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1. Introduction

These lecture notes have been prepared on the basis of a short introductory course on noncom-
mutative field and gauge theory delivered at the Second Training School of COST Action CA18108
“Quantum gravity phenomenology in the multi-messenger approach”. They are not meant to be
exhaustive, as they reflect the personal journey of the speaker through the development of the sub-
ject. Important approaches to the subject, such as the spectral action formulation of the standard
model started by Connes and Chamseddine [1], as well as pioneering contributions by Madore,
Wess, and collaborators [2], or the matrix-model approach to gauge theory and emergent gravity
[3], are missing, and we refer the interested reader to the cited literature.

The exploration of noncommutative spacetime, matter, and gauge fields is driven by a range
of motivations, each offering insights into different branches of theoretical physics as well as
mathematics. One key motivation is its potential to be a signature of quantum gravity [4]. In
this context, a classical argument is the gedanken experiment described in [5], which points to
the breakdown of the Riemannian structure of spacetime at scales where the predictions of both
quantum mechanics and general relativity are brought together. Another classical motivation, which
goes back to the foundations of quantum mechanics [6, 7], is the appealing idea that spacetime
noncommutativity implies a minimal area, namely the disappearance of point-like objects. This
would solve the problem of the ultraviolet regime of quantum field theory (QFT), addressing
infinite energy issues that arise at extremely small scales. This regularization, as we shall briefly
see, introduces, however, new complexities in quantum field theory.

More recently, different theoretical approaches to quantum gravity have suggested that space-
time may not possess the smooth usual structure of a differentiable manifold. For instance, in
background-independent approaches such as loop- and spin foam-quantum gravity or group field
theory [8, 9], the quantum operators associated with the geometric quantities such as the area and
volume exhibit discrete spectra, indicating a departure from the smooth manifold structure (at the
Planck scale) usually assumed [10, 11]. Last but not least, the appearance of noncommutative
geometry in string theory with a nonzero B-field is an important result which has produced an enor-
mous boost to the research activity in the field: in a famous paper in 1999 [12] Seiberg identifies
a limit in which the string dynamics is described by a minimally coupled (supersymmetric) gauge
theory on a noncommutative space.

The paper is organized as follows. In Section 2 we shortly review the Doplicher–Fredenhagen–
Robert (DFR) argument that justifies the introduction of a noncommutative spacetime. Then, to
illustrate in a familiar situation what a noncommutative geometry is, we review in Section 3 the
Weyl–Wigner–Moyal formulation of quantum mechanics, stressing the quantum nature of phase
space, which is not a smooth manifold anymore but indeed a noncommutative geometry.

Before abandoning the classical picture of spacetime, we summarize in Section 4 the basic
geometric ingredients of commutative gauge theory and sketch their algebraic counterpart, which,
in Section 5, will serve as a basis for the introduction of their noncommutative generalization. In
Section 6 we extend the algebraic description of the differential calculus to the noncommutative
setting. Hence, two instances of noncommutative spaces are considered, e.g., the Moyal spacetime
and Lie-algebra type noncommutative spaces.

We will devote Section 7 and Section 9 to studying the dynamics of scalar field theory and
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gauge fields on the Moyal space. As for the gauge theory, we will only consider electrodynamics,
although the approach remains valid for non-abelian Yang–Mills theories. In Section 8 we move to
the next simplest case and consider linear-type noncommutativity, leading to the construction of the
R3
𝜆

algebra, together with its differential calculus, and we analyze an interacting scalar field theory
on such space. Proceeding by increasing the complexity, we thus consider, in 10, the 𝑈 (1) gauge
theory on such space.

To conclude, we discuss the spacetime symmetries in the noncommutative context. We
distinguish between the passive and active points of view and show in Section 9.3 that the Moyal
product is covariant under passive or observer-dependent Poincaré transformations, hence it is
possible to construct gauge-invariant actions. This gives the cue to discuss active or particle-
dependent transformations within the twist approach to noncommutative models, summarized in
Section 11 and applied to the so-called 𝜆-Minkowski spacetime in Section 12.

Concluding remarks and two appendices complete the manuscript.

2. The Doplicher–Fredenhagen–Robert argument

It is widely believed that our understanding of spacetime as a manifold, which resembles the
flat Minkowski spacetime on a local scale, breaks down at very short distances, such as the Planck
length 𝜆𝑃 =

√︁
ℏ𝐺/𝑐3 ≃ 10−35 m. At such tiny scales, the accuracy of localizing spacetime events

faces some limitations, particularly when incorporating gravitational effects into a quantum theory.
In their article [5], the authors showed that there are uncertainty relations among the coordinates
of spacetime events. Similar arguments were already discussed by Bronstein [4]. Their derivation
stems from Heisenberg’s principle and Einstein’s classical theory of gravity. The attempt to achieve
precise localization encounters gravitational collapse, making spacetime below the Planck scale
devoid of any operational meaning. Building upon this observation, the authors of [5] develop
spacetime uncertainty relations. According to their proposal, spacetime possesses an inherent
quantum structure that naturally gives rise to these relations. Hence, the operational meaning
problem at small scales is a built-in feature of the model: spacetime as a noncommutative manifold.

