheres Gaetano Fiore

1. Introduction and preliminaries

In the past decades noncommutative space(time) algebras have been introduced and studied
as fundamental or effective arenas for regularizing ultraviolet (UV) divergences in quantum field
theory (QFT) (see e.g. [4]), reconciling Quantum Mechanics and General Relativity in a satisfactory
Quantum Gravity (QG) theory (see e.g. [5]), unifying fundamental interactions (see e.g. [6, 7]).
Noncommutative Geometry (NCG) [8–11], i.e. differential geometry on noncommutative spaces,
has become a sophisticated machinery. In particular, fuzzy (noncommutative) spaces have raised
a big interest as a non-perturbative technique in QFT based on a finite discretization alternative
to the lattice ones. A fuzzy space is a sequence {A}𝑛∈N of finite-dimensional algebras such that
A𝑛

𝑛→∞−→ A ≡algebra of regular functions on an ordinary manifold, with dim(A𝑛)
𝑛→∞−→ ∞.

Contrary to lattices, A𝑛 can carry representations of Lie, beside discrete, groups. Fuzzy spaces can
be used also to discretize internal (e.g. gauge) degrees of freedom (see e.g. [12]), or as a new tool
in string and 𝐷-brane theories (see e.g. [13, 14]). In the seminal Madore-Hoppe Fuzzy Sphere (FS)
of dimension 𝑑 = 2 [15, 16] A𝑛 ≃ 𝑀𝑛 (C). A𝑛 is generated by coordinates 𝑥𝑖 (𝑖 = 1, 2, 3) fulfilling

[𝑥𝑖 , 𝑥 𝑗] = 2𝑖√
𝑛2−1

𝜀𝑖 𝑗𝑘𝑥𝑘 , 𝑟2 ≡ 𝑥𝑖𝑥𝑖 = 1, 𝑛 ∈ N \ {1}; (1)

these are related via 𝑥𝑖 = 2𝐿𝑖/
√
𝑛2−1 to the standard basis {𝐿𝑖}3

𝑖=1 of 𝑠𝑜(3) in the unitary irreducible
representation (irrep) (𝜋𝑙, 𝑉 𝑙) of dimension 𝑛 = 2𝑙 +1 [i.e. 𝑉 𝑙 is the eigenspace of the Casimir
𝑳2 = 𝐿𝑖𝐿𝑖 with eigenvalue 𝑙 (𝑙 + 1)]. Fuzzy spheres 𝑆𝑑 of dimension 𝑑 = 4 and any 𝑑 ≥ 3 were
introduced resp. in [17], [18]; other versions of 𝑑 = 3, 4 or 𝑑 ≥ 3 in [19–22]. Unfortunately, while
for the 𝑑 = 2 FS [15, 16] A𝑛 admits a basis of spherical harmonics, for the 𝑑 > 2 fuzzy 𝑆𝑑 a product
of spherical harmonics is not a combination thereof, but an element in a larger algebra A𝑛.

The Hilbert space of a (zero-spin) quantum particle on configuration space 𝑆𝑑 and the space
of continuous functions on 𝑆𝑑 carry a (same) reducible representation of 𝑂 (𝐷), 𝐷 ≡ 𝑑+1; they
decompose into carrier spaces of irreducible representations (irreps) as follows

L2(𝑆𝑑) ≃
⊕∞

𝑙=0
𝑉 𝑙𝐷 ≃ 𝐶 (𝑆𝑑), (2)

where 𝑉 𝑙
𝐷

is an eigenspace of the quadratic Casimir 𝑳2 with eigenvalue

𝐸𝑙 ≡ 𝑙 (𝑙+𝐷−2) (3)

(𝑉 𝑙3 ≡ 𝑉 𝑙); 𝐶 (𝑆𝑑) acts an algebra of bounded operators on L2(𝑆𝑑). On the contrary, each of
the mentioned fuzzy hyperspheres is based on a sequence parametrized by 𝑛 either of irreps of
𝑆𝑝𝑖𝑛(𝐷) (so that 𝑟2 ∝ 𝑳2 is 1) [15–20], or of direct sums of small bunches of such irreps [21, 22].
In either case, even excluding the 𝑛’s for which the associated representation of 𝑂 (𝐷) is only
projective, the carrier space does not go to (2) as 𝑛→ ∞; hence, interpreting these fuzzy spheres as
fuzzy configuration spaces 𝑆𝑑 (and the 𝑥𝑖 as spatial coordinates) becomes questionable. Moreover,
relations (1) for the Madore-Hoppe FS are equivariant under 𝑆𝑂 (3), but not under the whole
𝑂 (3), e.g. not under parity 𝑥𝑖 ↦→ −𝑥𝑖 . These difficulties are overcome by our recent fully 𝑂 (𝐷)-
equivariant fuzzy quantizations [1, 3] 𝑆𝑑

Λ
of spheres 𝑆𝑑 of arbitrary dimension 𝑑 = 𝐷−1 ∈ N

(thought as configuration spaces) and of 𝑇∗𝑆𝑑 (thought as phase spaces), which we summarize here
(the cases 𝑑 = 1, 2 had been treated in [2, 23]); in particular, we recover (2) as Λ → ∞.
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Our fuzzy quantization uses: 1. the projection of a quantum theory T on R𝐷 below an energy
cutoff; 2. a dimensional reduction induced by a confining potential on 𝑆𝑑 ⊂ R𝐷 . One can apply
it to quantize also other submanifolds 𝑀 ⊂ R𝐷 . Given a generic quantum theory T with Hilbert
space H , algebra of observables on H (or with a domain dense in H ) A ≡ Lin(H), Hamiltonian
𝐻 ∈ A, for any subspace H ⊂ H preserved by 𝐻 let 𝑃 : H ↦→ H be the associated projector and

A ≡ Lin
(
H

)
= {𝐴 ≡ 𝑃𝐴𝑃 | 𝐴 ∈ A}.

By construction 𝐻 = 𝑃𝐻 = 𝐻𝑃. The projected Hilbert space H , algebra of observables A and
Hamiltonian 𝐻 provide a new quantum theory T [24]; we will ascribe the observable 𝐴 the same
physical meaning of 𝐴 in T . If H , 𝐻 are invariant under some group 𝐺, then 𝑃,A, 𝐻,T will be
as well. The relations among the generators of A differ from those among the generators of A. In
particular, if T is based on commuting coordinates 𝑥𝑖 (commutative space) this will be in general
no longer true for T : [𝑥𝑖 , 𝑥 𝑗] ≠ 0, and we have generated a quantum theory on a NC space. In
particular, if H ⊂ H is characterized by energies 𝐸 ≤ 𝐸 below a certain cutoff 𝐸 , then T is a
low-energy approximation of T preserved by the dynamical evolution ruled by 𝐻. T may be used
as an effective theory for 𝐸 ≤ 𝐸 , or may even help to figure out a new theory T ′ valid for all 𝐸 if
at 𝐸 > 𝐸 physics is not accounted for by T . If T describes an ordinary (for simplicity, zero-spin)
quantum particle in the Euclidean (configuration) space R𝐷 , then H = L2(R𝑑). If 𝐻 = 𝑇 +𝑉 ,
with kinetic energy 𝑇 and a confining potential 𝑉 (𝑥), then the classical region B𝐸 in phase space
fulfilling 𝐻 (𝑥, 𝑝) ≤ 𝐸 and the one 𝑣

𝐸
⊂ R𝐷 in configuration space fulfilling 𝑉 ≤ 𝐸 are bounded

at least for sufficiently small 𝐸 , and the dimension dim(H) ≈ Vol(B𝐸)/ℎ𝐷 of H is finite. In the
sequel we rescale 𝑥, 𝑝, 𝐻,𝑉 so that they are dimensionless and, denoting by Δ the Laplacian in R𝐷 ,

𝐻 = −Δ +𝑉. (4)

We choose a sequence of pairs (𝑉, 𝐸) satisfying the following requirements. 𝑉 = 𝑉 (𝑟) has a very
sharp minimum, parametrized by a very large 𝑘 ≡ 𝑉 ′′(1)/4, on the sphere 𝑆𝑑 ⊂ R𝐷 of radius 𝑟 = 1;
we fix𝑉0 ≡ 𝑉 (1) so that the ground state 𝝍0 has zero energy, 𝐸0 = 0. We choose 𝐸 fulfilling first of
all the condition 𝑉 (𝑟) ≃ 𝑉0+2𝑘 (𝑟−1)2 in 𝑣

𝐸
, so that we can approximate 𝑣

𝐸
by the spherical shell

|𝑟−1| ≤
√︃
𝐸−𝑉0

2𝑘 and the potential by a harmonic one. If 𝐸−𝑉0 and 𝑘 diverge, while their ratio goes
to zero, then in this limit 𝑣

𝐸
→ 𝑆𝑑 , dim(H) → ∞, and we recover quantum mechanics on 𝑆𝑑 .

