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Effective field Theories and the Standard Model extensions

1. Introduction

The journey we are going to take in these very short lectures is a journey through physical
phenomena as we change the distance (or, equivalently, energy) scales probed by our experiments.
The history of physics itself is such a journey. Starting from classical mechanics describing the
movement of objects of human size we learned that this theory needs to be generalized to quantum
mechanics to deal with movements of particles at subatomic level. In this sub-atomic world,
Galelian kinematics of slow sub-relativistic speeds of classical mechanics needed to be generalised
to special relativity. Marriage of quantum mechanics and special relativity led us to quantum
field theory (QFT), while marriage of special relativity with Newtonian gravity led us to general
relativity. Moving into even smaller scales we hope to marry QFT with general relativity into
quantum gravity.

On this journey, to make a stop at some fixed scale and describe the physical system at that
scale we need to determine:

1. Relevant degrees of freedom (d.o.f.). As we change our "microscope", relevant d.o.f. may
change. For example, new collective excitations or composite particles may appear

2. Symmetries (types of interactions between d.o.f.)

3. Expansion parameters (power counting)

Since the d.o.f. may change we need to learn how to identify the relevant ones and remove the
irrelevant ones. This can be done by a procedure of "integrating out" d.o.f. as we change the energy
scale. Since this logic will be the central part of the effective field theories (EFT) examples below,
let me illustrate the procedure in a very simple model.

2. Invitation

2a 1D Ising model of spins on a circle

To learn how to "integrate out" d.o.f. let us consider a simple 1d model of spins on a circle
(see Fig.1) with Hamiltonian:

H = −J
N∑
i=1

SiSi+1 = −J(S1S2 + S2S3 + ... + SNS1) (1)

Figure 1: Spins on a circle.
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Effective field Theories and the Standard Model extensions

In general, this system of spins is placed in an environment at a given fixed temperature T . The laws
of thermodynamics teach us that the system prefers to arrange spins to be in a state with minimum
free energy F = H − TS, where S is the entropy of the system. Consider the T = 0 case: we need
to find a state where F = H has a minimum. Clearly this is the state where all spins point up or all
point down because the total interaction energy is minimized, H = −N J.

Consider now the T > 0 case. We have to account for all possible configurations of spins and
weight them according to their energies. For a canonical ensemble that is classical and discrete,
this defines the canonical partition function

Z(K, N) =
∑

states

e−H/T =
+1∑

S1=−1

+1∑
S2=−1

...

+1∑
SN=−1

eK(S1S2+S2S3+...+SN S1) (2)

where K ≡ J/T and F = −T log Z(K, N).
Let us now sum over the two possibilities S2 = ±1 for spin S2:

Z(K, N) =
+1∑

S1=−1

+1∑
S3=−1

...

+1∑
SN=−1

[
eK(S1+S3) + e−K(S1+S3)

]
eK(S3S4+S4S5+...+SN S1) . (3)

In the same fashion let us sum over the two possibilities S4 = ±1 for spin S4:

Z(K, N) =
+1∑

S1=−1

+1∑
S3=−1

...

+1∑
SN=−1

[
eK(S1+S3)+e−K(S1+S3)

] [
eK(S3+S5)+e−K(S3+S5)

]
eK(S5S6+S6S7+...+SN S1) .

(4)
We can repeat the exercise to sum over all even numbered spins:

Z(K, N) =
+1∑

S1=−1

+1∑
S3=−1

...

+1∑
SN−1=−1

[
eK(S1+S3)+e−K(S1+S3)

] [
eK(S3+S5)+e−K(S3+S5)

] [
eK(S5+S7)+e−K(S5+S7)

]
. . . .

(5)
Rewrite the remaining sums defining:

eK(S+S
′) + e−K(S+S

′) ≡ f (K)e−K
′SS′ (6)

where both f (K) and K ′ are functions of K . Now we have:

Z(K, N) = f (K)N/2
+1∑

S1=−1

+1∑
S3=−1

...

+1∑
SN−1=−1

e−K
′S1S3 e−K

′S3S5 e−K
′S5S7 . . . (7)

= f (K)N/2
+1∑

S1=−1

+1∑
S3=−1

...

