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The leading jet transport coefficients 𝑞 or 𝑒2 encode transverse or longitudinal momentum broad-
ening of a hard parton traversing a hot medium. Understanding their temperature dependence
is key to appreciating the observed suppression of high-transverse momentum probes at RHIC
or LHC collision energies. We present a first continuum extrapolated result of 𝑞 computed on
pure SU(3) lattices with non-trivial temperature dependence different from the weak-coupling
expectation.
We discuss the formalism published in Refs. [1, 2] and its challenges and status in view of obtaining
𝑒2 or of unquenching the calculation. We consider a hard quark subject to a single scattering on
the plasma. The transport coefficients are factorized in terms of matrix elements given as integrals
of non-local gauge-covariant gluon field-strength field-strength correlators. After the analytic
continuation to the deep-Euclidean region, the hard scale permits to recast these as a series of
local, gauge-invariant operators. The renormalized leading-twist term in this expansion is closely
related to static quantities, and is computed on pure SU(3) lattices (𝑁𝜏 = 4, 6, 8, and 10) for a
wide range of temperatures, ranging from 200MeV < T < 1GeV. Our estimate for the unquenched
result in 2 + 1-flavor QCD has very similar features.
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1. Introduction

Jets, heavy quarks and quarkonia are the key observables at sufficiently hard scales that permit
probing the properties of the hot nuclear medium produced in heavy-ion collisions at short distance
and time scales. These hard probes accumulate modifications corresponding to the different stages
of the hot medium, as the primordial fireball evolves from pre-equilibrated early-time dynamics,
through a locally equilibrated plasma stage, to an extended late-time stage of an inviscid nuclear
liquid. One usually attempts to capture the mercurial and complex in-medium dynamics of such
probes in terms of a small number of transport coefficients. Once these are determined either from
experimental observation or theoretical calculation, the kinematics of the hard probes are otherwise
treated in a simplified, or even classical manner. Given the influence of the strongly-coupled
late-time stage, it is clear that weak-coupling calculation cannot successfully accommodate the
underlying physics entering these transport coefficients.

For a jet, the leading transport coefficient related to in-medium energy loss is the one due to
transverse momentum broadening per unit path length, namely, 𝑞 ≡ ⟨𝑘2

⊥ ⟩𝑇,𝐿

𝐿
, which coincides with

the second (transverse) moment of the collision kernel 𝑑4𝑊 (𝑘 )
𝑑4𝑘

. Another jet transport coefficient
that is generally considered as subleading, is the one due to longitudinal momentum broadening
per unit length, coined 𝑒2 ≡ ⟨𝑘2

𝑧 ⟩𝑇,𝐿

𝐿
(or 𝑞𝐿), wherein we have assumed a jet traveling almost along

the light cone in the negative 𝑧 direction. On the level of these transport coefficients, very different
models can be compared to perturbative or non-perturbative calculations. These coefficients may
serve as free parameters or input in phenomenological descriptions of heavy-ion collision events
such as in the JETSCAPE framework [3].

2. Hard parton at leading order

Both coefficients are obtained from 𝑡-channel processes, and involve at tree-level scattering
mediated by one-parton-exchange; at leading order in the weak-coupling approach, 𝑞 for a hard
parton in representation 𝑅 is a function of the UV and IR cutoffs [4]1

𝑞(𝜇UV) = 𝐶𝑅

∑︁
𝑠=±

Ξ𝑠I𝑠 (𝜇UV)
𝑔4𝑇3

𝜋2 ,

I𝑠 (𝜇UV) ≃
𝜁𝑠 (3)

2𝜋
ln

(
𝜇UV
𝜇IR

)
+ ΔI𝑠 ,

ΔI𝑠 =
𝜁𝑠 (2) − 𝜁𝑠 (3)

2𝜋

[
ln

(
𝑇

𝜇IR

)
+ 1

2
− 𝛾𝐸 + ln(2)

]
− 𝜎𝑠

2𝜋
,

Ξ+ = 2𝑁𝑐, Ξ− = 2𝑁 𝑓 , 𝜁±(𝑛) =
∞∑︁
𝑘=1

(±1)𝑘−1

𝑘𝑛
.