Let 𝑥≡ (𝑥1,...𝑥𝐷) be Cartesian coordinates of R𝐷 , 𝑟2=𝑥𝑖𝑥𝑖 , 𝜕𝑖≡𝜕/𝜕𝑥𝑖; Δ=𝜕𝑖𝜕𝑖 decomposes as

Δ = 𝜕2
𝑟 + (𝐷−1) 𝑟−1𝜕𝑟 − 𝑟−2𝑳2, (5)

where 𝜕𝑟 ≡ 𝜕/𝜕𝑟 and 𝑳2 ≡ 𝐿𝑖 𝑗𝐿𝑖 𝑗/2 is the square angular momentum (in normalized units), i.e.
the quadratic Casimir of 𝑈𝑠𝑜(𝐷) and the Laplacian on the sphere 𝑆𝑑 , the angular momentum
components 𝐿𝑖 𝑗 ≡ 𝑖(𝑥 𝑗𝜕𝑖 − 𝑥𝑖𝜕 𝑗) are vector fields tangent to all spheres 𝑟 = const satisfying

[𝐿𝑖 𝑗 , 𝐿ℎ𝑘] = 𝑖
(
𝐿 𝑗𝑘𝛿ℎ𝑖 + 𝐿𝑖ℎ𝛿𝑘 𝑗 − 𝐿 𝑗ℎ𝛿𝑘𝑖 − 𝐿𝑖𝑘𝛿ℎ 𝑗

)
, [𝐿𝑖 𝑗 , 𝑆] = 0, (6)

[𝑖𝐿𝑖 𝑗 , 𝑣ℎ] = 𝑣𝑖𝛿ℎ𝑗 − 𝑣 𝑗𝛿ℎ𝑖 , 𝜀𝑖1𝑖2𝑖3....𝑖𝐷𝑥𝑖1𝐿𝑖2𝑖3 = 0, (7)

where 𝑆 is any scalar and 𝑣ℎ are the components of any vector depending on 𝑥ℎ, 𝜕ℎ, in particular
𝑣ℎ = 𝑥ℎ, 𝜕ℎ. The Ansatz 𝝍 = 𝑓 (𝑟)𝑌𝑙 (𝜽), with 𝑓 (𝑟) = 𝑟−𝑑/2𝑔(𝑟) and 𝑌𝑙 ∈𝑉 𝑙𝐷 an 𝐸𝑙-eigenfunction

3



P
o
S
(
C
O
R
F
U
2
0
2
2
)
3
4
4

General 𝑂 (𝐷)-equivariant fuzzy hyperspheres Gaetano Fiore

of 𝑳2, transforms the Schrödinger PDE 𝐻𝝍 = 𝐸𝝍 into the Fuchsian ODE in the unknown 𝑔(𝑟)

−𝑔′′(𝑟) +
[
𝑉 (𝑟) + 𝐷2−4𝐷+3+4𝑙 (𝑙+𝐷−2)

4 𝑟−2
]
𝑔(𝑟) = 𝐸𝑔(𝑟) (8)

(by similar product Ansätze one can reduce numerous different PDEs to ODEs, see e.g. [25]).
Requiring lim𝑟→0+ 𝑟

2𝑉 (𝑟) > 0, 𝑓 (0) = 0, we make 𝐻 self-adjoint. As 𝑉 (𝑟) is very large outside
𝑣
𝐸

, there 𝑔, 𝑓 ,𝝍 are negligibly small, and the lowest eigenvalues 𝐸 are at leading order those of the
1-dimensional harmonic oscillator approximation [3] of (8)

−𝑔′′(𝑟) + 𝑔(𝑟)𝑘𝑙 (𝑟 − �̃�𝑙)2
= 𝐸𝑙𝑔(𝑟), (9)

obtained neglecting terms 𝑂
(
(𝑟−1)3) in the Taylor expansions of 1/𝑟2, 𝑉 (𝑟) about 𝑟 =1. Here

�̃�𝑙 ≡ 1 + 𝑏 (𝑙,𝐷)
3𝑏 (𝑙,𝐷)+2𝑘 , 𝐸𝑙 ≡ 𝐸 −𝑉0

2𝑏 (𝑙,𝐷) [𝑘+𝑏 (𝑙,𝐷) ]
3𝑏 (𝑙,𝐷)+2𝑘 ,

𝑘𝑙 ≡ 2𝑘 + 3𝑏(𝑙, 𝐷), 𝑏(𝑙, 𝐷) ≡ 𝐷2−4𝐷+3+4𝑙 (𝑙+𝐷−2)
4 .

The square-integrable solutions of (9) 𝑔𝑛,𝑙 (𝑟) lead to

𝑓𝑛,𝑙 (𝑟) = 𝑀𝑛,𝑙 𝑟−𝑑/2 𝑒−
√
𝑘𝑙 (𝑟−�̃�𝑙 )2/2 · 𝐻𝑛

(
(𝑟 − �̃�𝑙) 4

√︁
𝑘𝑙

)
with 𝑛 ∈ N0; (10)

here 𝑀𝑛,𝑙 are normalization constants and 𝐻𝑛 are the Hermite polynomials. The corresponding
‘eigenvalues’ in (9) 𝐸𝑛,𝑙 = (2𝑛 + 1)

√
𝑘𝑙 lead to energies 𝐸𝑛,𝑙 = (2𝑛 + 1)

√
𝑘𝑙 +𝑉0 + 2𝑏 (𝑙,𝐷) [𝑘+𝑏 (𝑙,𝐷) ]

3𝑏 (𝑙,𝐷)+2𝑘 .
As said, we fix 𝑉0 requiring that the lowest one 𝐸0,0 be zero; this implies 𝑉0 = −

√
2𝑘 − 𝑏(0, 𝐷) −

3𝑏 (0,𝐷)
2
√

2𝑘
+𝑂

(
𝑘−1/2) , and the expansions of 𝐸𝑛,𝑙 and �̃�𝑙 at leading order in 𝑘 become

𝐸𝑛,𝑙 = 𝑙 (𝑙 + 𝐷 − 2) + 2𝑛
√

2𝑘 +𝑂
(
𝑘−2) , �̃�𝑙 = 1 + 𝑏(𝑙,𝐷)/2𝑘 +𝑂

(
𝑘−2) . (11)

𝐸0,𝑙 coincide at lowest order with the desired eigenvalues 𝐸𝑙 (coloured blue) of 𝑳2, while if 𝑛 > 0
𝐸𝑛,𝑙 diverge as 𝑘 → ∞ (due to the red part); to exclude all states with 𝑛 > 0 (i.e., to ‘freeze’ radial
oscillations, so that all corresponding classical trajectories are circles; this can be considered as a
quantum version of the constraint 𝑟 = 1) we impose the energy cutoff

𝐸𝑛,𝑙 ≤ 𝐸 (Λ) ≡ Λ(Λ+𝐷−2) < 2
√

2𝑘, Λ ∈ N. (12)

The right inequality is satisfied prescribing a suitable dependence 𝑘 (Λ), e.g. 𝑘 (Λ) ≡ [Λ(Λ+𝐷−2)]2;
the left one is satisfied setting 𝑛 = 0 and 𝑙 ≤ Λ. We rename 𝐻,H , 𝑃,A,T as 𝐻Λ,HΛ, 𝑃Λ,AΛ,TΛ.
TΛ is 𝑂 (𝐷)-equivariant. We end up with eigenfunctions and eigenvalues (at leading order in 1/Λ)

𝝍𝑙 (𝑟, 𝜽) = 𝑓𝑙 (𝑟)𝑌𝑙 (𝜽), 𝐻Λ𝝍𝑙 = 𝐸𝑙 𝝍𝑙, 𝑙 = 0, 1, ...,Λ, (13)

abbreviating 𝑓𝑙 ≡ 𝑓0,𝑙. Hence HΛ decomposes into irreps of 𝑂 (𝐷) (and eigenspaces of 𝑳2, 𝐻Λ) as

HΛ =
⊕Λ

𝑙=0
H 𝑙

Λ
, H 𝑙

Λ
≡ 𝑓𝑙 (𝑟)𝑉 𝑙𝐷 . (14)

As Λ → ∞ the spectrum {𝐸𝑙}Λ𝑙=0 of 𝐻Λ goes to the whole spectrum {𝐸𝑙}𝑙∈N0 of 𝑳2, and we recover
(2). We can express the projectors 𝑃𝑙

Λ
: HΛ → H 𝑙

Λ
as the following polynomials in 𝑳

2:

𝑃𝑙
Λ
=
∏Λ
𝑛=0,𝑛≠𝑙

𝑳
2−𝐸𝑛

𝐸𝑙−𝐸𝑛
. (15)

4
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The space 𝑉 𝑙
𝐷

consists of harmonic homogeneous polynomials of degree 𝑙 in the 𝑥𝑖 restricted to the
sphere 𝑆𝑑 . In section 2 we show: i) how to explicitly determine 𝑉 𝑙

𝐷
, as well as the action of 𝐿ℎ𝑘

and 𝑡ℎ ≡ 𝑥ℎ/𝑟 on 𝑉 𝑙
𝐷

, applying the trace-free completely symmetric projector P𝑙 of
(
R𝐷

)⊗𝑙

to the
homogeneous polynomials of degree 𝑙 in 𝑥𝑖; ii) that not only HΛ, but also 𝑉Λ

𝐷+1 decomposes into
irreps of 𝑂 (𝐷) as follows 𝑉Λ

𝐷+1 ≃
⊕Λ

𝑙=0𝑉
𝑙
𝐷
. In section 3 we write down the relations fulfilled by

𝑥𝑖 , 𝐿ℎ𝑘 and point out that: the ∗-algebra AΛ generated by the latter is also generated by the 𝑥𝑖 alone;
ii) the unitary irrep of AΛ on HΛ is isomorphic to the irrep 𝝅Λ of𝑈𝑠𝑜(𝐷 + 1) on 𝑉Λ

𝐷+1. In section
4 we show in which sense HΛ,AΛ go to H ,A as Λ → ∞, in particular how one can recover the
multiplication operator 𝑓 · ∈ 𝐶 (𝑆𝑑) ⊂ A of wavefunctions in L2(𝑆𝑑) by a continuous function 𝑓

as the strong limit of a suitable sequence 𝑓Λ ∈ AΛ. In section 5 we discuss our results and possible
developments in comparison with the literature; in particular, we point out that with a suitable ℏ(Λ)
our pair (HΛ,AΛ) can be seen as a fuzzy quantization of a coadjoint orbit of 𝑂 (𝐷) that can be
identified with the cotangent space 𝑇∗𝑆𝑑 , the classical phase space over the 𝑑-dimensional sphere.