+1∑
SN−1=−1

e−K
′(S1S3+S3S5+S5S7) · · · = f (K)N/2Z(K ′, N/2) .

Note that we rewrote the original Z(K, N) in terms of a new function Z(K ′, N/2), i.e., a function
with parameters that describe the model with half the number of spins and a different coupling
parameter K ′ = J ′/T . Let us find the functions f (K) and K ′ implied by the transformation Eq.6. It
is easy to show that they are given by:

K ′ =
1
2

log(cosh(2K)) f (K) = 2 cosh1/2(2K) (8)
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Effective field Theories and the Standard Model extensions

Exercise: Derive the result Eq.8.
Notice that K ′ < K . Eq.8 represents the renormalization group (RG) functions that describe

how the interaction among the relevant d.o.f changes as we zoom in/out the system. Now, repeat the
procedure to integrate out another half of spins to arrive at Z(K ′′, N/4) then Z(K ′′′, N/8) and so
on. Since K > K ′ > K ′′ > K ′′′, after many iterations the coupling parameter becomes negligibly
small. Also notice that with each iteration the distance between the neighboring spins doubles in
size.

We found that K = 0 (J = 0) is an attractive fixed point of the RG transformation in a 1d model
of spins. At this fixed point the interaction between spins vanishes. Therefore the temperature effects
will determine the emergent behavior at large (macroscopic) distances. These thermal fluctuations
will tend to align spins randomly and at long distances the system is disordered.

Going to higher dimensions, the Ising model undergoes a phase transition between an ordered
and a disordered phase in two dimensions or more. In contrast to 1d, there is a nontrivial fixed point
between the two phases at a finite value of the coupling K = Kc. At this point, changing the scale
does not the change the physics because the system is in a critical fractal state.

2b Relevant, marginal and irrelevant operators

We saw in the 1d Ising model that the coupling strength K between the spins decreases as
we perform the RG transformations towards larger distances. We call such interactions irrelevant.
Oppositely, interactions whose strength increases as we "integrate out" d.o.f. are called relevant
and, finally, marginal interactions are those whose strength does not change. In QFT interactions
are written in terms of operators and in d dimensions and at the classical level, operators with
dimension< (>)d are relevant (irrelevant) while operators with dimension= d are marginal. Quan-
tum corrections will change classical (also known as engineering) dimensions of operators so that,
for example, classically marginal operators can become relevant or irrelevant at the quantum level.

3. Constructing the SM

The main example of an EFT in these lectures will be the Standard Model (SM) of particle
interactions. Let us try to understand how far we can go in building this model just using the notions
of relevant, marginal and irrelevant operators above.

As we discussed above, to describe the physical system at some energy scale we need to:

1. Determine the relevant d.o.f. (fields). For the SM, the fermionic fields will be quarks and
leptons, the vector ones are the gauge bosons W±, Z, γ and gluons, and finally the only scalar
particle will be the famous Higgs.

2. Symmetries. These are given by the semi-simple product of three gauge groups SU(3) ×
SU(2) × U(1)Y . Due to spontaneous symmetry breaking of the electroweak symmetry
SU(2) × U(1)Y → U(1)EM , the photon γ, which mediates electromagnetism (EM), is a
massless linear combination of the gauge bosons associated to the U(1)Y hypercharge group
and the third generator of SU(2) group W3. The other linear combination is called Z and
together with the gauge bosons W±, these three massive gauge bosons mediate weak SU(2)
interactions. Finally, massless gluons mediate the strong (QCD) SU(3) interactions.

4
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Effective field Theories and the Standard Model extensions

3. The expansion parameter is given by the scale at which electroweak symmetry is broken
(which is experimentally observed to be ≈ 246 GeV) divided by the cutoff of the SM theory.
This cutoff may be Planck scale or grand unified scale or any other high scale up to which the
SM EFT is valid. Later we will see numerous examples where this cutoff scale will appear
associated with the new interactions beyond the SM.

Of course, here I just stated the results for the d.o.f. and symmetries of the SM. It took incredible
amount of research to arrive at this construction through deep theoretical ideas and experimental
efforts.