(1)

where the IR cutoff is taken to be the Debye mass 𝜇IR = 𝑚𝐷 , and strict weak-coupling hierarchies
are assumed: ΛQCD ≪ 𝑚𝐷 ∼ 𝑔𝑇 ≪ 𝑇 . With each logarithm one associated power of 𝑔2 is at the
harder and another at the softer scale. Thus, as the UV cutoff 𝜇UV is sent to infinity, i.e. the parton is

1The constants 𝜎± are given in Ref. [4], but are of no importance for the current discussion.
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considered to be infinitely hard, the result remains finite and is effectively promoted to order O(𝑔2),
since the logarithmic divergence cancels against a running coupling 𝑔2(𝜇UV) at leading order [4, 5]:

lim
𝜇UV→∞

ln
(
𝜇UV
𝜇IR

)
𝑔2(𝜇UV)𝑔2(𝜇IR) =

𝑔2(𝜇IR)
−2�̄�0

with �̄�0 = −
11𝑁𝑐 − 2𝑁 𝑓

𝑁𝐶 (4𝜋)2 . (2)

As such the result in the limit of a hard parton is given up to terms of order O(𝑔4) by

𝑞(∞)
𝑇3 ≡ lim

𝜇UV→∞
𝑞(𝜇UV)
𝑇3 = 𝐶𝑅

∑︁
𝑠=±

Ξ𝑠𝜁𝑠 (3)
−4𝜋3�̄�0

𝑔2(𝜇IR)

= 𝐶𝑅

∑︁
𝑠=±

Ξ𝑠𝜁𝑠 (3)
Ξ𝑠𝜁𝑠 (2)

2𝑁𝑐
𝜋2

6

−4𝜋3�̄�0

(
𝑚𝐷 (𝜇IR)

𝑇

)2
.

(3)

For a SU(3) pure gauge plasma, i.e. 𝑁 𝑓 = 0, the result becomes particularly simple2, and is related
to the 𝑁 𝑓 = 0 entropy density in the Stefan-Boltzmann limit, 𝑠SB = 32

45𝜋
2𝑇3, as

𝑞(∞)
𝑇3 =

21
176

𝐶𝑅

(
𝑚𝐷 (𝜇IR)

𝑇

)2
𝑠SB

𝑇3 =
21
44

𝜋 𝐶𝑅 𝛼𝑠 (𝜇IR)
𝑠SB

𝑇3 . (4)

This form is very suggestive: there is a coefficient of order one, a representation-dependent
Casimir, 𝐶𝑅, a factor that accounts for medium-modified interactions in any single scattering

event,
(
𝑚𝐷 (𝜇IR )

𝑇

)2
or 𝛼𝑠 (𝜇IR), and a term from the equation of state (EoS) that accounts for the

density of available scattering centers, 𝑠SB
𝑇3 . The counterparts of the latter two are accessible in

non-perturbative lattice calculations. In the physical world, however, i.e. 𝑁 𝑓 > 0, 𝑁 𝑓 dependent
terms break the simple relation with the EoS. Do similar results arise, if weak coupling—clearly
inappropriate for media of phenomenological interest at 𝑇 ≃ 𝑔𝑇 ≃ ΛQCD—does not apply?

