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We compute the heavy quark momentum diffusion coefficient using effective kinetic theory for
a system going through bottom-up isotropization until approximate hydrodynamization. We
find that when comparing the nonthermal diffusion coefficient to the thermal one for the same
energy density, the observed deviations throughout the whole evolution are within 30% from the
thermal value. For thermal systems matched to other quantities we observe considerably larger
deviations. We also observe that the diffusion coefficient in the transverse direction dominates
at large occupation number, whereas for an underoccupied system the longitudinal diffusion
coefficient dominates. Similarly, we study the jet quenching parameter, where we obtain a
smooth evolution connecting the large values of the glasma phase with the smaller values in the
hydrodynamical regime.
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Figure 1: Trajectory of the system during the bottom-up thermalization on the occupation number anisotropy
plane. Solid and dashed curves correspond to different initial conditions. Reproduced from [13].

1. Introduction

Recent studies on transport coefficients out of equilibrium have indicated that the glasma stage
can have considerable impact on the coefficients [1–8]. However, there has been a literature gap
until very recently: equilibrium transport coefficients are relatively well known but the evolution
of transport coefficients during hydrodynamization remained poorly understood. We report here of
our recent studies where we aimed to close the gap and investigated the heavy quark momentum
diffusion coefficient 𝜅 [9] and the jet quenching parameter 𝑞 [10] during hydrodynamization using
effective kinetic theory.

The two main questions these proceedings address involve the magnitude of 𝜅 compared to
its equilibrium value during hydrodynamization and the relative importance of transverse and
longitudinal diffusion coefficients during the hydrodynamization process.

2. Method: effective kinetic theory and bottom-up thermalization

We reproduce the bottom-up thermalization [11] scenario using effective kinetic theory [12],
as in [13]. The evolution of the system is illustrated in Fig. 1. In order to make a connection to the
evolution of the system and other quantities, we have placed a few markers in Fig. 1. The star marker
is placed at 𝑓 = 1/𝜆 = 1/(4𝜋𝑁𝑐𝛼𝑠 ), where 𝑁𝑐 is the number of colors and 𝛼𝑠 is the strong coupling
constant. For weak couplings this also corresponds to maximum anisotropy. The circle marker is
placed at minimum occupancy, which in the bottom-up thermalization picture corresponds to 𝛼𝑠.
Finally, the triangle marker is placed at 𝑃𝑇/𝑃𝐿 = 2, corresponding to approximate isotropy. The
crosses at the bottom correspond to the expected values at thermal equilibrium.

In effective kinetic theory the dynamical degree of freedom is the gluon phase space density
𝑓 ( 𝒑) = 1

𝜈𝑔

d𝑁
d3𝑥 d3𝒑

, whose time-evolution is given by the Boltzmann equation

−𝜕 𝑓 ( 𝒑)
𝜕𝜏

= C1↔2 [ 𝑓 ( 𝒑)] + C2↔2 [ 𝑓 ( 𝒑)] −
𝑝𝑧

𝜏

𝜕

𝜕𝑝𝑧
𝑓 ( 𝒑). (1)
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Figure 2: Three different ways to compare equilibrium and nonequilibrium. Left: comparing for the same
effective temperature of the infrared modes. Center: for the same energy density. Right: for the same
screening mass.

The dominant contribution to the diffusion coefficient 𝜅 arises from scattering with the medium
gluons via t-channel gluon exchange [14]. The coefficient is given by

3𝜅 =
〈
Δ𝑘2〉
Δ𝑡

=
1

2𝑀

∫
𝒌𝒌′𝒑′

(2𝜋)3 𝛿3 ( 𝒑 + 𝒌 − 𝒑′ − 𝒌′) 2𝜋𝛿 (𝑘 ′ − 𝑘) 𝒒2 [ |M𝜅 |2 𝑓 (𝒌) (1 + 𝑓 (𝒌′))
]
,

(2)

where 𝑘, 𝑘 ′ are the ingoing and outgoing gluon momenta, 𝑞 = 𝑘 − 𝑘 ′, is the momentum trans-
fer and 𝑝, 𝑝′ are the ingoing and outgoing heavy quark momenta. The integration measure is
given by

∫
𝒑

=
∫

d𝑝3/2𝑝0 (2𝜋 )3. The matrix element corresponding to this process is |M|2𝜅 =[
𝑁𝑐𝐶𝐻𝑔

4] 16𝑀2𝑘2(1+cos2 𝜃𝒌𝒌′)
(𝑞2+𝑚2

𝐷
)2 . The effective temperature of the infrared modes is

𝑇∗ =
2𝜆
𝑚𝐷

∫
d3𝑝/(2𝜋 )3 𝑓 (𝑝) (1+ 𝑓 (𝑝)),where the Debye screening mass is𝑚2

𝐷
= 4

∫
d3𝑝/(2𝜋 )3𝜆 𝑓 (𝑝)/𝑝.