Now, let us try to stay agnostic and imagine we do not know the Lagrangian of the SM but
only know the d.o.f. and symmetries stated above. We will now build all possible operators out
of the SM fields consistent with the SM gauge symmetry classifying these operators according to
their dimension. Remember that we are working in four dimensions (three space and one time)
so that dimension= 4 operators will be marginal. The classical scaling dimension of the fermion
field is given by 3/2, while for the Higgs and gauge bosons fields it is 1. Remember that the action
S, which is dimensionless, is given by S =

∫
L d4x, so that Lagrangian density L (which I will

refer to as simply "Lagrangian" for brevity) has dimension=4 to balance dimension=-4 from the
measure. Terms in the Lagrangian have the schematic structure "coupling constant × operator" so
depending on the dimension dO of the operator O built from the fermion, Higgs and vector fields in
the SM, the coupling constant for such operator will have to have dimension 4− dO . For illustration
and in the spirit of EFT, the dimensionful parameter entering the coupling constant to balance the
dimension will be the cutoff scale of the SM theory Λ.

• Dimension-0 operator: this is just identity operator 1. We will compute (the dimension=4)
coefficient of this operator in the SM later.

• Dimension-2: These are "mass-terms" for the scalar fields and in the SM this will be the Higgs
mass. Dim-2 mass terms for the gauge fields are forbidden since they are not gauge-invariant.

• Dimension-4: marginal operators and these we will present now. They are quartic, Yukawa
and gauge interactions between the SM fields.

Summarizing, our SM Lagrangian so far schematically looks like:

L = c · 1 + m2φ†φ + L4 + . . . (9)

where φ(x) is the Higgs field.

Exercise: I purposefully omitted operators with dimension=1 and dimension=3. What is their
role?

5
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3a SM Lagrangian

So now we present the SM Lagrangian writing only the dim-2 and dim-4 operators:

L2,4 = −
1
4

BµνBµν −
1
2

tr
(
WµνWµν ) − 1

2
tr

(
GµνGµν ) (U(1)Y , SU(2) and SU(3) gauge terms)

+ (ν̄L, ēL) σ̃µiDµ

( νL
eL

)
+ ēRσµiDµeR + ν̄RσµiDµνR + h.c. (lepton kinetic terms)

−

√
2
ν

[
(ν̄L, ēL) φMeeR + ēRM̄e φ̄

( νL
eL

) ]
(electron, muon, tauon mass terms)

−

√
2
ν

[
(−ēL, ν̄L) φ∗MννR + ν̄RM̄νφT

(
−eL
νL

) ]
(neutrino mass terms)

+
(
ūL, d̄L

)
σ̃µiDµ

( uL
dL

)
+ ūRσ

µiDµuR + d̄Rσ
µiDµdR + h.c. (quarks kinetic terms)

−

√
2
ν

[ (
ūL, d̄L

)
φMddR + d̄RM̄d φ̄

( uL
dL

) ]
(down, strange, bottom mass terms)

−

√
2
ν

[ (
−d̄L, ūL

)
φ∗MuuR + ūRM̄uφT

(
−dL
uL

) ]
(up, charm, top mass terms)

+
(
Dµφ

)
Dµφ −

m2
[
φ̄φ − ν2

2

]2

ν2 (Higgs kinetic and mass terms)

where (h.c.) means Hermitian conjugate of preceding terms, φ̄ = (h.c.)φ = φ† = φ∗T , and the
covariant derivative operators are:

Dµ

( νL
eL

)
=

[
∂µ −

ig1
2

Bµ +
ig2
2

Wµ

] ( νL
eL

)
Dµ

( uL
dL

)
=

[
∂µ −

ig1
6

Bµ +
ig2
2

Wµ + igGµ

] ( uL
dL

)
DµνR = ∂µνR DµeR =

[
∂µ − ig1Bµ

]
eR

DµuR =

[
∂µ +

i2g1
3

Bµ + igGµ

]
ur DµdR =

[
∂µ −

ig1
3

Bµ + igGµ

]
dR

Dµφ =

[
∂µ +

ig1
2

Bµ +
ig2
2

Wµ

]
φ

where φ is a 2-component complex Higgs field. Since L is SU(2) gauge invariant, we can choose
a gauge in which φ has the form:

φT =
(0, ν + h)
√

2
< φ >T

0 = (expectation value of φ) =
(0, ν)
√

2

where ν is a real constant such that the Higgs potential Vφ =
m2

[
φ̄φ− ν2

2

]2

ν2 is minimized, and h is
a residual Higgs field. Bµ, Wµ, and Gµ are the gauge boson vector potentials, and Wµ and Gµ

are composed of 2 × 3 and 3 × 3 traceless Hermitian matrices respectively. Their associated field
strength tensors are:

6
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Effective field Theories and the Standard Model extensions

Bµν = ∂µBν − ∂νBµ Wµν = ∂µWν − ∂νWµ + ig2

(
WµWν −WνWµ

)
2

Gµν = ∂µGν − ∂νGµ +
(
GµGν −GνGµ

)
The fermions include the leptons eR, eL , νR, νL and quarks uR, uL , dR, dL . They all have

implicit generation indices, ei = (e, µ, τ), νi =
(
νe, νµ, ντ

)
, ui = (u, c, t), di = (d, s, b), which

contract into the fermion mass matrices Me
i j, Mν

i j, Mu
ij, Md

ij , and implicit indices which contract the
Pauli matrices:

σµ =

[(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)]

σ̃µ =
[
σ0,−σ1,−σ2,−σ3] tr

(
σi

)
= 0 σµ† = σµ tr (σµσν) = 2δµν

We included right-handed neutrino and thus wrote the Dirac mass term for neutrino. The minimal
formulation of the SM does not have right-handed neutrino so that neutrinos are massless. We will
discuss the issue of generating neutrino mass later.

The quarks also have implicit 3-component color indices which contract into Gµ. So altogether
the Lagrangian really has implicit sums over 3-component generation indices, 2-component Pauli
indices, 3-component color indices in the quark terms, and 2-component SU(2) indices.

3b SM: d > 4 operators

According to our classification in sec.2b, d > 4 operators are irrelevant and we briefly discuss
them now:

• Dimension-5: There is a unique dimension=5 operator in the SM. This is called theWeinberg
operator and we will encounter it later while discussing the neutrino mass. According to
dimensional analysis, the coefficient of this operator scales as 1/Λ.

• Dimension-6: There aremany dim-6 operators one can build using SMfields. These operators
are again generated at a new physics scale Λ, and scale as 1/Λ2. There are eight different
classes of operators: X3, H6, H4D2, X2H2, ψ2H3, ψ2XH, ψ2H2D and ψ4 in terms of
their field content, where X ,H,D and ψ stand for gauge field strength, Higgs field, covariant
derivative and fermion field, respectively. The SM EFT classifying these operators is called
SMEFT in the literature.

Let us stop here even though we could continue the list but clearly higher dimensional operators
will be suppressed by more powers of the cutoff scale and so their effects will be smaller.

7
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4. BSM: Problems with the SM addressed from EFT point of view

In the previous section we built all possible operators out of SM fields classifying them
according to their dimension:

L = c · 1 + m2φ†φ + L4 + L5 + L6 + . . . (10)

Let us now discuss some of the problems related to these operators, going again in the direction of
increasing operator dimensions.

• Dark energy: Let us calculate the sample contribution to the cosmological constant (C.C) c,
the coefficient of the unit operator, from, say, the Higgs condensate. For example, if φvac is
the value of the Higgs field φ(x) which minimizes the potential V(φ), then the lowest state
has stress-energy momentum tensor Tµν = gµνV(φvac), which is the classical scalar field
contribution to the vacuum energy. Concretely, minimizing Higgs potential

V(φ) = −m2φ†φ +
λ

2
(φ†φ)2 , (11)

The Higgs condensate contribution (at the classical level) to the cosmological constant is

cHiggs = V(φvac) = ρHiggs = −
m4

2λ
. (12)

Exercise: Derive Eq.12.