3. Formalism

We use the setup of a hard parton propagating in the negative 𝑧-direction with light-cone
momentum 𝑞− and follow the formalism outlined in Refs. [1, 2]. At leading virtuality the transport
coefficient for 𝑗-momentum broadening is obtained (in 𝐴− = 0 gauge, assuming ergodicity, dropping
subleading virtualities, promoting 𝜕 𝑗 → 𝐷 𝑗 , and enforcing an on-shell condition) as

𝑞 𝑗 (𝑞−) =
∑︁
𝑛

𝑒−𝛽𝐸𝑛

𝑍𝑇𝐼

∫
𝑑4𝑘𝑘2

𝑗

𝑑4𝑊 (𝑘)
𝑑4𝑘

(5)

≃ 𝑐0𝑅𝑔
2
∫

𝑑𝑦−𝑑2𝑦⊥𝑑2𝑘⊥
(2𝜋)3 𝑒

𝑖𝒌⊥ ·𝒚⊥−𝑖
𝒌2
⊥

𝑞− 𝑦−
〈
Tr
[
𝐹+ 𝑗 (0)𝐹+

𝑗 (𝑦−, 𝑦⊥)
]〉

𝑇
, (6)

where 𝑐0𝑅 =
√

2𝐶𝑅, and 𝑔2 is the squared gauge coupling at an appropriate thermal IR scale
𝜇IR. Obviously, the full product must be renormalized consistently. The thermal correlator〈
Tr
[
𝐹+ 𝑗 (0)𝐹+

𝑗
(𝑦−, 𝑦⊥)

]〉
𝑇

is gauge covariant, but at an almost light-cone separation. The neces-
sary infinitely extended light-cone and transverse Wilson lines [6] imply that a Euclidean definition
of this quantity—and in particularly one on a hypercubic lattice—is far from straightforward.

2We have used the Ramanujan series truncated at the leading term for Apéry’s constant, 𝜁 (3) = 7𝜋3

180 ≃ 1.202 . . ..
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For this reason we define a generalized coefficient without enforcing the on-shell condition,

�̂� 𝑗 (𝑞+, 𝑞−) ≃ 𝑐0𝑅𝑔
2
∫

𝑑4𝑦𝑑4𝑘

(2𝜋)4
𝑒𝑖𝑘 ·𝑦 2𝑞−

(𝑞 + 𝑘)2 + 𝑖𝜀

〈
Tr
[
𝐹+ 𝑗 (0)𝐹+

𝑗 (𝑦)
]〉

𝑇
, (7)

whose thermal discontinuity at 𝑞+ ≃ ±𝑇 corresponds to 𝑞 𝑗 (𝑞−). For space-like momenta 𝑞+ ≃ −𝑞−
there is no nearby d iscontinuity, and the ratio can be expanded as a geometric series in 𝑘3

𝑞− (neglecting
terms of order 𝑘2). After promoting 𝜕3 → 𝐷3, both integrals can be performed and we obtain

�̂� 𝑗 (𝑞+ = −𝑞−, 𝑞−) ≃ 𝑐0𝑅𝑔
2

𝑞−

∞∑︁
𝑛=0

(
𝜈
𝑞−

)𝑛 〈
Tr
[
𝐹+ 𝑗 (0)Δ𝑛𝐹+

𝑗 (0)
]〉

𝑇
, Δ ≡ 𝑖

√
2𝐷3
𝜈

, (8)

where we have introduced a intermediate scale between the thermal IR scale and the hard scale,
𝜇IR ≲ 𝜈 ≪ 𝑞−. For a medium that is invariant under parity, odd orders vanish; and for a medium
at rest there are no mixed terms à la 𝑆3 = 𝐹0 𝑗𝐹3

𝑗
.

While complex contour integration of �̂� 𝑗 (𝑞+,𝑞− )
𝑞−+𝑞+ along a small circle around 𝑞+ ≃ −𝑞− yields

�̂� 𝑗 (𝑞+ = −𝑞−, 𝑞−), the same integral yields for a contour deformed over the whole complex plane
the contributions from the two branch cuts of �̂� 𝑗 (𝑞+, 𝑞−), the thermal one of width3 𝛿𝑇𝑇 ≃ 2

√
2𝑇

at 𝑞+ ≃ ±𝑇 , and another one at 𝑞+ ≥ 0 for a time-like parton undergoing vacuum-like forward
splitting. The latter vanishes at 𝑛 = 0 (at 𝑞− → ∞) for a single radiated on-shell gluon; beyond
that approximation (or beyond 𝑛 = 0), it can be tamed to some extent through vacuum subtraction,
where there is no thermal discontinuity. Putting everything together we obtain