Spacetime uncertainties. According to Heisenberg’s uncertainty principle, the precise measure-
ment of spacetime coordinates with an accuracy of 𝑎 results in an uncertainty in the associated
momentum of the order of 1/𝑎 (assuming natural units ℏ = 𝑐 = 𝐺 = 1, unless otherwise specified).
Neglecting rest masses, this measurement process leads to the transfer of energy of the order 1/𝑎,
which becomes concentrated within the localization region at a specific time. As a consequence, an
energy-momentum tensor 𝑇𝜇𝜈 emerges, giving rise to a gravitational field. In principle, this field
should be determined by solving Einstein’s equations for the Minkowski metric 𝜂𝜇𝜈 ,

𝑅𝜇𝜈 − 1
2𝑅 𝜂𝜇𝜈 = 8𝜋 𝑇𝜇𝜈 . (2.1)

Therefore, as the uncertainty Δ𝑥𝜇 in coordinate measurements decreases, the gravitational field
generated by the measurement intensifies. In the attempt to localize the particle Δ𝑥𝜇 → 0 with
high precision the gravitational field becomes so strong that it prevents light or other signals from
escaping within the region under consideration. This means that the act of measurement itself loses
meaning, and so does the notion of localization. Hence, in order to ensure that no black hole is
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generated during the measurement process, the localization must be constrained. The values of Δ𝑥𝜇
will be subject to certain restrictions, preventing them from being simultaneously arbitrarily small,

Δ𝑥𝜇Δ𝑥𝜈 ≥ 𝜆2
𝑃 . (2.2)

Quantum (noncommutative) spacetime. In [5] it was suggested that the noncommutativity of
spacetime coordinates could provide an explanation for spacetime uncertainty relations, namely

[𝑥𝜇, 𝑥𝜈] ≠ 0 . (2.3)

The coordinates 𝑥𝜇 are therefore operators with non-trivial commutation relations, describing a
quantum (or noncommutative) spacetime. Therefore, the observables, that were smooth functions
on classical spacetime, are now represented as operators that generally do not commute. Similarly,
the states, which were represented as points in classical spacetime (or, equivalently, as evaluation
maps on the space of classical observables)1, are now described by quantum evaluation maps (i.e.,
linear functionals on the space of quantum observables).

3. Phase-space formulation of quantum mechanics

Quantum mechanics can be seen as a noncommutative geometry in phase space. Unlike
classical mechanics, where we have a smooth phase space, in quantum mechanics the phase space
has a minimal area (represented in units of ℏ) which arises from the uncertainty principle. The
coordinate functions 𝑞 and 𝑝 no longer commute, leading to a departure from the notion of a
differentiable manifold. Moreover, in quantum mechanics classical observables are replaced by
Hermitian operators, and the classical states, which correspond to points in the classical phase
space, are now described as vectors in a Hilbert space. In the following, we summarize the Weyl–
Wigner–Moyal approach (WWM) to quantum mechanics [13–16], that allows a convenient parallel
with quantum spacetime as a noncommutative geometry. It is often referred to as phase-space
formulation of quantum mechanics because operators and quantum density states are replaced by
noncommuting functions on classical phase space (namely, operator symbols on the cotangent
bundle 𝑇∗𝑀), using quantizer and dequantizer operators [17]. Through dequantization, we can
achieve a completely faithful description of quantum mechanics by replacing quantum observables
with a noncommutative algebra of functions with a ★-product (the Moyal product or its siblings)
and quantum density states by quasi-probability distributions (the Wigner functions).

Operator symbols. In classical statistical mechanics, finding the average value of an observable,
like particle energy, requires averaging the corresponding function 𝐸 (𝑞, 𝑝) using the probability
density 𝑓 (𝑞, 𝑝),

⟨𝐸⟩ =
∫

d𝑞d𝑝 𝐸 (𝑞, 𝑝) 𝑓 (𝑞, 𝑝) . (3.1)

1An evaluation map (associated to a classical state 𝑤) on the space of classical observables, is a map that at each
smooth function on the classical spacetime, 𝑓 ∈ F (𝑀) (a classical observable), associates the value of 𝑓 at 𝑤 ∈ 𝑀 ,

𝛿𝑤 : 𝑓 ∈ F (𝑀) → 𝑓 (𝑤) ∈ C . (2.4)

6
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In quantum mechanics, observables are represented by Hermitian operators. Similarly to statistical
mechanics, to calculate the expectation value of an operator 𝐴̂ in a given quantum state 𝜌̂, we can
similarly associate it with a function 𝑓 𝐴̂(𝑞, 𝑝) defined on the phase space. This function is known
as the symbol of the operator 𝐴̂, and it enables us to calculate the mean value of the operator (in a
state described by the quasi-probability distribution𝑊 (𝑞, 𝑝)) as follows:

⟨𝐴̂⟩ =
∫

d𝑞d𝑝 𝑓 𝐴̂(𝑞, 𝑝)𝑊 (𝑞, 𝑝) . (3.2)

In the WWM approach, the quasi-probability distribution𝑊 (𝑞, 𝑝) is the Wigner function associated
with the density operator 𝜌̂, whereas the operator symbol 𝑓 𝐴̂ is defined through the inverse Weyl
map. The WWM and other quantization-dequatization schemes, corresponding to different operator
orderings, are better understood within the procedure described below.