2. Representations of 𝑂 (𝐷) via polynomials in 𝑥𝑖, 𝑡𝑖 ≡ 𝑥𝑖/𝑟

Let C[𝑥1, ..., 𝑥𝐷] =
⊕∞

𝑙=0𝑊
𝑙
𝐷

be the decomposition of the space of complex polynomial
functions on R𝐷 into subspaces 𝑊 𝑙

𝐷
of homogeneous ones of degree 𝑙. If 𝑙 ≥ 2 then 𝑊 𝑙

𝐷
carries a

reducible representation of 𝑂 (𝐷), as well as𝑈𝑠𝑜(𝐷), because by (6b) the subspace 𝑟2𝑊 𝑙−2
𝐷

⊂ 𝑊 𝑙
𝐷

carries a smaller one. The ‘trace-free’ component �̌� 𝑙
𝐷

in the decomposition 𝑊 𝑙
𝐷

= 𝑟2𝑊 𝑙−2
𝐷

⊕ �̌� 𝑙
𝐷

carries the irrep 𝝅𝑙
𝐷

of 𝑈𝑠𝑜(𝐷) and 𝑂 (𝐷) characterized by the highest eigenvalue of 𝑳2 within
𝑊 𝑙
𝐷

, namely 𝐸𝑙. In fact, for all ℎ, 𝑘 ∈ {1, ..., 𝐷} 𝑋ℎ𝑘
𝑙,± ≡ (𝑥ℎ±𝑖𝑥𝑘)𝑙 ∈ 𝑊 𝑙

𝐷
are eigenvectors of 𝑳2

with eigenvalue 𝐸𝑙, of 𝐿ℎ𝑘 with eigenvalue ±𝑙, and of Δ with eigenvalue 0. Hence 𝑋ℎ𝑘
𝑙,+ , 𝑋ℎ𝑘

𝑙,− can
be used as the highest and lowest weight vectors of (𝝅𝑙

𝐷
, �̌� 𝑙
𝐷
) [1]. Since all the 𝐿𝑖 𝑗 commute with

Δ, �̌� 𝑙
𝐷

can be characterized also as the subspace of 𝑊 𝑙
𝐷

that is annihilated by Δ. A complete set
in �̌� 𝑙

𝐷
consists of trace-free homogeneous polynomials 𝑋 𝑖1𝑖2...𝑖𝑙

𝑙
, which we obtain below applying

the completely symmetric trace-free projector P𝑙 to the monomials 𝑥𝑖1𝑥𝑖2 ...𝑥𝑖𝑙 . We slightly enlarge
C[𝑥1, ...𝑥𝐷] by new scalar generators 𝑟, 𝑟−1 fulfilling the relations 𝑟2 = 𝑥𝑖𝑥𝑖 , 𝑟𝑟−1 = 1. Its elements

𝑡𝑖 ≡ 𝑟−1𝑥𝑖 , 𝑇ℎ𝑘𝑙,± ≡ (𝑡ℎ±𝑖𝑡𝑘)𝑙 = 𝑟−𝑙𝑋ℎ𝑘𝑙,± (16)

fulfill the following relations: i) 𝑡𝑖𝑡𝑖 = 1, which characterizes the coordinates of points of 𝑆𝑑;
hence 𝑉 𝑙

𝐷
≡ 𝑟−𝑙�̌� 𝑙

𝐷
can be seen as the restriction of �̌� 𝑙

𝐷
to 𝑆𝑑 . ii) 𝑇ℎ𝑘

𝑙,± ∈ 𝑉 𝑙
𝐷

are eigenvectors of 𝑳2

with eigenvalue 𝐸𝑙 and of 𝐿ℎ𝑘 with eigenvalue ±𝑙; hence 𝑇ℎ𝑘
𝑙,+ , 𝑇ℎ𝑘

𝑙,− can be used as the highest and
lowest weight vectors of (𝝅𝑙

𝐷
, 𝑉 𝑙
𝐷
). We denote by 𝑃𝑜𝑙𝐷 the algebra of complex polynomials in the

𝑡𝑖 , by 𝑃𝑜𝑙Λ
𝐷

the subspace of polynomials of degree Λ, by 𝑃Λ : 𝑃𝑜𝑙𝐷 → 𝑃𝑜𝑙Λ
𝐷

the corresponding
projector. 𝑃𝑜𝑙𝐷 endowed with the scalar product ⟨𝑇,𝑇 ′⟩ ≡

∫
𝑆𝑑
𝑑𝛼𝑇∗𝑇 ′ is a pre-Hilbert space,

whose completion is L2(𝑆𝑑); here 𝑑𝛼 = 𝜀𝑖1...𝑖𝐷𝑥𝑖1𝑑𝑥𝑖2 ...𝑑𝑥𝑖𝐷 is the 𝑂 (𝐷)-invariant measure on
𝑆𝑑 . We extend 𝑃Λ to all of L2(𝑆𝑑) by continuity in the norm of the latter. Also 𝑃𝑜𝑙Λ

𝐷
, 𝑉 𝑙
𝐷

are
Hilbert subspaces of L2(𝑆𝑑). 𝑃𝑜𝑙Λ

𝐷
= 𝑊Λ

𝐷
𝑟−Λ ⊕ 𝑊Λ−1

𝐷
𝑟1−Λ carries a reducible representation of

𝑂 (𝐷) [and 𝑈𝑠𝑜(𝐷)] that splits into irreps as 𝑃𝑜𝑙Λ
𝐷

=
⊕Λ

𝑙=0𝑉
𝑙
𝐷

. One finds HΛ ≃ 𝑃𝑜𝑙Λ
𝐷

≃ 𝑉Λ
𝐷+1

as𝑈𝑠𝑜(𝐷) representations. The first isomorphism follows from (14), the second from section 2.2.
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2.1 𝑂 (𝐷)-irreps via trace-free completely symmetric projectors

Let (𝜋, E) be the fundamental (𝐷-dimensional irreducible unitary) representation of 𝑈𝑠𝑜(𝐷)
and 𝑂 (𝐷); the carrier space E is isomorphic to 𝑉1

𝐷
. As a vector space E ≃ R𝐷; the set of

Cartesian coordinates 𝑥 ≡ (𝑥1, ...𝑥𝐷) ∈ R𝐷 can be seen as the set of components of an element
of E with respect to (w.r.t.) an orthonormal basis. The permutator on E⊗2 ≡ E ⊗ E is defined
via P(𝑢 ⊗ 𝑣) = 𝑣 ⊗ 𝑢 and linearly extended. In all bases it is represented by the 𝐷2 × 𝐷2 matrix
Pℎ𝑖
𝑗𝑘

= 𝛿ℎ
𝑘
𝛿𝑖
𝑗
. The symmetric and antisymmetric projectors P+,P− on E⊗2 are obtained as

P± =
1
2
(1𝐷2 ± P) . (17)

Here and below we denote by 1𝐷𝑙 the identity operator on E⊗𝑙 ; in all bases it is represented by the
𝐷𝑙 × 𝐷𝑙 matrix 1𝐷𝑙

ℎ1...ℎ𝑙
𝑖1...𝑖𝑙

≡ 𝛿
ℎ1
𝑖1
...𝛿

ℎ𝑙
𝑖𝑙

. P−E⊗2 carries an irrep under 𝑂 (𝐷), while P+E⊗2 is the
direct sum of two irreps: the 1-dimensional trace and the 1

2 (𝐷−1) (𝐷+2)-dimensional trace-free
symmetric ones. The associated projectors P𝑡 ,P𝑠 from E⊗2 are given by

P𝑡 𝑖 𝑗
𝑘𝑙
=

1
𝐷
𝛿𝑖 𝑗𝛿𝑘𝑙, P𝑠 = P+ − P𝑡 = 1

2
(1𝐷2 + P) − P𝑡 ; (18)

here and below we adopt an orthonormal basis of E for the matrix representation of P𝑡 . Hence
P𝑡 𝑖 𝑗

𝑘𝑙
𝑥𝑖𝑥 𝑗 = 𝛿𝑖 𝑗𝑟2/𝐷. These projectors satisfy the equations P𝛼P𝛽 = P𝛼𝛿𝛼𝛽,

∑
𝛼 P𝛼 = 1𝐷2 ,

where 𝛼, 𝛽 = −, 𝑠, 𝑡. P,P𝑡 are symmetric matrices, i.e. invariant under transposition 𝑇 , and
therefore also the other projectors are, P𝑇 = P, P𝛼𝑇 = P𝛼. In the sequel we abbreviate P ≡ P𝑠.
Given a (linear) operator 𝑀 on E⊗𝑛 , for all integers 𝑙, ℎ with 𝑙 > 𝑛, and 1 ≤ ℎ ≤ 𝑙+1−𝑛 we denote
by 𝑀ℎ (ℎ+1) ...(ℎ+𝑛−1) the operator on E⊗𝑙 acting as the identity on the first ℎ−1 and the last 𝑙+1−𝑛−ℎ
tensor factors, and as 𝑀 in the remaining central ones. For instance, if 𝑀 = P and 𝑙 = 3 we have
P12 = P ⊗ 1𝐷 , P23 = 1𝐷 ⊗ P. All the projectors 𝐴 = P+,P−,P,P𝑡 fulfill the relations

𝐴12 P23 P12 = P23 P12 𝐴23, (19)

𝐷 P𝑡23P
𝑡
12 = P12P23P𝑡12, 𝐷P12P𝑡23P

𝑡
12 = P23P𝑡12, (20)

𝐷 P𝑡12P
𝑡
23 = P23P12P𝑡23, 𝐷 P23P𝑡12P

𝑡
23 = P12P𝑡23, (21)

𝐷 P𝑡23P
𝑡
12 = P𝑡23P12P23, 𝐷 P𝑡23P

𝑡
12P23 = P𝑡23P12; (22)

Eq. (19-22) hold also for 𝑙 > 3, e.g. for all 2 ≤ ℎ ≤ 𝑙 − 1

𝐴(ℎ−1)ℎ Pℎ (ℎ+1) P(ℎ−1)ℎ = Pℎ (ℎ+1) P(ℎ−1)ℎ 𝐴ℎ (ℎ+1) . (23)

The completely symmetric trace-free projectors P𝑙 generalize P2 ≡ P to all 𝑙 > 2. P𝑙 projects E⊗𝑙

to the carrier space of the 𝑙-fold completely symmetric irrep of 𝑈𝑠𝑜(𝐷), isomorphic to �̌� 𝑙
𝐷
, 𝑉 𝑙
𝐷

,
therein contained. It is uniquely characterized by the following properties: for 𝑛 = 1, ..., 𝑙−1,

P𝑙P−
𝑛(𝑛+1) = 0, P−

𝑛(𝑛+1)P
𝑙 = 0, (24)

P𝑙P𝑡
𝑛(𝑛+1) = 0, P𝑡

𝑛(𝑛+1)P
𝑙 = 0, (25)(

P𝑙
)2

= P𝑙, (26)
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Eq.s (25) amount to P𝑙 𝑖1...𝑖𝑙
𝑗1... 𝑗𝑙

𝛿 𝑗𝑛 𝑗𝑛+1 = 0, 𝛿𝑖𝑛𝑖𝑛+1P𝑙
𝑖1...𝑖𝑙
𝑗1... 𝑗𝑙

= 0. Proposition 3.2 of [1] yields
a recursive construction of the projectors P𝑙 (mimicking that of the quantum group 𝑈𝑞𝑠𝑜(𝐷)
covariant symmetric projectors of Proposition 1 of [26]): P𝑙+1 can be expressed as a polynomial in
the permutators P12, ...,P(𝑙−1)𝑙 and trace projectors P𝑡12, ...,P

