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Ultraperipheral collisions (UPCs) at the LHC and RHIC provide important new information
on the partonic structure of the proton and nuclei and small-𝑥 dynamics in QCD. We review
phenomenological applications of the collinear factorization at leading and next-to-leading orders
of perturbative QCD and the dipole model to coherent and incoherent 𝐽/𝜓 photoproduction in
Pb-Pb UPCs at the LHC emphasizing the strong leading twist gluon nuclear shadowing, the role of
quark-antiquark-gluon dipoles, and a possible onset the gluon saturation in nuclei. We also discuss
inclusive and diffractive dĳet photoproduction in UPCs, which give complementary constraints
on nuclear parton distributions and the pattern of factorization breaking in diffraction.
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1. Ultraperipheral collisions as a proxy for photon-nucleus collider

Ultraperipheral collisions (UPCs) constitute an important part of the nuclear physics program
at the Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC). In UPCs, colliding
ions pass each other at large impact parameters of the order of tens of fermi. In this case, the strong
hadron-hadron interaction is suppressed and the reaction is mediated by quasi-real photons in the
Weizsäcker-Williams equivalent photon approximation. The flux of these photons is enhanced by
𝑍2 (𝑍 is the ion electric charge) and the maximal photon energy is proportional to the ion Lorentz
factor 𝛾𝐿 . This makes UPCs a proxy for a high-energy photon-nucleus collider reaching at the LHC
well into the TeV-range. Thus, UPCs give an opportunity to address open questions of the partonic
structure of protons and nuclei and the strong interaction dynamics in small-𝑥 QCD [1–4].

One of the most frequently studied UPC process is photoproduction of light (𝜌) and heavy
(𝐽/𝜓, Υ) vector mesons 𝑉 . Since both colliding nuclei can serve as a source of photons and as a
target, the UPC cross section is given by a sum of two terms,

𝑑𝜎𝐴𝐴→𝑉𝐴𝐴′

𝑑𝑦𝑑𝑝𝑇
=

[
𝑘𝑁𝛾/𝐴(𝑘)

𝑑𝜎𝛾𝐴→𝑉𝐴′

𝑑𝑝𝑇

]
𝑘=𝑘+

+
[
𝑘𝑁𝛾/𝐴(𝑘)

𝑑𝜎𝛾𝐴→𝑉𝐴′

𝑑𝑝𝑇

]
𝑘=𝑘−

, (1)

where 𝑦 and 𝑝𝑇 are the vector meson rapidity and transverse momentum, respectively; 𝑘𝑁𝛾/𝐴(𝑘) is
the photon flux known from QED with an additional input to suppress the strong interaction at small
impact parameters. Equation (1) leads to a two-fold ambiguity in the photon energy 𝑘 as a function
of 𝑦, 𝑘± = (𝑀𝑉/2)𝑒±𝑦 , where 𝑀𝑉 is the vector meson mass. The underlying photon-nucleus
cross section 𝑑𝜎𝛾𝐴→𝑉𝐴′/𝑑𝑝𝑇 can be either coherent (𝐴′ = 𝐴, target intact) or incoherent (𝐴′ ≠ 𝐴,
target breaks up). The two cases contain complementary information on small-𝑥 dynamics and are
experimentally distinguished by measuring the 𝑝𝑇 distribution and comparing it to predictions of
the STARlight Monte Carlo [5].

Both coherent and incoherent scattering can be accompanied by mutual electromagnetic excita-
tion of the colliding ions with their subsequent de-excitation and emission of forward neutrons [6, 7].
Measurements of UPCs in conjunction with the detection of forward neutrons in any two channels
(0n0n, 0nXn, XnXn) allow one to circumvent the photon-energy ambiguity and thus to access very
low values of 𝑥 [8, 9]. In the case of coherent 𝐽/𝜓 photoproduction in Pb-Pb UPCs at 5.02 TeV,
this was recently demonstrated by CMS [10] and ALICE [11] collaborations at the LHC.

2. Exclusive 𝐽/𝜓 photoproduction in collinear factorization of pQCD

Studies of exclusive 𝐽/𝜓 photoproduction in UPCs are motivated by the result that in the
leading double logarithmic approximation of perturbative QCD (pQCD) and the static limit for the
charmonium wave function, the cross section of this process is proportional to the small-𝑥 gluon
density of the target squared [12],

𝑑𝜎𝛾𝑝→𝐽/𝜓𝑝 (𝑡 = 0)
𝑑𝑡

=
12𝜋3

𝛼e.m.