Quantizers and dequantizers. Let us consider a family of Hermitian positive-definite operators
on the phase space, 𝑈̂ (𝑞, 𝑝), and an observable 𝐴̂, labeled by the phase-space parameters (𝑞, 𝑝).
We can construct the symbol of 𝐴̂ as

𝐴̂→ 𝑓 𝐴̂(𝑞, 𝑝) = Tr( 𝐴̂ 𝑈̂ (𝑞, 𝑝)) . (3.3)

The operator 𝑈̂ (𝑞, 𝑝) is called dequantizer2 and the map defined in Eq. (3.3) is linear,

𝐴̂ + 𝐵̂ = 𝐶̂

𝜁 𝐴̂ = 𝐵̂

⇔
⇔

𝑓 𝐴̂(𝑞, 𝑝) + 𝑓𝐵̂ (𝑞, 𝑝) = 𝑓𝐶̂ (𝑞, 𝑝) ,
𝜁 𝑓 𝐴̂(𝑞, 𝑝) = 𝑓𝐵̂ (𝑞, 𝑝) .

(3.4)

Moreover, if the map is invertible so as to have a one-to-one correspondence between the operator
and its symbol, then the latter contains all the information about the operator, which can be therefore
reconstructed through another family of Hermitian operators, 𝐷̂ (𝑞, 𝑝),

𝑓 𝐴̂(𝑞, 𝑝) → 𝐴̂ =

∫
d𝑞d𝑝 𝑓 𝐴̂(𝑞, 𝑝)𝐷̂ (𝑞, 𝑝) . (3.5)

This is the inverse map of (3.3) and 𝐷̂ (𝑞, 𝑝) is called quantizer, with the compatibility condition

Tr 𝑈̂ (𝑞, 𝑝)𝐷̂ (𝑞′, 𝑝′) + 𝛿(𝑞 − 𝑞′)𝛿(𝑝 − 𝑝′) . (3.6)

The Weyl–Stratonovich operator. In the WWM approach, or symmetric ordering, quantizer,
and dequantizer operators are essentially the same, meaning that 𝑈̂ (𝑞, 𝑝) = 2𝜋𝐷̂ (𝑞, 𝑝) = Ω̂(𝑞, 𝑝),
for

Ω̂(𝑞, 𝑝) =
∫

d𝜂d𝜉 𝑒𝑖 (𝜂𝑄̂+𝜉 𝑃̂)𝑒−𝑖 (𝜂𝑞+𝜉 𝑝) , (3.7)

which is the so called Weyl–Stratonovich operator. Here 𝑄̂ and 𝑃̂ are the position and momentum
operators associated with the phase-space coordinates 𝑞 and 𝑝, respectively. For this reason,
this quantization scheme is also called self-dual. It is important to note that for other ordering
prescriptions the quantizer and dequantizer are different (see for example [17, 18] for details).

2It is important to note that, as the dequantizer is simply required to be a Hermitian operator, the resulting symbol
can exhibit negative values and this prevents its interpretation as measurement probability.
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Quantum states. Quantum states, both pure and mixed, are conveniently described in terms of
density operators. The corresponding symbol is in general a quasi-probability distribution defined
as

𝜌̂ → 𝑊𝜌̂ (𝑞, 𝑝) = Tr( 𝜌̂ 𝐷̂ (𝑞, 𝑝)) . (3.8)

whereas the inverse map is obtained through the operator 𝑈̂. Notice the inverted role played
by the operators 𝑈̂ and 𝐷̂ in relation to the states, as compared with (3.3), (3.5). It is only in
the WWM scheme that states and observables are quantized/dequantized by the same operators,
while in general states and observables, being dual objects, are dealt with in a dual approach [19].
The symbol of the density operator through the Weyl–Stratonovich operator is the famous Wigner
quasi-probability distribution, but other well-known quasi-distributions corresponding to normal
and antinormal orderings are the Husimi and Glauber–Sudarshan functions [17].

Star-product. The set of operator symbols inherits a noncommutative product, hence an algebra
structure, which is given by the operator product

𝐴̂𝐵̂→ ( 𝑓 𝐴̂★ 𝑓𝐵̂) (𝑞, 𝑝) = Tr( 𝐴̂𝐵̂ 𝑈̂ (𝑞, 𝑝)) , (3.9)

known as star-product. Associativity and noncommutativity descend from the operator product:

associativity
noncommutativity

( 𝐴̂𝐵̂)𝐶̂ = 𝐴̂(𝐵̂𝐶̂)
𝐴̂𝐵̂ ≠ 𝐵̂ 𝐴̂

⇔
⇔

( 𝑓 𝐴̂★ 𝑓𝐵̂) ★ 𝑓𝐶̂ = 𝑓 𝐴̂★ ( 𝑓𝐵̂ ★ 𝑓𝐶̂) ,
𝑓 𝐴̂★ 𝑓𝐵̂ ≠ 𝑓𝐵̂ ★ 𝑓 𝐴̂ .

(3.10)

In particular, this yields a non-trivial commutator between phase-space coordinates,

[𝑞, 𝑝]★ = 𝑞 ★ 𝑝 − 𝑝 ★ 𝑞 = 𝑖ℏ , (3.11)

where we restored ℏ for clarity.
The phase-space formulation of quantum mechanics as a noncommutative geometry provides

a comprehensive description of this theory, including its dynamics. This formulation yields a
fully equivalent picture of quantum mechanics in terms of an algebra of noncommutative smooth
functions over phase space, (F (𝑇∗𝑀), ★).