𝑡
(𝑙−1)𝑙 through either recursive relation

P𝑙+1 = P𝑙12...𝑙𝑀𝑙 (𝑙+1)P
𝑙
12...𝑙, (27)

= P𝑙2...(𝑙+1)𝑀12P𝑙2...(𝑙+1) , (28)

𝑀 ≡ 𝑀 (𝑙+1) = 1
𝑙+1
[
1𝐷2+𝑙P− 2𝐷𝑙

𝐷+2𝑙−2P
𝑡
]
. All P𝑙 are symmetric, (P𝑙)𝑇 = P𝑙. Let

𝑋
𝑖1...𝑖𝑙
𝑙

≡ P𝑙 𝑖1...𝑖𝑙
𝑗1... 𝑗𝑙

𝑥 𝑗1 ...𝑥 𝑗𝑙 , 𝑇
𝑖1𝑖2...𝑖𝑙
𝑙

≡ 𝑟−𝑙 𝑋 𝑖1𝑖2...𝑖𝑙
𝑙

= P𝑙 𝑖1...𝑖𝑙
𝑗1... 𝑗𝑙

𝑡 𝑗1 ...𝑡 𝑗𝑙 . (29)

Using (25) one easily shows that Δ𝑋 𝑖1...𝑖𝑙
𝑙

= 0: the harmonic homogeneous 𝑥𝑖-polynomials 𝑋 𝑖1...𝑖𝑙
𝑙

make up a complete set of �̌� 𝑙
𝐷

(not a basis, because they are invariant under permutations of
(𝑖1...𝑖𝑙) and fulfill 𝛿𝑖𝑛𝑖𝑛+1𝑋

𝑖1...𝑖𝑙
𝑙

= 0, 𝑛 = 1, ..., 𝑙−1). Similarly, the 𝑡𝑖-polynomials 𝑇 𝑖1...𝑖𝑙
𝑙

make up
a complete set T𝑙 (but not a basis) of 𝑉 𝑙

𝐷
that is easier to work with than the basis of spherical

harmonics. Moreover, 𝑳2, 𝑖𝐿ℎ𝑘 and the multiplication operators 𝑡ℎ· act on the 𝑇 𝑖1...𝑖𝑙
𝑙

as follows:

𝑳2 𝑇 𝑖1...𝑖𝑙
𝑙

= 𝐸𝑙 𝑇
𝑖1...𝑖𝑙
𝑙

, (30)

𝑖𝐿ℎ𝑘𝑇
𝑖1...𝑖𝑙
𝑙

= (𝑙+1) 𝐷+2𝑙−2
𝐷+2𝑙

(
P𝑙+1ℎ𝑖1...𝑖𝑙

𝑘 𝑗1... 𝑗𝑙
− P𝑙+1𝑘𝑖1...𝑖𝑙

ℎ 𝑗1... 𝑗𝑙

)
𝑇
𝑗1... 𝑗𝑙
𝑙

,

= 𝑙 P𝑙 𝑖1...𝑖𝑙
𝑗1... 𝑗𝑙

(
𝛿𝑘 𝑗1𝑇

ℎ 𝑗2... 𝑗𝑙
𝑙

− 𝛿ℎ 𝑗1𝑇 𝑘 𝑗2... 𝑗𝑙
𝑙

)
,

(31)

𝑡ℎ 𝑇
𝑖1...𝑖𝑙
𝑙

= 𝑇
ℎ𝑖1...𝑖𝑙
𝑙+1 + 𝑙

𝐷+2𝑙−2
P𝑙 𝑖1𝑖2...𝑖𝑙

ℎ 𝑗2... 𝑗𝑙
𝑇
𝑗2... 𝑗𝑙
𝑙−1 ∈ 𝑉 𝑙+1

𝐷 ⊕ 𝑉 𝑙−1
𝐷 , (32)

𝑡𝑖𝑇
𝑖𝑖2...𝑖𝑙
𝑙

=
1

𝐷+2𝑙−2

[
𝐷+𝑙−1− 2𝑙−2

𝐷+2𝑙−4

]
𝑇
𝑖2...𝑖𝑙
𝑙−1 ∈ 𝑉 𝑙−1

𝐷 . (33)

These formulae immediately follow from analogous ones for the 𝑋 𝑖1...𝑖𝑙
𝑙

. More generally, the product
𝑇
𝑖1...𝑖𝑙
𝑙

𝑇
𝑗1... 𝑗𝑚
𝑚 decomposes as follows into 𝑉𝑛

𝐷
components:

𝑇
𝑖1...𝑖𝑙
𝑙

𝑇
𝑗1... 𝑗𝑚
𝑚 =

∑︁
𝑛∈I𝑙𝑚

𝑆
𝑖1...𝑖𝑙 , 𝑗1... 𝑗𝑚
𝑘1...𝑘𝑛

𝑇 𝑘1...𝑘𝑛
𝑛 , (34)

where I𝑙𝑚 ≡ {|𝑙−𝑚 |, |𝑙−𝑚 |+2, ..., 𝑙+𝑚} and, defining 𝑠≡ 𝑙+𝑚−𝑛
2

∈ {0, 1, ..., 𝑚},

𝑆
𝑖1...𝑖𝑙 , 𝑗1... 𝑗𝑚
𝑘1...𝑘𝑛

= 𝑁 𝑙𝑚𝑛 𝑉
𝑖1...𝑖𝑙 , 𝑗1... 𝑗𝑚
𝑘1...𝑘𝑛

, 𝑁 𝑙𝑚𝑛 =
(𝐷+2𝑛−2)!! 𝑙!𝑚!

(𝐷+2𝑛+2𝑠−2)!! (𝑙−𝑠)! (𝑚−𝑠)!
𝑉
𝑖1...𝑖𝑙 , 𝑗1... 𝑗𝑚
𝑘1...𝑘𝑛

= P𝑙 𝑖1...𝑖𝑙𝑎1...𝑎𝑠𝑐1...𝑐𝑙−𝑠P𝑚
𝑗1... 𝑗𝑠 𝑗𝑠+1... 𝑗𝑚
𝑎1...𝑎𝑠𝑐𝑙−𝑠+1...𝑐𝑛P𝑛

𝑘1...𝑘𝑛
𝑐1...𝑐𝑛 .

(35)

Thus the 𝑆𝑖1...𝑖𝑙 , 𝑗1... 𝑗𝑚
𝑘1...𝑘𝑛

play the role of Clebsch-Gordon coefficients in the decomposition of a product
of spherical harmonics. Finally,

〈
𝑇
𝑖1...𝑖𝑙
𝑙

, 𝑇
𝑗1... 𝑗𝑛
𝑛

〉
∝ 𝛿𝑙𝑛 P𝑙 𝑗1... 𝑗𝑙𝑖1...𝑖𝑙

w.r.t. the scalar product ofL2(𝑆𝑑).
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2.2 Embedding in R𝐷+1, isomorphism End
(
𝑃𝑜𝑙Λ

𝐷

)
≃ 𝜋Λ

𝐷+1
[
𝑈𝑠𝑜(𝐷+1)

]
Henceforth we abbreviate D ≡ 𝐷 + 1. We naturally embed C[R𝐷] ↩→ C[RD]; we use real

Cartesian coordinates (𝑥𝑖) for R𝐷 and (𝑥𝐼 ) for RD; ℎ, 𝑖, 𝑗 , 𝑘 ∈ {1, ..., 𝐷}, 𝐻, 𝐼, 𝐽, 𝐾 ∈ {1, ...,D}.
We naturally embed 𝑂 (𝐷) ↩→ 𝑆𝑂 (D) identifying 𝑂 (𝐷) as the subgroup of 𝑆𝑂 (D) that is the little
group of the D-th axis; its Lie algebra, isomorphic to 𝑠𝑜(𝐷), is generated by the 𝐿ℎ𝑘 . We shall add
D as a subscript to distinguish objects in dimension D from their counterparts in dimension 𝐷, e.g.
the distance 𝑟D from the origin in RD, from its counterpart 𝑟 ≡ 𝑟𝐷 in R𝐷 , P𝑙D from P𝑙 ≡ P𝑙

𝐷
, and

so on. Setting 𝑡 𝐼 ≡ 𝑟−1
D 𝑥𝐼 , for Λ ∈ N0 �̌�

Λ
D , 𝑉Λ

D = 𝑟−ΛD �̌�Λ
D are respectively spanned by the

𝑋
𝐼1...𝐼Λ
D,Λ = PΛ

D
𝐼1...𝐼Λ
𝐽1...𝐽Λ

𝑥𝐽1 ...𝑥𝐽Λ , 𝑇
𝐼1...𝐼Λ
D,Λ = 𝑟−ΛD 𝑋

𝐼1...𝐼Λ
D,Λ = PΛ

D
𝐼1...𝐼Λ
𝐽1...𝐽Λ

𝑡𝐽1 ...𝑡𝐽Λ . (36)

The following combinations of the latter factorize into 𝑋 𝑖1...𝑖𝑙
𝑙

(resp. 𝑇 𝑖1...𝑖𝑙
𝑙

) times a 𝑂 (𝐷)-scalar:

�̌�
𝑖1...𝑖𝑙
D,Λ ≡ P𝑙 𝑖1...𝑖𝑙

𝑗1... 𝑗𝑙
𝑋
𝑗1... 𝑗𝑙D...D
D,Λ = 𝑝Λ,𝑙 𝑋

𝑖1...𝑖𝑙
𝑙

, 𝐹
𝑖1...𝑖𝑙
D,Λ ≡ 𝑟−ΛD �̌�

𝑖1...𝑖𝑙
D,Λ = 𝑝Λ,𝑙𝑇

𝑖1...𝑖𝑙
𝑙

(37)

where 𝑝Λ,𝑙 is the homogeneous polynomial of degree Λ − 𝑙 in 𝑥D, 𝑟D

𝑝Λ,𝑙 =

(
𝑥D

)Λ−𝑙
+
(
𝑥D

)Λ−𝑙−2
𝑟2

D 𝑏Λ,𝑙+2 +
(
𝑥D

)Λ−𝑙−4
𝑟4

D 𝑏Λ,𝑙+4 + ... , (38)

𝑏Λ,𝑙+2𝑘 = (−)𝑘 (Λ−𝑙)! (2Λ−4−2𝑘+D)!!
(Λ−𝑙−2𝑘)! (2𝑘)!! (2Λ−4+D)!! , 𝑘 = 1, 2, ....