𝑞 𝑗 (𝑞−)
𝑇3 ≃ 𝑐0𝑅𝑔

2 𝑇

𝑇𝛿

∞∑︁
𝑛=0

(
𝜈

𝑞−

)2𝑛 1
𝑇4

〈
Tr
[
𝐹+ 𝑗Δ2𝑛𝐹+

𝑗

]〉
(𝑇−𝑉 )

. (9)

The right hand side is a series of vacuum-subtracted, gauge-invariant local operators, and thus, in
principle, amenable to a lattice calculation. 𝜈 could be any scale of the order of the inverse lattice
spacing, i.e. the temperature 𝑇 = 1

𝑎𝑁𝜏
. Thus, for 𝑞− → ∞, the continuum limit at fixed temperature

can be defined (after appropriate renormalization).
For 𝑞− < ∞ there are two major problems: first, sending the typical scale of the hardest modes,

i.e. the cutoff 𝑎−1, to infinity, implies that the geometric series in 𝑘3
𝑞− cannot be used. Second, the

mixing of the temperature-dependent higher-twist operators (𝑛 > 0) with temperature-dependent
lower dimensional operators multiplied by powers of the lattice cutoff cannot be canceled by the
vacuum subtraction. To date, this unsolved problem is a limitation of our formalism.

4. Numerical Results

After a Wick rotation, 𝑥0→−𝑖𝑥4, 𝐴0,𝑎→ 𝑖𝐴4,𝑎=⇒𝐹0 𝑗 ,𝑎→ 𝑖𝐹𝑎
4 𝑗 , which takes4 Eq. (9) into

𝑞 𝑗 (𝑞−)
𝑇3 ≃ 𝑐0𝑅

4𝛿𝑇

∞∑︁
𝑛=0

(
𝑇

𝑞−

)2𝑛
[𝑔2𝑂 𝑗;𝑛] (𝑅) , 𝑂 𝑗;𝑛 ≡ 1

𝑇4

〈[
𝐹𝑎

3 𝑗Δ
2𝑛𝐹𝑎

3 𝑗 − 𝐹𝑎
4 𝑗Δ

2𝑛𝐹𝑎
4 𝑗
]〉

(𝑇−𝑉 )
, (10)

we evaluate the leading operator (𝑂 𝑗;0) on the lattice.

3The factor
√

2 arises due to light-cone coordinates.
4The factor 1

4 is due to the color trace of the generators and the reversal from light-cone to cartesian coordinates.
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Figure 1: �̂� (∞)
𝑇3 calculated on a lattice rises similarly to 𝑠

𝑇3 during the QCD crossover/transition, and exhibits
a rather flat temperature dependence above 𝑇 ≳ 300 MeV. Phenomenological determinations [3, 13] are
quantitatively close, and a stochastic vacuum model finds a similar trend [11]. LO HTL at 𝑞− = 100
GeV assuming constant 𝑔2 (𝜇IR), i.e. the O(𝑔4) contribution in Eq. (1), rises logarithmically towards lower
temperatures and is compatible only at 𝑇 ≳ 2 GeV, where the NNLO EQCD result [12] is similar, too.