Γ𝑉𝑀
3
𝑉

(4𝑚2
𝑐)4

[
𝛼𝑠 (𝑄2

eff)𝑥𝑔(𝑥, 𝑄
2
eff)

]2
𝐶 (𝑄2 = 0) , (2)

where Γ𝑉 is the 𝐽/𝜓 → 𝑙+𝑙− leptonic decay width, 𝑥 = 𝑀2
𝐽/𝜓/𝑊

2
𝛾𝑝 and 𝑄eff = O(𝑚𝑐) with 𝑊𝛾𝑝

being the photon-nucleon center-of-mass energy and 𝑚𝑐 the charm quark mass. The factor of
𝐶 (𝑄2 = 0) accounts for effects beyond the non-relativistic approximation for the 𝐽/𝜓 vertex.

2



P
o
S
(
H
a
r
d
P
r
o
b
e
s
2
0
2
3
)
0
2
1

UPCs as probes of partonic structure – exclusive and inclusive processes Vadim Guzey

Applying Eq. (2) to nuclear targets, one can express the 𝑝𝑇 -integrated cross section of coherent
𝐽/𝜓 photoproduction in the following form,

𝜎𝛾𝐴→𝐽/𝜓𝐴(𝑊𝛾𝑝) =
𝑑𝜎𝛾𝑝→𝐽/𝜓𝑝 (𝑡 = 0)

𝑑𝑡

[
𝑥𝑔𝐴(𝑥, 𝑄2

eff)
𝐴𝑥𝑔𝑝 (𝑥, 𝑄2

eff)

]2 ∫ ∞

|𝑡min |
𝑑𝑡 |𝐹𝐴(𝑡) |2 , (3)

where 𝑥𝑔𝐴/(𝐴𝑥𝑔𝑝) is ratio of the gluon density in the nucleus to that in the free proton, and 𝐹𝐴(𝑡)
is the nucleus form factor. To quantify the magnitude of nuclear modifications, it is convenient to
introduce the nuclear suppression factor 𝑆𝑃𝑏 (𝑥) [13, 14],

𝑆𝑃𝑏 (𝑥) =
[
𝜎𝛾𝐴→𝐽/𝜓𝐴(𝑊𝛾𝑝)
𝜎

𝛾𝐴→𝐽/𝜓𝐴

IA (𝑊𝛾𝑝)

]1/2

=
𝑥𝑔𝐴(𝑥, 𝑄2

eff)
𝐴𝑥𝑔𝑝 (𝑥, 𝑄2

eff)
= 𝑅𝑔 (𝑥, 𝑄2

eff) , (4)

where 𝜎
𝛾𝐴→𝐽/𝜓𝐴

IA is the impulse approximation (IA) for the cross section in Eq. (3), where one
neglects nuclear modifications of 𝑥𝑔𝐴. The values of 𝑆𝑃𝑏 (𝑥) extracted from ALICE and CMS
measurements give direct evidence of the large gluon nuclear shadowing [13, 14],

𝑅𝑔 (𝑥 = 6 × 10−4 − 10−3, 𝑄2
eff = 3 GeV2) ≈ 0.6 . (5)

It confirmed predictions of the leading twist approximation (LTA) to nuclear shadowing [15] and
the EPS09 nuclear parton distribution functions (nPDFs) [16].

One can go beyond the approximation of Eq. (2) and use the formalism of collinear factorization
for hard exclusive processes at next-to-leading order (NLO) accuracy. In this framework, the
amplitude of exclusive 𝐽/𝜓 photoproduction is expressed in terms of generalized parton distributions
(GPDs) and NLO gluon and quark coefficient functions𝑇𝑔 and𝑇𝑞 [17]. The nuclear photoproduction
amplitude is given by the following convolution [18, 19],

M𝛾𝐴→𝐽/𝜓𝐴(𝑡) ∝
√︃
⟨𝑂1⟩𝐽/𝜓

∫ 1

−1
𝑑𝑥

[
𝑇𝑔 (𝑥, 𝜉)𝐹𝑔

𝐴
(𝑥, 𝜉, 𝑡) + 𝑇𝑔 (𝑥, 𝜉)𝐹𝑞,𝑆

𝐴
(𝑥, 𝜉, 𝑡)