4. Commutative gauge theory

Gauge theories are field theories describing fundamental interactions. The so-called gauge
groups are infinite-dimensional groups modeled on unitary Lie groups, abelian or non-abelian,
depending on the interaction they describe. Since the underlying spacetime is commutative (gen-
erally Minkowski), we shall refer to them as commutative (abelian or non-abelian) gauge theories
as opposed to noncommutative gauge theory (abelian or non-abelian) which has a noncommutative
underlying spacetime. Transformations that leave a physical system unchanged under their action
are associated with symmetries. Gauge invariance is a local symmetry, meaning that the group
parameters depend on spacetime coordinates. Therefore, the gauge group can be thought of as
constructed by attaching a copy of a finite-dimensional Lie group to each point in spacetime (this
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is loosely speaking a principal fiber bundle over spacetime, with fibers being modeled on a finite-
dimensional Lie group called the structure group). Thus, gauge transformations may be defined as
maps from the spacetime manifold 𝑀 to the structure group 𝐺 [20–22],

𝐺̂ = {𝑔 : 𝑥 ∈ 𝑀 → 𝑔(𝑥) ∈ 𝐺} . (4.1)

Gauge theories describe the behavior of the fundamental interactions, such as the electromagnetic
force, and the strong and weak nuclear forces. In the Standard Model picture, these fields are associ-
ated with bosons, which act as mediators for the corresponding fundamental interaction. Quantum
electrodynamics (QED) is a 𝑈 (1)-gauge theory describing the electromagnetic interaction. It has
succeeded so far in explaining all phenomena involving electrically charged particles interacting
through the exchange of photons, which are the bosons mediating this interaction. The weak inter-
action, on the other hand, is represented by the 𝑆𝑈 (2)-gauge theory called quantum flavor dynamics
(QFD). It describes various phenomena including radioactive decay and nuclear fission/fusion, all
mediated by the 𝑊± and 𝑍0 bosons. However, the weak interaction is better understood within
the framework of the electroweak theory (EWT), which is a unified gauge theory that combines
electromagnetic and weak interactions into a single model. EWT is based on a 𝑆𝑈 (2) ×𝑈 (1) gauge
symmetry. The strong interaction is the one responsible for binding quarks into hadrons and the
formation of atomic nuclei. It is described by quantum chromodynamics (QCD), a 𝑆𝑈 (3)-gauge
theory, and the associated gauge bosons are the gluons. Gauge theories with𝑈 (𝑁) structure group
are known as Yang–Mills theories [22–25]. Gravity, as described by General Relativity, is distinct
from the other fundamental interactions. General Relativity explains gravity as the curvature of
spacetime due to mass and energy. Although gravity is not traditionally formulated as a gauge
theory, attempts have been made to incorporate it into this framework, e.g., as a 𝑆𝑂 (1, 3)-gauge
theory [26].

4.1 Matter fields and group representations

Matter fields represent particles that interact through the fundamental forces depicted by gauge
theories. They possess the properties associated with the particles they describe, such as the charge,
which determines in turn the type of interaction a particle experiences. For instance, particles with
electric charges interact electromagnetically, while particles with weak charges engage in weak
force interactions, and so forth. It is also possible for a particle to carry multiple charges, enabling it
to couple with multiple gauge fields [22, 25]. Mathematically, matter fields are described by vector
fields on the spacetime manifold which carry a representation of the structure group, in particular,
the defining representation. Therefore, the dimension of this representation determines also the
dimension of the matter vector field [21, 22].
The defining representations of 𝑈 (1), 𝑆𝑈 (2), and 𝑆𝑈 (3) are all complex and have dimensions 𝑛 =

1, 2, 3, respectively. This means that they are represented by complex matrices𝑀𝑛×𝑛. Consequently,
particles with electric charge 𝜙𝑒, weak charge 𝜙𝑤 , or strong charge 𝜙𝑠 are represented by complex
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vector fields with one, two, and three components, respectively. This can be illustrated as follows:

𝑈 (1) : 𝜌(𝑔) 𝜙𝑒 = 𝑀1×1 𝜙
𝑒 , 𝑆𝑈 (2) : 𝜌(𝑔) 𝜙𝑤 = 𝑀2×2

(
𝜙𝑤1
𝜙𝑤2

)
,

𝑆𝑈 (3) : 𝜌(𝑔) 𝜙𝑠 = 𝑀3×3
©­­«
𝜙𝑠1
𝜙𝑠2
𝜙𝑠3

ª®®¬ ,
(4.2)

where 𝑔 is an element of the gauge group associated with the considered interaction, and 𝜌(𝑔)
denotes its representation on a matter field. Notice that, when a particle possesses multiple charges,
it carries as many representations. For example, the electron is a complex one-dimensional vector
field under 𝑈 (1), but it is a component of a doublet (the electron and its neutrino) under 𝑆𝑈 (2)
[21, 22].