In pure SU(3) theory, the transverse sum ( 𝑗 = 1, 2) of this operator coincides with the bare,
vacuum-subtracted energy-momentum tensor (EMT) 𝑇 (3)

𝐺,34 = 1
𝑇4

∑
𝜇

〈[
𝐹𝑎

3𝜇𝐹
𝑎
3𝜇 − 𝐹𝑎

4𝜇𝐹
𝑎
4𝜇
]〉

(𝑇−𝑉 )
(in temperature units) in triplet representation5. We use plaquette action with 𝑁𝜏 = 4, 6, 8, and 10,
aspect ratio 𝑁𝜎

𝑁𝜏
= 4, and the field strength’s clover discretization, which is a combination whose

multiplicative renormalization constant 𝑍 (3)
𝑇

is known from finite momentum Ward identities [7, 8].
In the rest frame,𝑇 (3,𝑅)

𝐺,34 = 𝑇𝑠 with the entropy density 𝑠. Thus, we obtain after a few approximations

𝑞(∞)
𝑇3 ≃ 𝑐0𝑅

4𝛿𝑇
[𝑔2] (𝑅) 𝑠

𝑇3 =
1
8
𝐶𝑅 [𝑔2] (𝑅) 𝑠

𝑇3 , (11)

which is extremely similar to the LO result of Eq. (4). Since the entropy density is a (scheme-
independent) physical observable, the scheme choice for the squared coupling introduces a scheme
dependence for 𝑞(∞). We use 𝑁 𝑓 = 0 MS one-loop coupling at the scale 𝜇IR = (2 . . . 4)𝜋𝑇 .

In full QCD, the identification with the EMT fails, since [∑ 𝑗 𝑂 𝑗;0] (𝑅) corresponds only to the
renormalized EMT’s gauge part. In light of the LO results, lack of a simple relation to the EoS is
unsurprising. Bare gauge and quark parts mix upon renormalization, where not all mixing matrix
elements could be fixed from Ward identities. They depend on the details of gauge and quark
actions, and are unknown6 for the combination of actions we use, namely, Lüscher-Weisz gauge
action and (2+1)-flavors of highly improved staggered quarks (HISQ) (physical strange quark, and
𝑚𝜋 = 161 MeV in the continuum limit). We use 𝑁𝜏 = 4, 6, and 8, aspect ratio 𝑁𝜎

𝑁𝜏
= 4, and again

the clover discretization. For approximate renormalization we apply tadpole improvement [10] of
the QCD results, and estimate the missing contributions are with two complementary arguments.
Overall, this leads to a 30% systematic uncertainty; see Ref. [1] for details. We use 𝑁 𝑓 = 3 MS
one-loop coupling at the scale 𝜇IR = (2 . . . 4)𝜋𝑇 , and show our estimate (at 𝑁𝜏 = 6) together with
the 𝑁 𝑓 = 0 continuum result in Fig. 1.

5On a lattice, the continuum EMT’s nonet representation breaks apart into a sextet and a triplet.
6It is known at one-loop order for some other actions, see [9]. We use this to estimate the size of missing contributions.
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Applying the same formalism, we may obtain 𝑒2 by setting 𝑗 = 3. The first (magnetic) term
of 𝑂3;0 vanishes exactly, and we have to recombine the second (electric) one to produce two scale-
independent contributions in pure SU(3) theory. As a consequence, 𝑒2 also receives a contribution
from the singlet representation of the vacuum-subtracted EMT that does not share the scheme
dependence of 𝑞(∞), namely,

𝑒2(∞)
𝑇3 ≃ 1

4
𝑞(∞)
𝑇3 + 2𝜋2

3𝑁𝐶𝑏0

𝑇
(1)
𝐺

𝑇4 , (12)

which is also accessible through lattice calculations, and subject of ongoing work.

5. Outlook and discussion

We have demonstrated that both 𝑞 and 𝑒2 are in principle amenable to a lattice calculation for
𝑞− → ∞, and can be related to the EoS in pure SU(3) theory. The formal similarity to LO results,
Eq. (4) and the closeness to phenomenology are astonishing. The logarithmic rise of HTL appears
to be suppressed in the lattice result due to a diminishing number of scatterers at 𝑇 ≲ 300 MeV.

Acknowledgments: This work was supported by the National Science Foundation under grant
No. ACI-1550300 within the JETSCAPE collaboration and by the Department of Energy under
grant No. DE-SC0013460. J.H.W.’s research is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—Projektnummer 417533893/GRK2575 “Rethinking Quan-
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