Besides the Higgs condensate, there are other contributions to the C.C., for example from the
QCD vacuum, potential grand unified theory (GUT) scale physics, etc. The experimentally
measured physical value of the C.C. ρphys is given by

ρphys = 10−47GeV4 . (13)

The problem now is that if we use Higgs mass MH ∼ m = 125GeV then the corresponding
value is

��ρHiggs

�� ' 108 GeV4. In order to keep the QFT consistent with the observations,
one has to demand that the contributions to the ρphys should cancel with great accuracy. For
example, adding the vacuum contribution to the C.C. ρvac, which we can always add to the
Lagrangian, the ρvac and ρHiggs should cancel with the precision of 55 decimal orders. This
is the C.C. fine-tuning problem.

• Hierarchy problem: Thinking of SM as an EFT with the cutoff scale Λ, the Higgs mass
term (dim-2 operator) is naturally expected to have a form m2φ†φ ∼ Λ2φ†φ. The expected
quadratic Λ2 dependence of the coefficient leads to the so-called "hierarchy problem": the
Higgs mass gets a correction of order Λ � electroweak scale v. Indeed, from the sample
diagram in Fig.2 coming from some hypothetical Yukawa interaction of some fermion f with
the Higgs y f̄ f φ, dimensional analysis suggests that

m2 ∼ y2
∫ Λ

0
d4k ×

1
k
×

1
k
∼ Λ2. (14)

8
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Figure 2: Higgs mass correction

where we used that the fermion propagator scales as 1/k. Notice however that the sensitivity
of m on Λ follows because we are computing low-energy observable (Higgs mass) in terms
of high-energy parameters represented by Λ which is not in the spirit of the EFT where
we are suppose to first integrate out high energy physics and then compute the Higgs mass
within the low energy EFT. Nevertheless, many extensions of the SM were motivated by this
problem among which are supersymmetry (SUSY), extra-dimensional models, technicolor
and compositeHiggs. In SUSY there is a cancellation between fermions and bosons protecting
corrections to Higgs mass. In technicolor and composite Higgs models, Higgs is a composite
particle (similar to mesons in QCD) and so as we reach the compositeness scale we have to
change description. Extra-dimensional models are conceptually similar to technicolor and
composite Higgs models via holographic AdS/CFT correspondence.

• Vacuum instability (dimension-4 operator): The analysis of the vacuum stability requires
the knowledge of the effective potential of the model at hand. The standard model effective
potential is known up to two loops. For large field values φ � v = 246 GeV, the potential is
very well approximated by its RG-improved tree-level expression,

V tree
e f f ≈ λ(µ)(φ

†φ)2 . (15)

with RG scale µ = O(φ). Therefore if one is simply interested in the condition of absolute
stability of the potential, it is possible to study the RG evolution of λ and determine the largest
scale Λ < Mpl, with Mpl the Planck scale, above which the coupling becomes negative. The
RG evolution of the Higgs quartic coupling λ in the SM is shown on the right panel in Fig.3
and we observe that the coupling becomes negative around 1010 GeV. The RG running of the
Higgs quartic coupling in the SM is very sensitive to the value of the top quark mass. This
is illustrated by the left plot in Fig.3 where we see that changing the value of the top mass by
O(1GeV ) may bring us back to the (green) stability region.

• Neutrino masses (dim-5 Weinberg operator): Neutrinos are electrically neutral, and so can
have either Majorana type or Dirac type mass terms. The existence of a Dirac mass term
would necessitate the existence of right-handed neutrinos. In the minimal standard model,
there is an effective dimension-five operator which generates Majorana neutrino masses

Λ
−1φ0φ0νiνj, (16)

All models of neutrino mass and mixing can be summarised by this operator. Different
models are merely different realizations of this operator. In the following I will show that

9
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Figure 3: (Left) Standard model stability analysis based on the effective standard model Higgs quartic
coupling. The red region indicates instability, the yellow metastability and the green absolute stability. The
point with error bars shows the experimental values of the top and the Higgs masses. The red dashed lines
show the value in GeV at which λ crosses zero. Figure is taken from arxiv:1306.3234. (Right) Running of
the Higgs quartic coupling in the SM. Figure is taken from arxiv:1205.6497.

it has only three tree-level realisations, meaning that the leading Feynman diagrams are
generated starting at tree-level. In addition, it also has three 1-loop realizations in radiative
neutrino mass models.