[
Λ−𝑙

2

]
, (39)

and 𝑝Λ,𝑙 ≡ 𝑝Λ,𝑙 (𝑥D, 𝑟D) 𝑟 𝑙−ΛD is a polynomial of degree ℎ = Λ − 𝑙 in 𝑡D only. Hence the 𝐹𝑖1...𝑖𝑙D,Λ are
eigenvectors of 𝑳2 with eigenvalue 𝐸𝑙, transform under 𝐿ℎ𝑘 as the 𝑇 𝑖1...𝑖𝑙

𝑙
and under 𝐿ℎD as follows:

𝑖𝐿ℎD𝐹
𝑖1...𝑖𝑙
D,Λ = (Λ−𝑙) 𝐹ℎ𝑖1...𝑖𝑙D,Λ − 𝑙 (Λ+𝑙+𝐷−2)

𝐷+2𝑙−2
P𝑙 𝑖1𝑖2...𝑖𝑙

ℎ 𝑗2... 𝑗𝑙
𝐹
𝑗2... 𝑗𝑙

D,Λ . (40)

These relations follow from exactly the same relations for the �̌�𝑖1...𝑖𝑙D,Λ . As a consequence, �̌�Λ
D , 𝑉Λ

D
decompose into irreducible components of𝑈𝑠𝑜(𝐷) as follows:

�̌�Λ
D =

Λ⊕
𝑙=0

�̌� 𝑙𝐷,Λ, 𝑉Λ
D =

Λ⊕
𝑙=0

𝑉 𝑙𝐷,Λ, (41)

where �̌� 𝑙
𝐷,Λ

≃𝑉 𝑙
𝐷

, 𝑉 𝑙
𝐷,Λ

≃𝑉 𝑙
𝐷

are resp. spanned by the �̌�𝑖1...𝑖𝑙D,Λ , 𝐹𝑖1...𝑖𝑙D,Λ . For Λ = 0, 1, 2 we have:
�̌�0

D ≃ 𝑉0
D ≃ C ≃ 𝑉0

𝐷
. �̌�0

𝐷,1, 𝑉
0
𝐷,1 are isomorphic to 𝑉0

𝐷
and resp. spanned by 𝑥D, 𝑡D; �̌�1

𝐷,1, 𝑉
1
𝐷,1 are

isomorphic to𝑉1
𝐷

and resp. spanned by the 𝑥𝑖 , 𝑡𝑖 . �̌�0
𝐷,2, 𝑉

0
𝐷,2 are isomorphic to𝑉0

𝐷
and resp. spanned

by 𝑋DD
D,2 = 𝑥D𝑥D − 𝑟2

D/D, 𝐹D,2 = 𝑇DD
D,2 = 𝑡D𝑡D − 1/D = 𝐷/D−∑𝐷

ℎ=0 𝑡
ℎ𝑡ℎ; �̌�1

𝐷,2, 𝑉
1
𝐷,2 are isomorphic

to 𝑉0
𝐷

and resp. spanned by the �̌�𝑖D,2 = 𝑋 𝑖DD,2 = 𝑥𝑖𝑥D, 𝐹𝑖D,2 = 𝑇 𝑖DD,2 = 𝑡𝑖𝑡D; �̌�2
𝐷,2, 𝑉

2
𝐷,2 are isomorphic

to 𝑉2
𝐷

and resp. spanned by the �̌�𝑖 𝑗
𝐷,2 = 𝑋

𝑖 𝑗

D,2 + 𝑋
DD
D,2𝛿

𝑖 𝑗/𝐷 = 𝑋
𝑖 𝑗

2 , 𝐹𝑖 𝑗
𝐷,2 = 𝑇

𝑖 𝑗

D,2 +
𝛿𝑖 𝑗

𝐷
𝑇DD

D,2 = 𝑇
𝑖 𝑗

2 ; the
last equalities follow from 𝑋

𝑖 𝑗

2 = 𝑥𝑖𝑥 𝑗−𝑟2 𝛿𝑖 𝑗
𝐷

, 𝑋 𝑖 𝑗D,2 = 𝑥𝑖𝑥 𝑗−𝑟2
D
𝛿𝑖 𝑗

D , 𝑇 𝑖 𝑗2 = 𝑡𝑖𝑡 𝑗− 𝛿𝑖 𝑗

𝐷
, 𝑇 𝑖 𝑗D,2 = 𝑡𝑖𝑡 𝑗− 𝛿𝑖 𝑗

D .
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3. Relations among the 𝑥𝑖, 𝐿ℎ𝑘 , isomorphisms of HΛ,AΛ, ∗-automorphisms of AΛ

The functions 𝝍𝑖1𝑖2...𝑖𝑙
𝑙

≡𝑇 𝑖1𝑖2...𝑖𝑙
𝑙

𝑓𝑙 with fixed 𝑙 make up a complete set S𝑙
𝐷,Λ

in the eigenspace
H 𝑙

Λ
of 𝐻, 𝑳2 with eigenvalues 𝐸0,𝑙, 𝐸𝑙. S𝐷,Λ ≡ ∪Λ

𝑙=0S
𝑙
𝐷,Λ

is complete in HΛ. The 𝐿ℎ𝑘 , 𝑥𝑖 act as

𝑖𝐿ℎ𝑘 𝝍
𝑖1𝑖2...𝑖𝑙
𝑙

= 𝑙 P𝑙 𝑖1...𝑖𝑙
𝑗1... 𝑗𝑙

(
𝛿𝑘 𝑗1𝝍ℎ 𝑗2... 𝑗𝑙

𝑙
− 𝛿ℎ 𝑗1𝝍𝑘 𝑗2... 𝑗𝑙

𝑙

)
, (42)

𝑥𝑖 𝝍𝑖1𝑖2...𝑖𝑙
𝑙

= 𝑐𝑙+1 𝝍
𝑖𝑖1...𝑖𝑙
𝑙+1 + 𝑐𝑙 𝑙

𝐷+2𝑙−2
P𝑙 𝑖1𝑖2...𝑖𝑙
𝑖 𝑗2... 𝑗𝑙

𝝍 𝑗2... 𝑗𝑙
𝑙−1 , (43)

where 𝑐𝑙 ≡

√︃

1 + (2𝐷−5) (𝐷−1)
2𝑘 + (𝑙−1) (𝑙+𝐷−2)

𝑘
if 1 ≤ 𝑙 ≤ Λ,

0 otherwise.

Eq. (42) follows from (31), while (43) holds up to 𝑂
(
𝑘−3/2) corrections that depend on the

terms proportional to (𝑟−1)𝑘 , 𝑘 > 2, in the Taylor expansion of 𝑉 and could be made vanish by
suitably choosing 𝑉 . Henceforth we adopt (42-43) as exact definitions of 𝐿ℎ𝑘 , 𝑥𝑖 . By Proposition
4.1 in [1], the 𝐿ℎ𝑘 , 𝑥𝑖 defined by (42-43) are self-adjoint operators generating the 𝑁2-dimensional
∗-algebra AΛ ≡ 𝐸𝑛𝑑 (HΛ) ≃ 𝑀𝑁 (C) of observables on HΛ; here 𝑁 ≡ (𝐷+Λ−2) ...(Λ+1)

(𝐷−1)! (𝐷+2Λ−1).
Abbreviating 𝒙2 ≡ 𝑥𝑖 𝑥𝑖 , 𝑳2 ≡ 𝐿𝑖 𝑗 𝐿𝑖 𝑗/2, 𝐵 ≡ (2𝐷−5) (𝐷− 1)/2, they fulfill the relations[

𝑖𝐿𝑖 𝑗 , 𝑥
ℎ
]
= 𝑥𝑖𝛿ℎ𝑗 −𝑥

𝑗𝛿ℎ𝑖 , (44)[
𝑖𝐿𝑖 𝑗 , 𝑖𝐿ℎ𝑘

]
= 𝑖

(
𝐿𝑖𝑘𝛿

𝑗

ℎ
−𝐿 𝑗𝑘𝛿𝑖ℎ−𝐿𝑖ℎ𝛿

𝑗

𝑘
+𝐿 𝑗ℎ𝛿𝑖𝑘

)
, (45)

𝜀𝑖1𝑖2𝑖3....𝑖𝐷𝑥𝑖1𝐿𝑖2𝑖3 = 0, 𝐷 ≥ 3, (46)

(𝑥ℎ±𝑖𝑥𝑘)2Λ+1 = 0, ( �̄�ℎ 𝑗+𝑖 �̄�𝑘 𝑗)2Λ+1 = 0, if ℎ ≠ 𝑗 ≠ 𝑘 ≠ ℎ, (47)[
𝑥𝑖 , 𝑥 𝑗

]
= 𝑖𝐿𝑖 𝑗

(
− 𝐼
𝑘
+𝐾 𝑃Λ

Λ

)
, 𝐾 ≡ 1

𝑘
+ 1
𝐷+2Λ−2

[
1+ 𝐵

𝑘
+ (Λ−1) (Λ+𝐷−2)

𝑘

]
, (48)

𝒙2
= 1+ 𝑳

2

𝑘
+ 𝐵
𝑘
− Λ+𝐷−2

2Λ+𝐷−2

[
1+ 𝐵

𝑘
+Λ(Λ+𝐷−1)

𝑘

]
𝑃Λ
Λ =: 𝜒(𝑳2). (49)

A fuzzy sphere is obtained choosing 𝑘 as a function 𝑘 (Λ) fulfilling (12), e.g. 𝑘 = Λ2(Λ+𝐷−2)2/4;
the commutative limit is Λ → ∞. We remark that:

3.a Eq. (46) is the analog of (7b). By (48), it can be reformulated also as 𝜀𝑖1𝑖2𝑖3....𝑖𝐷𝑥𝑖1𝑥𝑖2𝑥𝑖3 = 0.