]
, (6)

where ⟨𝑂1⟩𝐽/𝜓 is the non-relativistic QCD (NRQCD) matrix element related to Γ𝑉 , and 𝐹
𝑔

𝐴
and

𝐹
𝑞,𝑆

𝐴
are the nuclear gluon and quark singlet GPDs. While only the gluons contribute at leading

order (LO), there is both gluon and quark contributions at NLO.
GPDs interpolate between usual PDFs, distribution amplitudes and elastic form factors and, as

a result, depend on the two momentum fractions 𝑥 and 𝜉 ≈ 𝑀2
𝐽/𝜓/(2𝑊

2
𝛾𝑝), the momentum transfer

𝑡 and the factorization scale 𝜇𝐹 (implicit). However, at small 𝜉, GPDs can be expressed in terms
of usual PDFs because the 𝜇𝐹 evolution washes out information on the possible 𝜉 dependence of
GPDs at the input scale [20, 21]. Therefore, with a good accuracy, one can use the following model
for the gluon nuclear GPD (the quark case is similar),

𝐹
𝑔

𝐴
(𝑥, 𝜉, 𝑡, 𝜇𝐹) = 𝑥𝑔𝐴(𝑥, 𝜇𝐹)𝐹𝐴(𝑡) . (7)

Figure 1 shows NLO pQCD predictions for the rapidity dependence of the cross section of
coherent 𝐽/𝜓 photoproduction in Pb-Pb UPCs at 5.02 TeV, which are compared to the Run 2
LHC data. In the calculation [19], three state-of-the art nPDFs (EPPS21, nCTEQ15WZHIS, and
nNNPDF3.0) have been used. The shaded bands showing the propagation of the nPDF uncertainties
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Figure 1: NLO pQCD predictions for 𝑑𝜎𝐴𝐴→𝐴𝐴𝐽/𝜓/𝑑𝑦 as a function of the 𝐽/𝜓 rapidity 𝑦 in Pb-Pb UPCs
at 5.02 TeV for EPPS21, nNNPDF3.0, and nCTEQ15WZSIH nPDFs. For comparison, the Run 2 LHC data
are also shown. From [19].

are much larger than the experimental errors, which implies that these data have the potential to
improve the determination of nPDFs.

It is well known that NLO pQCD calculations for this process are characterized by a very
strong 𝜇𝐹 dependence, which originates from the double logarithmic terms in the NLO coefficient
functions enhanced by log(1/𝜉) at small 𝜉. One can nevertheless find an optimal scale providing a
reasonable description of both Run 1 and 2 UPC data (these values are shown in the figure).

A surprising result of the NLO pQCD analysis [18, 19] is the dominance of the quark contri-
bution at central rapidities 𝑦 because of the strong cancellations between the LO and NLO gluon
contributions. It challenges the perturbative stability of the NLO calculations and the interpreta-
tion of the UPC data in terms of the gluon nuclear shadowing. This can be partially mitigated
by considering the ratio of UPC cross sections for two different targets, for instance, for oxygen
and lead, where the 𝜇𝐹 dependence is dramatically reduced and becomes comparable to nPDF
uncertainties [19].

At the same time, NLO pQCD predictions for Υ photoproduction are under better theoretical
control than those for 𝐽/𝜓: NLO corrections are moderate, GPD modeling benefits from the longer
evolution in 𝜇𝐹 , and relativistic corrections are expected to be small. This was demonstrated in
the case of Υ photoproduction in Pb-Pb UPCs at the LHC [22], which was shown to be dominated
by the gluon contribution and which hence can be used to study the 𝜇𝐹 dependence of the gluon
nuclear shadowing.