4.2 Connection and curvature forms

Let us consider a gauge theory with structure group𝐺, defined on a four-dimensional manifold,
which can have a Lorentzian or Euclidean signature. The fields of interest for a pure gauge theory,
without matter fields, are the gauge potential 𝐴 and the field strength 𝐹. They are Lie-algebra-
valued, meaning that they are endowed with internal/gauge indices in addition to the spacetime
ones. Gauge indices are indicated by uppercase Latin letters 𝐼, 𝐽, 𝐾, . . . = 1, . . . , 𝑁 , where 𝑁 is
the dimension of 𝐺, whereas for spacetime indices we use Greek letters 𝜇, 𝜈, 𝜌, . . . = 0, 1, 2, 3. By
denoting Ω𝑟 (𝑀) the algebra of 𝑟-forms on the manifold and g the Lie algebra of the structure group,
we have, locally,

Ω1(𝑀) ⊗ g ∋ 𝐴 = 𝐴𝐼𝜇 d𝑥𝜇 𝑇𝐼 , Ω2(𝑀) ⊗ g ∋ 𝐹 = 1
2𝐹

𝐼
𝜇𝜈 d𝑥𝜇 ∧ d𝑥𝜈 𝑇𝐼 , (4.3)

with {d𝑥𝜇} the coordinate basis of one-forms, and 𝑇𝐼 a basis of generators of g. In a non-abelian
gauge theory the Lie algebra generators do not commute, namely [𝑇𝐼 , 𝑇𝐽 ] = 𝑐𝐾

𝐼𝐽
𝑇𝐾 with 𝑐𝐾

𝐼𝐽
the

structure constants. When all the structure constants are zero, as is the case for electrodynamics,
the theory is called abelian. From Eq. (4.3), it is clear that the gauge potential 𝐴 is a one-form and is
associated with the connection one-form, while the field strength 𝐹 is the curvature two-form [27].
The curvature form is obtained from the connection form through the covariant exterior derivative,
which is defined on Lie-algebra-valued forms as follows:

D : 𝜂 ∈ Ω𝑟 (𝑀) ⊗ g→ D 𝜂 = d𝜂 + 1
2 [𝐴, 𝜂] ∈ Ω

𝑟+1(𝑀) ⊗ g , (4.4)

with [𝜁, 𝜂] = 𝜁 ∧ 𝜂 − (−1) 𝑝𝑞𝜂 ∧ 𝜁 , for 𝜁, 𝜂 Lie-algebra-valued p- and q-forms, respectively [27].
Thus, 𝐹 = D 𝐴 = d𝐴 + 𝐴 ∧ 𝐴. On explicitly computing the curvature two-form 𝐹 of Eq. (4.3) we
find that

𝐹 = d𝐴 + 𝐴 ∧ 𝐴
= 𝜕𝜇𝐴

𝐼
𝜈 d𝑥𝜇 ∧ d𝑥𝜈 𝑇𝐼 + 𝐴𝐽𝜇𝐴𝐾𝜈 d𝑥𝜇 ∧ d𝑥𝜈 𝑇𝐽𝑇𝐾

= 1
2

(
𝜕[𝜇𝐴

𝐼
𝜈 ] + 𝐴

𝐽
𝜇𝐴

𝐾
𝜈 𝑐

𝐼
𝐽𝐾

)
𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 𝑇𝐼 .

(4.5)

Therefore, we recover the well-known field-strength components of non-abelian gauge theories in
the following form:

𝐹 𝐼𝜇𝜈 = 𝜕𝜇𝐴
𝐼
𝜈 − 𝜕𝜈𝐴𝐼𝜇 + 𝑐𝐼𝐽𝐾 𝐴𝐽𝜇𝐴𝐾𝜈 , (4.6)

10
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and, in the abelian case, the electromagnetic field 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 [27]. Let us notice that
analogously to the transformation of affine connections under linear transformations, the connection
one-form is not covariant under gauge transformations, but transforms in a non-homogeneous
manner,

𝐴′ = 𝑔𝐴𝑔−1 − d𝑔𝑔−1 . (4.7)

Then, it can be checked that, precisely because of this, the curvature two-form is gauge covariant

𝐹′ = 𝑔𝐹𝑔−1 . (4.8)

Finally, the gauge connection allows for the introduction of a covariant derivative on charged matter
fields, exactly in the same way as the affine connection defines a covariant derivative of tensor fields
in Riemannian geometry, namely, it implements the parallel transport of matter fields, which behave
tensorially under the internal structure group [27]. Its local expression reads

∇𝜇𝜓 = 𝜕𝜇𝜓 + 𝐴𝐽𝜇 𝜌(𝑇𝐽 )𝜓 , (4.9)

with 𝜌(𝑇𝐽 ) being the appropriate representation of the Lie algebra g on the matter field 𝜓.

4.3 Gauge theories in the fiber bundle formalism

The appropriate geometrical setting for gauge theories is the framework of fiber bundles. There,
the distinguished nature of radiation fields which are responsible for the propagation of fundamental
forces, and matter fields which are associated with the constituents of matter, is made very clear.
Interactions are described in terms of gauge potentials, which are one-form connections of principal
fiber bundles, together with their curvature two-forms, whereas matter fields are sections of the
associated vector bundles. The interaction between matter and radiation is geometrically understood
as a modification of the spacetime manifold so that ordinary derivatives are not appropriate anymore.
A parallel transport is needed to compare matter fields at different points of spacetime, constructed
in terms of the gauge connection, which yields a covariant derivative.

Roughly speaking, a principal fiber bundle with structure group 𝐺 and base manifold 𝑀 (the
spacetime), is a manifold 𝑃, locally built from the Cartesian product 𝑈𝑖 × 𝐺, with 𝑈𝑖 some open
set of 𝑀 ,

⋃
𝑖𝑈𝑖 = 𝑀 , also called a local chart. It has a projection map 𝜋 : 𝑃 → 𝑀 such that

𝜋−1(𝑥) = 𝐺, also called the fiber of 𝑃 at 𝑥 ∈ 𝑀 . Differently from the projection map, a section of
the principal bundle is a smooth map, generally only locally defined 𝜎𝑖 : 𝑈𝑖 → 𝜋−1(𝑈𝑖), such that
𝜋 ◦𝜎𝑖 = id𝑈𝑖

. The bundle is trivial if it is globally endowed with the Cartesian product 𝑃 = 𝑀 ×𝐺.
In such a case the sections are globally defined. There is a global right action of the group 𝐺 on the
bundle and a local action from the left.