3.b By (49), (15)𝑙=Λ 𝒙2 is not a constant, but can be expressed as a polynomial 𝜒 in 𝑳
2 only,

with the same eigenspaces H 𝑙
Λ
. All its eigenvalues 𝑟2

𝑙
, except 𝑟2

Λ
, are close to 1, slightly (but

strictly) grow with 𝑙 and collapse to 1 as Λ → ∞. Conversely, 𝑳2 can be expressed as a
polynomial 𝜐 in 𝒙2, via 𝑳

2
=
∑Λ
𝑙=0 𝐸𝑙𝑃

𝑙
Λ

and 𝑃𝑙
Λ
=
∏Λ
𝑛=0,𝑛≠𝑙

𝒙2−𝑟2
𝑛

𝑟2
𝑙
−𝑟2

𝑛
.

3.c By (48), (15)𝑙=Λ the commutators [𝑥𝑖 , 𝑥 𝑗] are Snyder-like, i.e. of the form 𝛼𝐿𝑖 𝑗 ; also 𝛼
depends only on the 𝐿ℎ𝑘 , more precisely can be expressed as a polynomial in 𝑳

2.
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3.d Using (44), (45), (48), all polynomials in 𝑥𝑖 , 𝐿ℎ𝑘 can be expressed as combinations of
monomials in 𝑥𝑖 , 𝐿ℎ𝑘 in any prescribed order, e.g. in the natural one(

𝑥1)𝑛1 ...
(
𝑥𝐷

)𝑛𝐷 (
𝐿12

)𝑛12 (𝐿13
)𝑛13 ...

(
𝐿𝑑𝐷

)𝑛𝑑𝐷 , 𝑛𝑖 , 𝑛𝑖 𝑗 ∈ N0; (50)

the coefficients, which can be put at the right of these monomials, are complex combinations
of 1 and 𝑃Λ

Λ
. Also 𝑃Λ

Λ
can be expressed as a polynomial in 𝑳

2 via (15)𝑙=Λ. Hence a suitable
subset of such ordered monomials makes up a basis of the 𝑁2-dim vector space AΛ.

3.e Actually, 𝑥𝑖 generate the ∗-algebra AΛ, because also the 𝐿𝑖 𝑗 can be expressed as non-ordered
polynomials in the 𝑥𝑖: by (48) 𝐿𝑖 𝑗 = [𝑥 𝑗 , 𝑥𝑖]/𝛼, and also 1/𝛼, which depends only on 𝑃Λ

Λ
,

can be expressed itself as a polynomial in 𝒙2, as shown above.

3.f Eq. (44-49) are equivariant under the whole group 𝑂 (𝐷), including the inversion 𝑥𝑖 ↦→−𝑥𝑖

of one axis, or more (e.g. parity), contrary to Madore’s and Hoppe’s FS.

We slightly enlarge 𝑈𝑠𝑜(𝐷) by introducing the new generator 𝜆 =

[√︁
(𝐷−2)2 + 4𝑳2 − 𝐷 + 2

]
/2,

which fulfills 𝜆(𝜆+𝐷−2) = 𝑳2, so that 𝑉 𝑙
𝐷

is a 𝜆 = 𝑙 eigenspace, and 𝜆 𝐹
𝑖1...𝑖𝑙
D,Λ = 𝑙 𝐹

𝑖1...𝑖𝑙
D,Λ .

Theorem 5.1 in [1] states that there exist a 𝑂 (𝐷)-module isomorphism 𝜘Λ : HΛ → 𝑉Λ
D and a

𝑂 (𝐷)-equivariant algebra map 𝜅Λ : AΛ ≡ End(HΛ) → 𝝅Λ
D
[
𝑈𝑠𝑜(D)

]
, D ≡ 𝐷+1, such that

𝜘Λ(𝑎𝝍) = 𝜅Λ(𝑎)𝜘Λ(𝝍), ∀ 𝝍 ∈ HΛ, 𝑎 ∈ AΛ . (51)

On the 𝝍𝑖1...𝑖𝑙
𝑙

(spanning HΛ) and on generators 𝐿ℎ𝑖 , 𝑥
𝑖 of AΛ they respectively act as follows:

𝜘Λ
(
𝝍𝑖1...𝑖𝑙
𝑙

)
≡ 𝑎Λ,𝑙𝐹𝑖1...𝑖𝑙D,Λ = 𝑎Λ,𝑙 𝑝Λ,𝑙 𝑇

𝑖1...𝑖𝑙
𝑙

, 𝑙 = 0, 1, ...,Λ, (52)

𝜅Λ
(
𝐿ℎ𝑖

)
≡ 𝝅Λ

D(𝐿ℎ𝑖) , 𝜅Λ
(
𝑥𝑖
)
≡ 𝝅Λ

D
[
𝑚∗

Λ(𝜆) 𝑋
𝑖 𝑚Λ(𝜆)

]
, (53)

where 𝑋 𝑖 ≡ 𝐿D𝑖 , 𝐴 ≡
√︁
𝑘 + (𝐷−1) (𝐷−3)3/4, Γ is Euler gamma function, and

𝑎Λ,𝑙 = 𝑎Λ,0 𝑖
𝑙

√︄
Λ(Λ−1)...(Λ−𝑙+1)

(Λ+𝐷−1) (Λ+𝐷)...(Λ+𝑙+𝐷−2) , (54)

𝑚Λ(𝑠) =

√√√√√√ Γ

(
Λ+𝑠+𝑑

2

)
Γ

(
Λ−𝑠+1

2

)
Γ

(
𝑠+1+𝑑/2+𝑖𝐴

2

)
Γ

(
𝑠+1+𝑑/2−𝑖𝐴

2

)
Γ

(
Λ+𝑠+𝐷

2

)
Γ

(
Λ−𝑠

2 + 1
)
Γ

(
𝑠+𝑑/2+𝑖𝐴

2

)
Γ

(
𝑠+𝑑/2−𝑖𝐴

2

) √
𝑘

. (55)

Finally, ∗-automorphisms 𝜔 of AΛ ≃ 𝑀𝑁 (C) are inner and make up a group 𝐺 ≃ 𝑆𝑈 (𝑁), i.e.

𝜔 : 𝑎 ∈ 𝑀𝑁 (C) ↦→ 𝑔 𝑎 𝑔−1 ∈ 𝑀𝑁 (C) (56)

for some unitary 𝑁×𝑁 matrix 𝑔with det 𝑔 = 1. Consider the𝐺-subgroup 𝐺′ ≡ {𝑔 = 𝝅Λ
D
[
𝑒𝑖𝛼

]
| 𝛼 ∈

𝑠𝑜(D)} ≃ 𝑆𝑂 (D). Choosing 𝛼 ∈ 𝑠𝑜(𝐷) ⊂ 𝑠𝑜(D) the automorphism amounts to a 𝑆𝑂 (𝐷) ⊂
𝑆𝑂 (D) transformation, i.e. a rotation in the 𝑥 ≡ (𝑥1, ..., 𝑥𝐷) ∈ R𝐷 space. The 𝑂 (𝐷) ⊂ 𝑆𝑂 (D)
transformations with determinant −1 keep the same form also in the 𝑋 ≡ (𝑋1, ..., 𝑋𝐷) and [by (53)]
in the 𝑥 ≡ (𝑥1, ..., 𝑥𝐷) spaces. In particular, those inverting one or more axes of R𝐷 (i.e. changing
the sign of one or more 𝑥𝑖 , and thus also of 𝑋 𝑖 , 𝑥𝑖), e.g. parity, can be also realized as 𝑆𝑂 (D)
transformations, i.e. rotations in RD. This shows that (53) is equivariant under the whole 𝑂 (𝐷),
which plays the role of isometry group of this fuzzy sphere.
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4. Fuzzy spherical harmonics, and limit Λ → ∞

It’s simpler to work with the 𝑇 𝑖1...𝑖𝑙
𝑙

than spherical harmonics, their combinations. In H𝑠 =

L2(𝑆𝑑) we have 𝝍𝑖1...𝑖𝑙
𝑙

∝ 𝑇 𝑖1...𝑖𝑙
𝑙

, 𝝍0 ∝ 1. The𝑇 𝑖1...𝑖𝑙
𝑙

∈ 𝐶 (𝑆𝑑) act on H𝑠 as multiplication operators
fulfilling 𝑇 𝑖1...𝑖𝑙

𝑙
· 𝝍0 ∝ 𝝍𝑖1...𝑖𝑙

𝑙
. We define their Λ-th fuzzy analogs replacing 𝑡𝑖 · ↦→ 𝑥𝑖 in (29b), i.e.

𝑇
𝑖1...𝑖𝑙
𝑙

≡ P𝑙 𝑖1...𝑖𝑙
𝑗1... 𝑗𝑙

𝑥 𝑗1 ...𝑥 𝑗𝑙 , ⇒ 𝑇
𝑖1...𝑖𝑙
𝑙

𝝍0 ∝ 𝝍𝑖1...𝑖𝑙
𝑙

(57)

for 𝑙 ≤ Λ. Since 𝝍0 is a scalar, 𝝍𝑖1...𝑖𝑙
𝑙

, 𝑇
𝑖1...𝑖𝑙
𝑙

, 𝑇
𝑖1...𝑖𝑙
𝑙

transform under 𝑂 (𝐷) exactly in the same
way, consistently with HΛ ≃ 𝑃𝑜𝑙Λ

𝐷
. As Λ → ∞ the decomposition of HΛ ≃ 𝑃𝑜𝑙Λ

𝐷
into irreducible

components under 𝑂 (𝐷) becomes isomorphic to the decomposition of H𝑠 ≃ 𝑃𝑜𝑙𝐷 . We define the
𝑂 (𝐷)-equivariant embedding I : HΛ ↩→ H𝑠 by setting I

(
𝝍𝑖1...𝑖𝑙
𝑙

)
≡ 𝑇

𝑖1...𝑖𝑙
𝑙

and applying the
linear extension. Below we drop I and identify 𝝍𝑖1...𝑖𝑙

𝑙
= 𝑇

𝑖1...𝑖𝑙
𝑙

as elements of the Hilbert space
H𝑠. For all 𝝓 ≡ ∑∞

𝑙=0 𝜙
𝑙
𝑖1...𝑖𝑙

𝑇
𝑖1...𝑖𝑙
𝑙

∈ L2(𝑆2) and Λ ∈ N let 𝝓Λ ≡ 𝑃Λ𝝓 =
∑Λ
𝑙=0 𝜙

𝑙
𝑖1...𝑖𝑙

𝑇
𝑖1...𝑖𝑙
𝑙

be
its projection to HΛ (or Λ-th truncation). Clearly 𝝓Λ → 𝝓 in the H𝑠-norm ∥ ∥: in this simplified
notation, HΛ ‘invades’ H𝑠 as Λ → ∞. I induces the 𝑂 (𝐷)-equivariant embedding of operator
algebras J :AΛ ↩→𝐵 (H𝑠) by setting J (𝑎) I(𝝍) ≡ I(𝑎𝝍); here 𝐵 (H𝑠) stands for the ∗-algebra of
bounded operators on H𝑠. By construction, AΛ annihilates H⊥