To obtain the effective operator Eq.16 at tree-level we demonstrate now that there are only
three possibilities. To start with, recall that in the SM, the left-handed neutrino and neutral
component of the Higgs are parts of the left-handed doublets ψ =

( νL
eL

)
and Φ = (φ+φ0). So

using the group theory multiplication 2 ⊗ 2 = 3 ⊕ 1 we have the following options:

(I) ψ × Φ ∼ (φ0νL − φ
+eL) forms a fermion singlet,

(II) ψ × ψ forms a scalar triplet, with one of the components νLνL
(III) ψ × Φ forms a fermion triplet with one of the components (φ0νL + φ

+eL).

while the singlet combination of ψi and ψ j is νiLe j
L − eiLν

j
L which does not generate Eq.16.

In each of the three cases, we generate the operator Eq.16 among with the other interactions
which altogether schematically look like:

(I) Λ
−1(φ0νL − φ

+eL)(φ0νL − φ
+eL), (17)

(I I) Λ
−1[φ0φ0νLνL − φ

+φ0(νLeL + eLνL) + φ+φ+eLeL], (18)
(I I I) Λ

−1[(φ0νL + φ
+eL)(φ0νL + φ

+eL) − 2φ+νLφ0eL − 2φ0eLφ+νL]. (19)

The intermediate heavy particle in the first case is clearly a fermion singlet (right-handed
neutrino) and this is the well-known type-I seesaw mechanism. In the second case the
intermediate heavy particle is a heavy scalar triplet ξ = (ξ++, ξ+, ξ0) realizing type-II seesaw.
Finally, we replace the right-handed neutrino of the first model with a heavyMajorana fermion
triplet (Σ+, Σ0, Σ−) and obtain type-III seesaw mechanism. Each seesaw mechanism has its
own unique implications about physics beyond the Standard Model.

10



P
o
S
(
Q
G
-
M
M
S
c
h
o
o
l
s
)
0
0
1

Effective field Theories and the Standard Model extensions

• Dark matter (DM): Particle physics suggests an effective solution to this problem in terms of
an electrically neutral and weakly interacting massive particle that is stable at cosmological
scales. DM particles are predicted by many extensions of the Standard Model, including
the well motivated ones that address other important theoretical or experimental issues such
as SUSY and Composite Higgs models we discussed above. Because of the many possible
choices for DM candidates, it has become customary and quite useful to consider EFT
approaches, which allow to study in a model-independent manner the phenomenology of
these particles. It is typically assumed that the new state is either a scalar, a vector or a
fermion. In order to work with a manageable theory some restrictions on the DM sector need
to be imposed. One popular direction can be summarised as follows:

The field content of the theory is given by the SMextended by an extramultiplet X that belongs
to an irreducible representation of the SMgauge groupGSM = SU(3)×SU(2)×U(1)Y . Under
the Lorentz group, X transforms either as a scalar, a spinor or a vector. All SM fields are
even under a postulated extra Z2 parity symmetry, while X is odd. This discrete symmetry
stabilises the DM candidate which is the lightest member of the multiplet X . The DM-EFT
Lagrangian can be schematically written as:

L = LSMEFT +
∑

ciOi (20)

where operators Oi include the SM and DM field X.

• Flavour problem (dim-6 operators): The SM does not explain the fermion masses and their
mixing angles. These parameters are very different. Also, why are there 3 generations of
quarks and leptons? From the Lagrangian point of view this problem is connected to the
Yukawa couplings of the fermions to the Higgs and the Weinberg operator in neutrino sector:

Yi jψi
Lψ

j
Rφ + Λ

−1φ0φ0νiνj (21)

The main goal of the flavor physics model building is to identify the symmetries and
symmetry-breaking patterns beyond those present in the SM which would explain fermion
masses andmixing angles. The dim-6 operators built from the SMfields are very important as
they typically give the leading effect, for example to B-B̄ mesonsmixing: (d̄LγµbL)(d̄Lγ

µbL).