The gauge connection is a Lie-algebra-valued one-form on the principal bundle 𝑃,𝜔 ∈ Ω1(𝑃)⊗
g with curvature F = D𝜔 ∈ Ω2(𝑃) ⊗ g. The gauge potential 𝐴 and its curvature introduced in the
previous section, are nothing but their local expressions in some open set of 𝑀 ,𝑈𝑖 . More precisely,
𝜎∗
𝑖
𝜔 = 𝐴𝑖 , 𝜎

∗
𝑖
F = 𝐹𝑖 , with 𝜎∗

𝑖
: Ω𝑟 (𝑃) → Ω𝑟 (𝑈𝑖), the so-called pull-back map through the

section 𝜎𝑖 . It is then clear that the gauge potential 𝐴𝑖 and its curvature 𝐹𝑖 are globally defined on
spacetime only if the bundle is trivial (namely, the section 𝜎𝑖 is globally defined). For more details
see for example [27].

11
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Gauge transformations of the gauge potential 𝐴, Eq. (4.7), are therefore understood as trans-
formations of 𝐴𝑖 from one local chart 𝑈𝑖 ⊂ 𝑀 to 𝐴 𝑗 in another chart 𝑈 𝑗 ⊂ 𝑀 , with 𝑈𝑖 ∩𝑈 𝑗 ≠ 0
and 𝑔 : 𝑥 ∈ 𝑈𝑖 ∩𝑈 𝑗 → 𝑔(𝑥) ∈ 𝐺. The same holds for the gauge transformation of 𝐹.

In order to describe matter fields we need vector bundles. Given a principal bundle (𝑃, 𝜋, 𝑀, 𝐺)
encoding gauge fields, it is possible to construct an associated vector bundle [27], namely a manifold
𝐸 , locally diffeomorphic to the Cartesian product𝑈𝑖 ⊗ 𝐵 with𝑈𝑖 a local chart on the spacetime 𝑀
and 𝐵 a vector space carrying a representation of the structure group 𝐺 (hence, the group has a left
action on the bundle, which is local). 𝐵 is called the typical fiber of the vector bundle. 𝐸 possesses
a projection map 𝜋 : 𝐸 → 𝑀 whose inverse 𝜋−1(𝑥) ≃ 𝐵𝑥 is the fiber of 𝐸 at 𝑥 ∈ 𝑀 . The sections
of 𝐸 , 𝑠𝑖 : 𝑥 ∈ 𝑈𝑖 → 𝑠𝑖 (𝑥) ∈ 𝜋−1(𝑥), are vector-valued maps, with the property 𝜋 ◦ 𝑠𝑖 = id𝑈𝑖

. These
are the mathematical objects that describe matter fields, which are charged under (i.e., they carry a
representation of) the group 𝐺. They can be locally described in terms of a base coordinate 𝑥 and
a fiber coordinate 𝜓(𝑥),

𝑠𝑖 (𝑥) ∼ (𝑥, 𝜓(𝑥)) . (4.10)

Then, it is possible to derive Eq. (4.9) as the local expression of the covariant derivative of the
section 𝑠𝑖 along a basis vector

∇𝜇𝑠𝑖 (𝑥) ∼ (𝑥,∇𝜇𝜓(𝑥)) , (4.11)

with ∇𝜇 determined by the gauge connection [27].
In this geometric picture, gauge transformations are vertical automorphisms of the principal

bundle, namely smooth maps 𝜙 : 𝑃 → 𝑃, which satisfy the 𝐺-equivariant condition, 𝜙(𝑝𝑔) =
𝜙(𝑝)𝑔 for all 𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺 [25]. Moreover, they are vertical, namely 𝜋 ◦ 𝜙(𝑝) = 𝜋(𝑝), where
𝜋 is the projection map. Every 𝜙 ∈ 𝐴𝑢𝑡 (𝑃) induces a diffeomorphism 𝜙 on the basis manifold.
The map 𝐻, which associates 𝜙 ∈ 𝐷𝑖𝑓 𝑓 (𝑀) to 𝜙 ∈ 𝐴𝑢𝑡 (𝑃), is a group homomorphism. Thus, the
kernel of 𝐻, given by those automorphisms of 𝑃 which are mapped to the identity in 𝐷𝑖𝑓 𝑓 (𝑀), is
a group. This allows for a mathematical definition of gauge transformations:

Definition 1 (Gauge transformation). The gauge group of P is G(𝑃) := 𝑘𝑒𝑟 (𝐻). Its elements are
called gauge transformations or vertical automorphisms. □

Bundle automorphisms of the principal bundle can act on every associated bundle, including
matter/vector bundles, thereby defining automorphisms of the associated bundle [20].