Λ
. In particular, J

(
𝐿ℎ𝑘

)
= 𝐿ℎ𝑘𝑃

Λ,

and 𝐿ℎ𝑘𝝓
Λ→∞−→ 𝐿ℎ𝑘𝝓 for all 𝝓∈𝐷 (𝐿ℎ𝑘) ≡ the domain of 𝐿ℎ𝑘 . More generally, 𝑓 (𝐿ℎ𝑘) → 𝑓 (𝐿ℎ𝑘)

strongly on 𝐷 [ 𝑓 (𝐿ℎ𝑘)] ⊂ H𝑠, for all measurable functions 𝑓 (𝑠). Continuous functions 𝑓 on 𝑆𝑑 ,
acting as multiplication operators 𝑓 · : 𝝓 ∈ H𝑠 ↦→ 𝑓 𝝓 ∈ H𝑠, make up a subalgebra 𝐶 (𝑆𝑑) of
𝐵 (H𝑠). Clearly, 𝑓 belongs also to H𝑠. Since 𝑃𝑜𝑙𝐷 is dense in both H𝑠, 𝐶 (𝑆𝑑), 𝑓𝑁 converges to 𝑓
as 𝑁 → ∞ in both the H𝑠 and the 𝐶 (𝑆𝑑) norm. Identifying 𝝍𝑖1...𝑖𝑙

𝑙
≡ 𝑇 𝑖1...𝑖𝑙

𝑙
, eq. (32), (43) become

𝑡ℎ 𝑇
𝑖1...𝑖𝑙
𝑙

= 𝑇
ℎ𝑖1...𝑖𝑙
𝑙+1 + 𝑑𝑙 P𝑙 𝑖1𝑖2...𝑖𝑙ℎ 𝑗2... 𝑗𝑙

𝑇
𝑗2... 𝑗𝑙
𝑙−1 , 𝑑𝑙 ≡

𝑙

𝐷+2𝑙−2
(58)

𝑥ℎ𝑇
𝑖1𝑖2...𝑖𝑙
𝑙

= 𝑐𝑙+1 𝑇
ℎ𝑖1...𝑖𝑙
𝑙+1 + 𝑐𝑙 𝑑𝑙 P𝑙 𝑖1𝑖2...𝑖𝑙ℎ 𝑗2... 𝑗𝑙

𝑇
𝑗2... 𝑗𝑙
𝑙−1 . (59)

Theorem 6.1 in [1] states that the action of the 𝑇 𝑖1...𝑖𝑙
𝑙

on HΛ is determined by

𝑇
𝑖1...𝑖𝑙
𝑙

𝑇
𝑗1... 𝑗𝑚
𝑚 =

∑︁
𝑛∈𝐿

𝑁 𝑙𝑚𝑛 P𝑙 𝑖1...𝑖𝑙𝑎1...𝑎𝑟𝑐1...𝑐𝑙−𝑟P
𝑚 𝑗1... 𝑗𝑟 𝑗𝑟+1... 𝑗𝑚
𝑎1...𝑎𝑟𝑐𝑙−𝑟+1...𝑐𝑛P

𝑛𝑘1...𝑘𝑛
𝑐1...𝑐𝑛 𝑇

𝑘1...𝑘𝑛
𝑛 , (60)

with suitable coefficients 𝑁 𝑙𝑚𝑛 , cf. (34-35). As a fuzzy analog of the vector space 𝐶 (𝑆𝑑) we adopt

CΛ ≡
{
𝑓2Λ ≡

∑︁2Λ

𝑙=0
𝑓 𝑙𝑖1...𝑖𝑙𝑇

𝑖1...𝑖𝑙
𝑙

| 𝑓 𝑙𝑖1...𝑖𝑙 ∈ C
}
⊂ AΛ ⊂ 𝐵

(
H𝑠

)
; (61)

here the highest 𝑙 is 2Λ because the 𝑇 𝑖1...𝑖𝑙
𝑙

annihilate HΛ if 𝑙 > 2Λ. By construction,

CΛ =
⊕2Λ

𝑙=0
𝑉 𝑙𝐷 , 𝑉 𝑙𝐷 ≡

{
𝑓 𝑙𝑖1...𝑖𝑙𝑇

𝑖1...𝑖𝑙
𝑙

, 𝑓 𝑙𝑖1...𝑖𝑙 ∈ C
}

(62)

is the decomposition of CΛ into irreducible components under 𝑂 (𝐷). 𝑉 𝑙
𝐷

is trace-free for all
𝑙 > 0. In the limit Λ → ∞ (62) becomes the decomposition of 𝐶 (𝑆𝑑). As a fuzzy analog
of 𝑓 ∈ 𝐶 (𝑆𝑑) we adopt the sum 𝑓2Λ appearing in (61) with the coefficients of the expansion
𝑓 =

∑∞
𝑙=0

∑
𝑖1,....,𝑖𝑙 𝑓

𝑙
𝑖1...𝑖𝑙

𝑇
𝑖1...𝑖𝑙
𝑙

up to 𝑙 = 2Λ. Theorem 6.2 in [1] states that for all 𝑓 , 𝑔 ∈ 𝐶 (𝑆𝑑)
the following strong Λ → ∞ limits hold: 𝑓2Λ → 𝑓 ·,�( 𝑓 𝑔)2Λ → 𝑓 𝑔 and 𝑓2Λ�̂�2Λ → 𝑓 𝑔·. However
𝑓2Λ does not converge to 𝑓 in operator norm, because the operator 𝑓2Λ (a polynomial in the 𝑥𝑖)
annihilates H⊥

Λ
(the orthogonal complement of HΛ), since so do the 𝑥𝑖 = 𝑃Λ𝑥𝑖 · 𝑃Λ.

11



P
o
S
(
C
O
R
F
U
2
0
2
2
)
3
4
4

General 𝑂 (𝐷)-equivariant fuzzy hyperspheres Gaetano Fiore

5. Discussion and conclusions

We have obtained a sequence {(HΛ,AΛ)}Λ∈N of𝑂 (𝐷)-equivariant approximations of quantum
mechanics of a particle on 𝑆𝑑; HΛ is the Hilbert space of states, AΛ ≡End(HΛ) is the associated
∗-algebra of observables, 𝐻Λ ∈ AΛ is the free Hamiltonian (this may be modifed by adding
interaction terms 𝐻𝐼 ∈ AΛ, so that the new Hamiltonian still maps HΛ into iself). AΛ is spanned
by ordered monomials (50) in 𝑥𝑖 , 𝐿𝑖 𝑗 (of appropriately bounded degrees), in the same way as the
algebra A𝑠 of observables on H𝑠 is spanned by ordered monomials in 𝑡𝑖 , 𝐿𝑖 𝑗 . However, while
𝑥𝑖 generate the whole AΛ because [𝑥𝑖 , 𝑥 𝑗] ∝ 𝐿𝑖 𝑗 (as in Snyder spaces [4]), this has no analog in
A𝑠, because [𝑡𝑖 , 𝑡 𝑗] = 0. The square distance 𝒙2 from the origin is not 1, but a function of 𝑳2

with a spectrum very close to 1, collapsing to 1 as Λ → ∞. Each pair (HΛ,AΛ) is isomorphic to(
𝑉Λ

D , 𝝅Λ [𝑈𝑠𝑜(D)]
)
, D≡𝐷+1, also as𝑂 (𝐷)-modules; 𝝅Λ is the irrep of𝑈𝑠𝑜(D) on the space𝑉Λ

D of
harmonic polynomials of degree Λ on RD, restricted to 𝑆𝐷 . We have also described (section 4) the
subspace CΛ ⊂ AΛ of completely symmetrized trace-free polynomials in the 𝑥𝑖; this is also spanned
by the fuzzy analogs of spherical harmonics. HΛ,AΛ, CΛ carry reducible representations of𝑂 (𝐷);
as Λ → ∞ their decompositions into irreps respectively go to the decompositions of H𝑠 ≡ L2(𝑆𝑑),
of A𝑠 and of 𝐶 (𝑆𝑑) ⊂ A𝑠 (the continuous functions on 𝑆𝑑 act on H𝑠 as multiplication operators).
There are natural embeddings HΛ ↩→ H𝑠, CΛ ↩→ 𝐶 (𝑆𝑑) and AΛ ↩→ A𝑠 such that HΛ → H𝑠 in
the norm of H𝑠, while CΛ → 𝐶 (𝑆𝑑), AΛ → A𝑠 strongly as Λ → ∞.

Reintroducing the physical angular momentum components 𝑙𝑖 𝑗 ≡ ℏ𝐿𝑖 𝑗 , then in the ℏ → 0 limit
A𝑠 endowed with the usual quantum Poisson bracket { 𝑓 , 𝑔} = [ 𝑓 , 𝑔]/𝑖ℏ goes to the (commutative)
Poisson algebra F of (polynomial) functions on the classical phase space 𝑇∗𝑆𝑑 , generated by 𝑡𝑖 , 𝑙𝑖 𝑗 .
We can directly obtain F from AΛ adopting a suitable Λ-dependent ℏ going to zero as Λ → ∞1.
More formally, we can regard {AΛ}Λ∈N as a fuzzy quantization of a coadjoint orbit of 𝑂 (D) that
goes to the classical phase space 𝑇∗𝑆𝑑 . We recall that coadjoint orbits O𝝀 = Ad∗𝐺𝝀 of a Lie group
𝐺 are orbits of the coadjoint action Ad∗𝐺 inside the dual space g∗ of the Lie algebra g of 𝐺 passing
through 𝝀 ∈ g∗, or equivalently homogeneous spaces 𝐺/𝐺𝝀 , where 𝐺𝝀 is the stabilizer of 𝝀 w.r.t.
Ad∗𝐺 . They have a natural symplectic structure. If 𝐺 is compact semisimple, identifying g∗ ≃ g via
the (nondegenerate) Killing form, we can resp. rewrite these definitions in the form

O𝝀 ≡
{
𝑔𝝀𝑔−1 | 𝑔 ∈ 𝐺

}
⊂ g∗, O𝝀 ≡ 𝐺/𝐺𝝀 where 𝐺𝝀 ≡

{
𝑔 ∈ 𝐺 | 𝑔𝝀𝑔−1 = 𝝀

}
. (63)

Clearly, 𝐺Λ𝝀 = 𝐺𝝀 for all Λ ∈ C \ {0}. Denoting as H𝝀 the (necessarily finite-dimensional) carrier
space of the irrep with highest weight 𝝀, one can regard (see e.g. [27]) the sequence of {AΛ}Λ∈N,
with AΛ ≡ End (HΛ𝝀), as a fuzzy quantization of the symplectic space O𝝀 ≃ 𝐺/𝐺𝝀 . The Killing
form 𝐵 of 𝑠𝑜(D) gives 𝐵(𝐿𝐻𝐼 , 𝐿𝐽𝐾 ) = 2(D−2)

(
𝛿𝐻
𝐽
𝛿𝐼
𝐾
− 𝛿𝐻

𝐾
𝛿𝐼
𝐽

)
for all 𝐻, 𝐼, 𝐽, 𝐾 ∈ {1, 2, ...,D}.