It was argued that perturbative stability of the NLO predictions for heavy vector meson photo-
production can be improved by a special choice of the factorization scale 𝜇𝐹 = 𝑚𝑐 and the so-called
𝑄0-subtraction eliminating certain double counting between NLO and LO terms [23, 24]. In the
case of the proton target, it was shown to restore the gluon dominance leading to new constraints
on the gluon distribution at small 𝑥 [25, 26].
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3. Exclusive 𝐽/𝜓 photoproduction in dipole picture

In the dipole picture of high-energy scattering, the photon is viewed as a superposition of long-
lived quark-antiquark, quark-antiquark-gluon, etc. dipoles, which elastically scatter on the target
nucleons. This leads to a high-energy factorization for the nuclear scattering amplitude, which is
expressed in terms of the overlap of the photon and 𝐽/𝜓 wave functions and the eikonal form for
the dipole cross section 𝜎(𝑟𝑇 ),

M𝛾𝐴→𝐽/𝜓𝐴 = 2
∫

𝑑2r𝑇
∫

𝑑𝑧

4𝜋

∫
𝑑2b𝑇 [Ψ∗

𝐽/𝜓Ψ𝛾]
(
1 − 𝑒−

1
2 𝜎 (𝑟𝑇 )𝑇𝐴 (𝑏𝑇 )

)
, (8)

where 𝑟𝑇 is the dipole transverse size, 𝑏𝑇 is the impact parameter, 𝑧 is the light-cone momentum
fraction shared by the charm quark and antiquark, and 𝑇𝐴(𝑏𝑇 ) is the nuclear optical density. The
application of this implementation of the dipole model to coherent 𝐽/𝜓 photoproduction in Pb-Pb
UPCs at 2.76 TeV overestimates the data at 𝑦 ≈ 0 [27, 28] because nuclear shadowing resulting
from scattering of small dipoles with 𝑟𝑇 ∼ 0.3 fm on target nucleons is weak. It is an example of
the general observation that successive scattering of small dipoles on nucleons of a nuclear target
corresponds to a higher-twist effect [29].

To cure this, one needs to include higher Fock states, in particular, the quark-antiquark-gluon
dipoles. The improved, more complete dipole model predictions agree well with the LHC data on
coherent 𝐽/𝜓 photoproduction in Pb-Pb UPCs [30, 31]. Note that the inclusion higher Fock states
allows one to model inelastic (leading-twist) contribution to nuclear shadowing as required by the
Glauber-Gribov theory of nuclear shadowing [32].

Instead of building up the nuclear scattering amplitude as the Glauber series, see Eq. (8), one
can implement nuclear geometry in the initial condition of the Balitsky-Kovchegov (BK) equation.
This can be interpreted as an onset of the gluon saturation in nuclei, but not necessarily in the
nucleons. The resulting approach provides a good description of the LHC data on coherent 𝐽/𝜓
photoproduction in Pb-Pb UPCs [33].

To summarize, none of the available theoretical approaches describe the 𝑦-dependence of
coherent 𝐽/𝜓 photoproduction in Pb-Pb UPCs at 5.02 TeV [34, 35]. The suppression at 𝑦 ≈ 0 can
be interpreted as the strong leading twist gluon nuclear shadowing in the collinear framework or as
an indication of the importance of higher Fock states and the gluon saturation in the dipole picture.
Large values of 𝑦 correspond to small shadowing, where predictions of different models generally
converge, but there they are at the border of their applicability. In this respect, recent measurements
of UPCs with neutron emission [10, 11] provide important complementary information on nuclear
shadowing in a wide range of 𝑥, 10−5 < 𝑥 < 0.03.

Turning to incoherent 𝐽/𝜓 photoproduction in UPCs, one notices that it requires a new sub-
nucleon scale, which can be realized in the form of “hot gluon spots” and geometric fluctuations
of the proton. Implementation of these ideas in the dipole picture provides a fair description of
the ALICE data [36, 37]. The competing explanation is based on the leading twist approximation
(LTA) to nuclear shadowing [38]. Note that the two approaches provide compatible predictions for
the 𝑡-dependence of the 𝐽/𝜓 photo-nuclear cross section, which are characterized by a shift toward
smaller |𝑡 | in the coherent case [39, 40] and flattening for large |𝑡 | in the incoherent case.
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Figure 2: NLO pQCD predictions for the cross section of inclusive dĳet photoproduction in Pb-Pb UPC as
a function of 𝑥𝐴 in different bins of the dĳet transverse momentum 𝐻𝑇 vs. the ATLAS data. From [41].