5. Noncommutative gauge and field theory

The study of noncommutative geometry emerged in the 1980s and remains an active area of
research till today [28–34]. It has provided valuable insights into various areas of mathematics
and physics, including gauge and field theories. Several approaches have been developed to
deal with physics in a noncommutative spacetime. In these notes, we shall identify the latter with
noncommutative algebras of functions defined on a commutative spacetime, with noncommutativity
encoded in a suitable★-product of the algebra, and we will mainly be concerned with gauge and field
theory with such underlying noncommutative spacetime. A classical result of algebraic geometry
states that the commutative algebra of continuous functions on a compact topological space provides
an entirely equivalent description of the underlying space and its properties [35]. Elaborating on

12



P
o
S
(
Q
G
-
M
M
S
c
h
o
o
l
s
)
0
0
7

NCFT Patrizia Vitale

this theorem, a noncommutative space is therefore defined as the dual object of a noncommutative
algebra, with suitable properties. In other words, a noncommutative space is described through a
dual noncommutative algebra, the dual description being the only possible one, as the concept of a
point is no longer available, unlike in its commutative counterpart [36].

5.1 Algebras

Let us begin by recalling the formal definition of an algebra [27].

Definition 2 (Algebra). An algebra (A, +, ∗, ·) over a field 𝐾 is a set A equipped with three
operations:

i. An internal sum, + : (𝑎, 𝑏) ∈ A×A → 𝑎+𝑏 ∈ A, such that (A, +) forms an abelian group.
This means that the sum is associative (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐), commutative 𝑎 + 𝑏 = 𝑏 + 𝑎,
there exists an identity element with respect to the sum 𝑎 + 𝑒 = 𝑎 = 𝑒 + 𝑎, and each element
has an inverse with respect to the sum 𝑎 + 𝑎−1 = 𝑒 = 𝑎−1 + 𝑎.

ii. An external product, ∗ : (𝜁, 𝑎) ∈ 𝐾 × A → 𝜁 ∗ 𝑎 ∈ A, such that there exists an identity
element with respect to it, and it is compatible with the internal product of 𝐾 , namely
(𝜁 𝜇) ∗ 𝑎 = 𝜁 ∗ (𝜇 ∗ 𝑎). Moreover, the external product is distributive with respect to the
internal sum of A, namely 𝜁 ∗ (𝑎 + 𝑏) = 𝜁 ∗ 𝑎 + 𝜁 ∗ 𝑏, and the same holds for the internal
sum of 𝐾 .

The structure (A, +, ∗) defined up to this point is a vector space over the field 𝐾 . It becomes an
algebra by incorporating the third operation:

iii. An internal product, · : (𝑎, 𝑏) ∈ A ×A → 𝑎 · 𝑏 ∈ A, such that it is distributive with respect
to the internal sum of A and is compatible with the external product.

When the internal product is also associative, we refer to it as an associative algebra. Similarly, when
the external product exhibits commutativity, we have a commutative algebra. In the case where the
product satisfies both properties, we have what is called a commutative associative algebra. □

In the dual description of spacetime 𝑀 , the latter is replaced by the associative, commutative
algebra of smooth functions, (F (𝑀), ·) where · denotes the standard pointwise product 𝑓 · 𝑔(𝑥) =
𝑓 (𝑥)𝑔(𝑥). Therefore, a “noncommutative spacetime” replacing the smooth manifold 𝑀 will be an
associative noncommutative algebra (F (𝑀), ★) with ★ being an associative and noncommutative
product. Different★-products will yield different models of noncommutativity. A desirable property
for physical applications is that the★-product depends on some noncommutativity parameter, which
can be set to zero to recover commutative spacetime, in the same way as ℏ→ 0 yields back classical
mechanics from quantum mechanics.

5.2 Modules as generalization of vector spaces

In the context of noncommutative spaces where the concept of points is no longer applicable,
the notion of vector fields also becomes meaningless. Vector fields are smooth maps 𝑋 : 𝑥 ∈ 𝑀 →
𝑋 |𝑥 ∈ 𝑇𝑥𝑀 , which associate to each point in the spacetime a tangent vector at that point. However,
in the absence of points, we need to consider a more general framework.
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Definition 3 (Ring). A ring (𝑅, +, ·) is a set 𝑅 equipped with two operations:

i. An internal sum, + : (𝑎, 𝑏) ∈ 𝑅 × 𝑅 → 𝑎 + 𝑏 ∈ 𝑅, such that (𝑅, +) forms an abelian group.

ii. An internal product, · : (𝑎, 𝑏) ∈ 𝑅 × 𝑅 → 𝑎 · 𝑏 ∈ 𝑅, such that (𝑅, ·) forms a semigroup,
namely the product is associative. Moreover, the product is distributive with respect to the
sum. □

If the internal product is commutative, then (𝑅, +, ·) is a commutative ring. It is worth noting
that if (𝑅, ·) has additional properties that allow it to form an abelian group, then (𝑅, +, ·) becomes
a field. In other words, a field is a more comprehensive structure than a ring, making the latter less
restrictive.

Definition 4 (Module). A left 𝑅-module (M, +, ∗) over a ring 𝑅, is a set M equipped with two
operations:

i. An internal sum + : (𝑎, 𝑏) ∈ M×M→ 𝑎 + 𝑏 ∈ M, such that (M, +) forms an abelian group.

ii. An external product, ∗ : (𝜁, 𝑎) ∈ 𝑅 ×M → 𝜁 ∗ 𝑎 ∈ M, such that there exists an identity
element with respect to it, and it is compatible with the internal product of 𝑅. Moreover, the
external product is distributive with respect to the internal sum ofM, and the same holds for
the internal sum of 𝑅.