As a basis of the Cartan subalgebra h of 𝑠𝑜(D) we pick {𝐻𝑎}𝜎𝑎=1, where 𝜎 ≡
[D

2
]
= rank of 𝑠𝑜(D),

𝐻𝜎 ≡ 𝐿𝐷D, 𝐻𝜎−1 ≡ 𝐿 (𝑑−1)𝑑 , ..., 𝐻1 =

{
𝐿12 if D = 2𝜎,
𝐿23 if D = 2𝜎+1.

(64)

We choose the irrep of 𝑈𝑠𝑜(D) on 𝑉Λ
D ≃ HΛ and ΩΛ

D ≡ (𝑡𝐷 +𝑖𝑡D)Λ ∈ 𝑉Λ
D as the highest weight

vector. The joint spectrum 𝚲 = (0, ..., 0,Λ) of 𝐻 ≡ (𝐻1, ..., 𝐻𝜎) is the weight associated to the

1It suffices that ℏ(Λ)𝑘 (Λ) diverges; if e.g. 𝑘 = Λ2 (Λ+𝐷−2)2/4, then ℏ(Λ) = 𝑂 (Λ−𝛼) with 0 < 𝛼 < 4 is enough.
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h-basis. Identifying 𝝀 ∈ h∗ with 𝐻𝝀 ∈ h via the Killing form, we find that 𝐻𝚲 ∝ 𝐻𝜎 = 𝐿𝐷D. The
stabilizer of 𝐻𝚲 in 𝑆𝑂 (D) is 𝑆𝑂 (2)×𝑆𝑂 (𝑑), where 𝑠𝑜(2), 𝑠𝑜(𝑑) are resp. spanned by 𝐻𝚲, the 𝐿𝑖 𝑗
with 𝑖, 𝑗 < 𝐷. Thus the coadjoint orbit O𝚲 = 𝑆𝑂 (D)/

(
𝑆𝑂 (2)×𝑆𝑂 (𝑑)

)
has the dimension of 𝑇∗𝑆𝑑 ,

𝐷 (𝐷+1)
2 − 1 − (𝐷−2) (𝐷−1)

2 = 2(𝐷 − 1) = 2𝑑,

consistently with the interpretation of AΛ as the algebra of observables (quantized phase space) on
the fuzzy sphere. It would have not been the case with some other irrep of𝑈𝑠𝑜(D); O𝝀 would have
been some other equivariant bundle over 𝑆𝑑 [27]. For instance, the fuzzy spheres of dimension
𝑑 > 2 of [17–20] are based on 𝐸𝑛𝑑 (𝑉Λ), where the spaces 𝑉Λ carry irreps of both 𝑆𝑝𝑖𝑛(𝐷) and
𝑆𝑝𝑖𝑛(D), hence of both 𝑈𝑠𝑜(𝐷) and 𝑈𝑠𝑜(D). Then: i) for some Λ these may be only projective
representations of𝑂 (𝐷); ii) in general (46) will not be satisfied; iii) as Λ → ∞𝑉Λ does not go to
L2(𝑆𝑑) as a representation of 𝑈𝑠𝑜(𝐷), in contrast with our HΛ ≃ 𝑉Λ

D ; iv) the central 𝒙2 ≡ 𝑋 𝑖𝑋 𝑖

can be normalized to 𝒙2 = 1. Here 𝐿𝑖D play the role of fuzzy coordinates 𝑋 𝑖 . In [21, 22] 𝑑 = 4 and
O𝝀 = C𝑃3, which has dimension 6 and can be seen as a 𝑠𝑜(5)-equivariant 𝑆2 bundle over 𝑆4. Ref.
[21, 22] constructs also a fuzzy 4-sphere 𝑆4

𝑁
based on based on a sequence of 𝐸𝑛𝑑 (𝑉), where each

𝑉 carries an irrep 𝜋 of 𝑈𝑠𝑜(6) which splits into the direct sum of a small number 𝑚 > 1 of irreps
of 𝑈𝑠𝑜(5); the 𝑂 (5)-scalar 𝒙2 = 𝑋 𝑖𝑋 𝑖 is no longer central, but its spectrum is still very close to 1
provided. The associated coadjoint orbit is 10-dimensional and can be seen as a 𝑠𝑜(5)-equivariant
C𝑃2 bundle over C𝑃3, or a 𝑠𝑜(5)-equivariant twisted bundle over either 𝑆4

𝑁
or 𝑆4

𝑛.
A𝑠 is generated by all the 𝑡ℎ, 𝐿𝑖 𝑗 with ℎ ≤ 𝐷, 𝑖 < 𝑗 ≤ 𝐷 (subject to the relations 𝑡𝑖𝑡ℎ = 𝑡ℎ𝑡𝑖 ,

𝑡𝑖𝑡𝑖 = 1, [𝑖𝐿𝑖 𝑗 , 𝑡ℎ] = 𝑡𝑖𝛿ℎ𝑗 − 𝑡 𝑗𝛿ℎ𝑖 , etc.), and 𝐶 (𝑆𝑑) is generated by the 𝑡ℎ alone. On the contrary,
by Remark 3.e the 𝑥𝑖 alone generate the whole AΛ ≃ 𝝅Λ

D
[
𝑈𝑠𝑜(D)

]
, which contains CΛ as a

proper subspace, albeit not as a subalgebra; also the simpler generators 𝑋 𝑖 = 𝐿D𝑖 alone generate
AΛ ≃ 𝝅Λ

D
[
𝑈𝑠𝑜(D)

]
, because of 𝐿𝑖 𝑗 = 𝑖[𝑋 𝑗 , 𝑋 𝑖] and (53). Thus the Hilbert-Poincaré series of the

algebra generated by the 𝑥𝑖 (or 𝑋 𝑖), AΛ, is larger than that of 𝑃𝑜𝑙Λ
𝐷

and CΛ. If by a “quantized
space" we understand a noncommutative deformation of the algebra of functions on that space
preserving the Hilbert-Poincaré series, then {AΛ}Λ∈N is a (𝑂 (𝐷)-equivariant, fuzzy) quantization
of 𝑇∗𝑆𝑑 , the phase space on 𝑆𝑑 , while {CΛ}Λ∈N is not a quantization of 𝑆𝑑 , nor are the other
fuzzy spheres, except the Madore-Hoppe fuzzy 2-dimensional sphere: all the others, as ours, have
the same Hilbert-Poincaré series of a suitable equivariant bundle on 𝑆𝑑 , i.e. a manifold with a
dimension 𝑛 > 𝑑 (in our case, 𝑛 = 2𝑑). (Incidentally, in our opinion also for the Madore-Hoppe
fuzzy sphere the most natural interpretation is of a quantized phase space, because the ℏ → 0 limit
of the quantum Poisson bracket endows its algebra with a nontrivial Poisson structure.)

We understand HΛ, CΛ as fuzzy “quantized" 𝑆𝑑 in the following weaker sense. HΛ, CΛ are
the quantizations of L2(𝑆𝑑), 𝐶 (𝑆𝑑), because, by (57b), the whole HΛ is obtained applying to the
ground state 𝝍0 the polynomials in the 𝑥𝑖 alone (or the subspace CΛ), or equivalently [by (53)] the
polynomials in the 𝑋 𝑖 = 𝐿D𝑖 alone, in the same way as L2(𝑆𝑑) is obtained (modulo completion)
by applying 𝐶 (𝑆𝑑) or 𝑃𝑜𝑙𝐷 , i.e. the polynomials in the 𝑡𝑖 = 𝑥𝑖/𝑟 , to the ground state (the constant
function on 𝑆𝑑). These quantizations are 𝑂 (𝐷)-equivariant because HΛ (resp. CΛ) carries the
same reducible representation of 𝑂 (𝐷) as the space 𝑃𝑜𝑙Λ

𝐷
(resp. 𝑃𝑜𝑙2Λ

𝐷
) of polynomials of degree

Λ (resp. 2Λ) in the 𝑡𝑖 = 𝑥𝑖/𝑟. Identifying HΛ, CΛ with 𝑃𝑜𝑙Λ
𝐷
, 𝑃𝑜𝑙2Λ

𝐷
as 𝑂 (𝐷)-modules, as Λ → ∞

the latter become dense in L2(𝑆𝑑), 𝐶 (𝑆𝑑), and their decompositions into irreps of 𝑂 (𝐷) become
that (2) of both L2(𝑆𝑑), 𝐶 (𝑆𝑑). This is not the case for the other fuzzy spheres.
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We expect that space uncertainties and optimally localized/coherent states for 𝑑 = 1, 2 [28]
generalize to 𝑑 > 2. It is also worth investigating about: distances between optimally localized states
(as e.g. in [29]); extending our construction to particles with spin; QFT on 𝑆𝑑

Λ
; their application to

problems in quantum gravity, or condensed matter physics; etc. Finally, we mention that by using
Drinfel’d twists one can construct [30, 31] a different kind of noncommutative submanifolds of
noncommutative R𝐷 , equivariant with respect to a ‘quantum group’ (twisted Hopf algebra).
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