• Proton decay (dim-6 operators): In the SM, the proton is stable because it is the lightest
baryon and baryon number (quark number) is conserved. Many BSMmodels explicitly break
the baryon number symmetry, allowing protons to decay. For example, in grand unified
theories (GUTs) it can decay via the new X bosons (see fig.4) . Integrating out the heavy
X bosons (just as we will do later, integrating out the W and Z bosons to obtain the Fermi
theory) we are left with dimension-6 operators ēc ūcqq

Λ2
GUT

and ūc d̄cql

Λ2
GUT

. All of these operators
violate both baryon number (B) and lepton number (L) conservation but not the combination
B − L. These operators mediate the decay of the proton to a positron and a neutral pion:
p → e+ + π0. Breaking of the baryon number symmetry is also important to explain the
matter-antimatter asymmetry as we observe in our Universe.
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Figure 4: Proton decay mediated by the X boson (3, 2)−5/6 in SU(5) GUT.

There are other puzzles in the SM which we do not have time to go to. Let me mention a few:
Strong-CP problem, muon g − 2, matter-antimatter asymmetry.

Notice that puzzles related to relevant dim<4 operators lead to "hierachy" problems due to
the fact that the related coupling constants are expected to pick up contributions proportional to
the large cutoff scale Λ whereas experimentally they are at the low (electroweak) scale. Problems
related to irrelevant dim>4 have opposite, "decoupling" nature. If we take a cutoff scale infinitely
large, the effects of these operators will be unobservable since the corresponding couplings scale
inversely with the cutoff.

5. EFTs in general

Having discussed the SM EFT and its problems we now discuss how to construct EFT in
general. There are two ways to do it:

1. Top-down: in this approach we integrate out heavy particles and match onto a low energy
theory. The matching procedure will be illustrated in the example below. In the low energy EFT,
we find new operators and new low energy constants.

2. Bottom-up: here you write down the most general possible operators/interactions consistent
with symmetries. Couplings of your EFT will be unknown but can be obtained from experiment.

5a Examples of EFTs

Let me give some examples of EFTs keeping in mind that the list is not exhaustive. The first
three examples will be examples of top-down approach while the last two will be bottom-up.

• HQET: describes the low-energy dynamics of hadrons (composite particles built from quarks
and thus interacting via QCD interactions) containing a heavy quark. The theory is applied
to hadrons containing b and c quarks. The expansion parameter is ΛQCD/mQ, where
mQ = mb,mc is the mass of the heavy quark. The theory also has an expansion in powers of

12
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αs(mQ)/(4π). The matching from QCD to HQET can be done in perturbation theory, since
αs(mQ)/(4π) is small, αs(mb) ∼ 0.22, αs(mb)/(4π) ∼ 0.02.

• Fermi theory of weak interactions: this is an EFT for weak interactions at energies below the
W and Z masses. The expansion parameter is p/MW , where p is the momenta of a particle
in the weak decay (which is related to b-quark mass in a b-decay, for example). We start with
the tree-level amplitude for the b→ c decay as our simple example:

A =
(
−ig

2
√

2

)2
Vcb c̄γµ(1 − γ5)b ¯̀γν(1 − γ5)ν`

(
−igµν

p2 − M2
W

)
(22)

where we have two charged weak currents c̄γµ(1−γ5)b (with the corresponding CKMmatrix
element Vcb ) and ¯̀γν(1 − γ5)ν` coupled to the W boson, the last factor is the W propagator,
and finally g is the gauge coupling of the SU(2) interactions. For low momentum transfers,
p � MW , we can expand the W propagator:

1
p2 − M2

W

= −
1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
. (23)

Keeping only the first term we obtain the local Lagrangian:

A =
(
−ig

2
√

2

)2 1
M2

W

Vcb c̄γµ(1 − γ5)b ¯̀γν(1 − γ5)ν` + O

(
1

M4
W

)
. (24)

This EFT no longer has dynamical W bosons, and the effect of W exchange in the SM has
been included via dimension=6 four-fermion operators.

• SM below EW scale: Below v ≈ 246 GeV scale, the electroweak symmetry is broken, so that
one can write a low energy effective theory with quark and lepton fields, and only SU(3) and
U(1)EM gauge fields. Since SU(2) gauge invariance is no longer a requirement, there are
several new types of operators beyond those in SMEFT.