When comparing equilibrium and nonequilibrium systems, we need an estimate for the temperature
of the corresponding equilibrium system. This temperature is defined through energy density 𝜀
as 𝑇𝜀 = (30 𝜀/𝜋2𝜈𝑔)1/4 . In equilibrium the quantities above (𝑇∗, 𝑚𝐷 , 𝑇𝜀) are computed using the
Bose-Einstein distribution.

3. Results

Since there is no unambiguous way to compare equilibrium and nonequilibrium systems,
we will try to compare the equilibrium and nonequilibrium systems for the same 𝑚𝐷 , 𝑇∗ and 𝜀.
The comparison is done as a function of time. As a consequence, the corresponding thermal
system changes during the time-evolution. We rescale the time with the thermalization timescale
𝜏BMSS = 𝛼

−13/5
𝑠 /𝑄𝑠.

The results are shown in Fig. 2. We observe that when matching for the same screening mass
𝑚𝐷 or infrared temperature 𝑇∗ there are large deviations during the equilibration. However when
matching for the same energy density 𝜀 the deviations are (depending on the coupling) within
approximately ∼ 30% during the evolution. Thus matching for the same energy density (Landau
matching) is the best way to compare equilibrium and nonequilibrium systems in this case.

We can also break the comparison down into transverse and longitudinal components as we
have done in Fig. 3. We observe that the transverse (𝜅𝑇 ) and longitudinal (𝜅𝐿) diffusion coefficients
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Figure 3: Transverse and longitudinal diffusion coefficients compared to their equilibrium values for the
same energy density.
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Figure 4: Ratio of the transverse and longitudinal diffusion coefficients during the hydrodynamization
process.

behave qualitatively similarly to the full coefficient (except in the case of the longitudinal diffusion
coefficient at very early times). For smaller coupling 𝜆 we observe larger deviations. This is most
likely due to the fact that for small coupling the bottom-up thermalization is reproduced more
accurately.

Fig. 4 shows the ratio of transverse and longitudinal diffusion coefficients during the evolution.
We observe that the transverse diffusion coefficient is initially enhanced compared to the longitudinal
coefficient. When the system becomes underoccupied, the hierarchy is inverted, and the longitudinal
coefficient is enhanced compared to the transverse coefficient. The anisotropy of the coefficients
can become sizable, of the order 10 - 40 %, depending on the coupling strength. The plot also
shows the emergence of a limiting attractor, which we will discuss elsewhere in more detail.

Then we proceed to the jet quenching factor 𝑞 defined as 𝑞𝑖 𝑗 =
d⟨𝑞𝑖𝑞 𝑗 ⟩

d𝐿 . Here we use the
following convention: 𝑥 jet direction, 𝑧 beam direction. The jet quenching factor is given by

𝑞𝑖 𝑗 =
1

4𝑑𝑅
lim

|p |→∞

∫
kk′p′

𝑞⊥<Λ⊥

𝑞𝑖⊥𝑞
𝑗
⊥(2𝜋)4𝛿4(𝑃 + 𝐾 − 𝑃′ − 𝐾 ′)

��M𝑎𝑔
𝑎𝑔

��2
|p| 𝑓k (1 + 𝑓k′) , (3)

where
��M𝑎𝑔

𝑎𝑔

��2 is the matrix element corresponding to elastic scatterings off in-medium gluons.
Here we consider a quark jet. However the value of 𝑞 for a gluon jet can be obtained by scaling
with a simple Casimir factor. The curves shown in Fig. 5 are obtained as follows: We match 𝜀 to
glasma as in [6] to obtain the value of 𝑄𝑠 at the initial condition. Then 𝑞 is matched to the result
of JETSCAPE [15] at the triangle marker to obtain a value for the transverse momentum transfer
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Figure 5: The value of the jet quenching factor 𝑞 computed according to the procedure described in the text.

cutoff Λ⊥ at that time. The bands correspond to different cutoff models and initial conditions. We
observe that our results match the glasma simulation at early times relatively well and smoothly
connect to the hydrodynamic evolution.

4. Conclusions

The two main conclusions of these proceedings are, that during the hydrodynamization 𝜅

is within 30 % from its equilibrium value when the equilibrium and nonequilibrium systems are
matched for the same energy density. The second conclusion is that there is a clear hierarchy between
transverse and longitudinal diffusion coefficients. Initially the transverse diffusion coefficient 𝜅𝑇
dominates. At underoccupation 𝜅𝑧 is larger. In both cases the deviation is roughly a factor of two.

Our results may be used for phenomenological descriptions of heavy quark diffusion, quarko-
nium dynamics and jet quenching. Our future plans involve studying limiting attractors using 𝜅 and
𝑞 as test observables.
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