4. Inclusive and diffractive dĳet photoproduction in Pb-Pb UPCs

Complementary information on the partonic structure of nuclei and small-𝑥 QCD dynamics
can be obtained in dĳet photoproduction in UPCs. In the framework of collinear factorization and
NLO pQCD, the cross section of inclusive dĳet photoproduction in Pb-Pb UPCs reads [41]

𝑑𝜎𝐴𝐴→𝐴+2jets+𝑋 =
∑︁
𝑎,𝑏

∫
𝑑𝑦

∫
𝑑𝑥𝛾

∫
𝑑𝑥𝐴 𝑓𝛾/𝐴(𝑦) 𝑓𝑎/𝛾 (𝑥𝛾 , 𝜇2) 𝑓𝑏/𝐴(𝑥𝐴, 𝜇2)𝜎̂𝑎𝑏→jets , (9)

where 𝑓𝛾/𝐴(𝑦) is the photon flux, 𝑓𝑎/𝛾 (𝑥𝛾) are photon PDFs in the resolved-photon case, 𝑓𝑏/𝐴(𝑥𝐴)
are nuclear PDFs, and 𝜎̂𝑎𝑏→jets is the cross section to produce jets in hard scattering of partons 𝑎
and 𝑏 (in the direct photon case, 𝑎 stands for the photon). The distributions in Eq. (9) depend on
the corresponding momentum fraction and the factorization scale 𝜇.

Figure 2 shows predictions of Eq. (9) with the implementation and input specified in [41] and
compares them to the preliminary ATLAS data at 5.02 TeV [42]. One can see from the figure
that NLO pQCD describes well the shape and normalization of the data. This cross section is
sensitive to nuclear modifications of nPDFs at the level of 10− 20% and can be used to reduce their
uncertainties by approximately a factor of 2 [43]. Note that this process can also be used to look
for nonlinear effects within the color glass condenstate (CGC) framework [44].

By requiring that the target nucleus stays intact, one study diffractive dĳet photoproduction
in UPCs. In NLO pQCD, the 𝑘+ contribution [see Eq. (1)] to the cross section of diffractive dĳet

6
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photoproduction in Pb-Pb UPCs has the following form [45],

𝑑𝜎𝐴𝐴→𝐴+2jets+𝑋+𝐴(+) =
∑︁
𝑎,𝑏

∫
𝑑𝑦

∫
𝑑𝑥𝛾

∫
𝑑𝑥𝑃

∫
𝑑𝑧𝑃

× 𝑓𝛾/𝐴(𝑦) 𝑓𝑎/𝛾 (𝑥𝛾 , 𝜇2) 𝑓 𝐷 (3)
𝑏/𝐴 (𝑥𝑃, 𝑧𝑃, 𝜇2)𝜎̂𝑎𝑏→jets , (10)

where 𝑥𝑃 and 𝑧𝑃 refer to the Pomeron-in-nucleus and parton-in-Pomeron momentum fractions.
Such measurements will probe the novel nuclear diffractive PDFs 𝑓

𝐷 (3)
𝑏/𝐴 at small 𝑥 [15] and may

also shed some light on the mechanism of factorization breaking in diffractive scattering [45].

5. Summary

There is continuing interest in using UPCs at the LHC and RHIC to obtain new constraints on
the partonic structure of the proton and nuclei and the QCD dynamics at small 𝑥. The available data
challenge both collinear factorization and dipole model frameworks. Large nuclear suppression
of coherent 𝐽/𝜓 photoproduction in Pb-Pb UPCs at the LHC can be explained by the strong
gluon/quark shadowing at small 𝑥, the contribution of quark-antiquark-gluon dipoles, or an onset
of saturation. It will be important to test these prediction in Υ photoproduction in Pb-Pb UPCs.

While the framework of collinear factorization and NLO pQCD provides a fair description of
coherent 𝐽/𝜓 photoproduction in Pb-Pb UPCs at the LHC within large factorization scale and nPDF
uncertainties, there remain outstanding challenges related to NRQCD corrections to the 𝐽/𝜓 vertex
and small-𝑥 resummation of the NLO coefficient functions. One way to circumvent these issues is
to consider the ratio of UPC cross sections for different targets, where the theoretical uncertainties
are significantly reduced. Recent progress in calculations of exclusive vector meson prodiction at
NLO in the dipole picture should help to clarify interpretation of the UPC data.
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