– There are dimension-three νLνL operators which give a Majorana neutrino mass for
left-handed neutrinos as we discussed in the previous section.

– There are dimension-five dipole operators e.g. ψσµνψFµν.

– There are X3 and ψ4 operators as in SMEFT classification, but operators containing the
Higgs field φ are no longer present.

– There are many dimension-six four-fermion operators e.g. ψ̄ψνLνL .

• Chiral perturbation theory (χPT): our first example of bottom-up approach describes the
interactions of pions and nucleons at low momentum transfer p. It is not possible to analyt-
ically compute the matching onto the EFT, since the matching is non-perturbative. The two
theories, QCD and χPT, are not written in terms of the same fields. The QCD Lagrangian
has quark and gluon fields, whereas χPT has meson and baryon fields. The parameters of the
chiral Lagrangian are usually fit to experiment. The expansion parameter of χPT is p/Λχ,
where Λχ ∼ 1 GeV is referred to as the scale of chiral symmetry breaking.
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• General relativity

The field relevant for gravity is the metric, gµν (whose matrix inverse is denoted gµν). For
applications on macroscopic scales we use the most general effective Lagrangian consistent
with general covariance:

Lgrav =
√
−g

(
1
2

MpR + c1R2 + c2RµνRµν + c3RµναβRµναβ +
c4

m2 R3 + . . .

)
(25)

The term linear in R is the usual Einstein-Hilbert action, with Mp denoting the usual Planck
mass. The remaining effective couplings ck are dimensionless and unknown a priori. The
scale m stands for the lightest particle that have been integrated out to obtain this EFT (say,
the electron) since (being in denominator) it gives the largest coupling constant.

5b Top-down approach: Example of tree-level matching

Before we conclude these lectures let me give an example of tree-level matching technique
from the full theory to the effective one in the top-down approach. We consider the theory with
U(1) global symmetry:

L = ∂µφ∗∂µφ −
λ

[
φ̄φ − v2]2

4
. (26)

We have a symmetry φ→ eiωφ for ∂µω = 0. Redefine φ ≡ χeiθ to obtain:

L = ∂µ χ∂µ χ + χ2∂µθ∂
µθ −

λ
[
χ2 − v2]2

4
. (27)

The structure of the theory is now transparent. We see that we have two fields: θ, which is massless,
and χ with mass M =

√
λv. As usual, we have to shift the χ field and so we define new fields:

χ = v +
ψ
√

2
and θ = ξ

√
2v
. Our Lagrangian becomes:

L =
1
2
∂µψ∂

µψ +
1
2
(1 +

ψ
√

2v
)2∂µξ∂

µξ −
λ(
√

2vψ + ψ2/2)2

4
. (28)

To construct our EFT we will need to choose some observable to calculate. Let us use ξξ → ξξ

scattering, which occurs at tree-level in the full theory through the s, t and u channel processes, all
formed from the ψ∂µξ∂µξ vertex. We will assign momenta to the external lines as follows: p and
q to incoming lines, p′ and q′ to outgoing. Then the amplitude in the full theory is:

Af ull =
2
v2

(
(p · q)2

(p + q)2 + M2 +
(p · p′)2

(p − p′)2 + M2 +
(p · q′)2

(p − q′)2 + M2

)
. (29)

Exercise: Derive the result Eq.29.
To order O(1/M2) we simply have:

ALO =
2

v2M2

(
(p · q)2 + (p · p′)2 + (p · q′)2

)
. (30)

We now need to construct the effective Lagrangian for ξ, and calculate the same amplitude using
this EFT. We have:

Le f f =
1
2
∂µξ∂

µξ − a(∂µξ∂µξ)2 + . . . (31)
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where a is unknown coefficient. Using this effective Lagrangian we obtain for the amplitude:

Ae f f = 8a
(
(p · q)2 + (p · p′)2 + (p · q′)2

)
, (32)

so that comparing we obtain a = 1
4v2M2 . By matching the coefficient in the effective theory to

that produced (approximately) by the full theory we embeded information about the heavy field ψ,
which is not itself part of the EFT, into our results.
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