We can define a right 𝑅-module in a similar manner, but with the distinction that all the external
products are computed by multiplying the elements of the ring from the right instead of the left. If
𝑅 is a commutative ring, there is no distinction between a left and a right 𝑅-module, and it is simply
referred to as an 𝑅-module. □

These operations are the same as those introduced in Definition 2, the only difference being
that 𝑅 is a ring and not a field, therefore modules are a generalization of vector spaces [37]. The
set of smooth functions over a manifold F (𝑀), equipped with the pointwise product is a ring. It
is also a module with respect to left/right multiplication by real or complex numbers. The set of
vector fields X(𝑀), equipped with an internal sum + : X(𝑀) × X(𝑀) → X(𝑀) and an external
product ∗ : F (𝑀) × X(𝑀) → X(𝑀) over the ring of smooth functions, (X(𝑀), +, ·) with

(𝑋 + 𝑌 ) (𝑝) B 𝑋 (𝑝) + 𝑌 (𝑝) , (𝑋 ∗ 𝑓 ) (𝑝) B 𝑋 (𝑝) 𝑓 (𝑝) . (5.1)

is easily checked to be a left F (𝑀)-module, but not a right F (𝑀)-module (as the vector fields
would act on functions on their right).

Matter fields, namely sections of vector bundles that carry a representation of the structure
group associated with the gauge symmetry, can be equivalently described as right modules over
the ring of smooth functions on spacetime [27], a picture which can be easily generalized to the
noncommutative setting [38].

5.3 Gauge transformations, connection, and curvature

In Section 4 we discussed gauge transformations and their usual definition as maps from the
spacetime manifold to the structure group. Within the framework of fiber bundles, gauge trans-
formations are understood as automorphisms of a principal bundle which induce automorphisms
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of the associated bundles. When replacing vector bundles with right modules, gauge transforma-
tions are seen as automorphisms of the module, and this definition naturally generalizes to the
noncommutative case, as we shall see in Section 9. In Section 4, we also provided a formal def-
inition of connection and curvature within the fiber bundle formalism. A gauge connection on a
principal bundle induces a covariant derivative on sections of the associated vector bundles, which
correspond to matter fields. On replacing vector bundles with right modules over an algebra, the
covariant derivative shall be defined in terms of a Koszul connection [39], which in turn requires an
appropriate differential calculus. This will be the subject of the next section. Then, in Section 8, we
will review the definition of connection and curvature in a noncommutative space. We will focus
on the Moyal case, although the same procedure can be applied to other noncommutative spaces.

6. Differential calculus

In order to describe the dynamics of fields, it is necessary to introduce a differential calculus
that has to be compatible with spacetime noncommutativity. To understand the relevance of the
problem, let us consider the Kontsevich star-product [40]

𝑓 ★ 𝑔 B 𝑓 · 𝑔 + 𝑖
2Θ

𝜇𝜈 (𝑥) 𝜕𝜇 𝑓 · 𝜕𝜈𝑔 +𝑂 (Θ2) , (6.1)

with · being the ordinary pointwise product of functions (which will be omitted from now on) and Θ

an antisymmetric matrix encoding the noncommutativity. It is immediate to check that if Θ depends
on spacetime coordinates, ordinary derivatives are not derivations of the ★-product, namely they
are not star-derivations, as they violate the Leibniz rule,

𝜕𝜎 ( 𝑓 ★ 𝑔) = (𝜕𝜎 𝑓 )𝑔 + 𝑓 (𝜕𝜎𝑔) + 𝑖
2𝜕𝜎Θ

𝜇𝜈 (𝑥) 𝜕𝜇 𝑓 𝜕𝜈𝑔 + (higher orders)
= (𝜕𝜎 𝑓 ) ★ 𝑔 + 𝑓 ★ (𝜕𝜎𝑔) + 𝑖

2𝜕𝜎Θ
𝜇𝜈 (𝑥) 𝜕𝜇 𝑓 𝜕𝜈𝑔 + (higher orders)

≠ (𝜕𝜎 𝑓 ) ★ 𝑔 + 𝑓 ★ (𝜕𝜎𝑔) .
(6.2)

In what follows we consider two main examples:

Example 1 (Canonical noncommutativity). The Moyal star-product may be regarded as a specific
instance of the Kontsevich star-product, which arises when Θ𝜇𝜈 is a constant matrix. It was
introduced by [15, 41] in the context of Weyl quantization. It results in the noncommutative algebra
(F (R𝑛), ★𝜃 ), which we shall indicate with with R𝑛

𝜃
. This results in a constant noncommutativity

referred to as canonical or quantum-mechanics-like noncommutativity (see Eq. (3.11)) described
by the star-product:

𝑓 ★ 𝑔 = 𝑓 exp
(
𝑖
2Θ

𝜇𝜈←−𝜕𝜇
−→
𝜕𝜈

)
𝑔, (6.3)

yielding for coordinate functions

[𝑥𝜇, 𝑥𝜈]★ = 𝑥𝜇 ★ 𝑥𝜈 − 𝑥𝜈 ★ 𝑥𝜇 = 𝑖Θ𝜇𝜈 . (6.4)

We will review the Moyal algebra and its product in Section 7 in more detail. It is easily checked
that, in this case, ordinary derivatives not only are derivations of the pointwise product, but they are
also star-derivations. Indeed, when using Eq. (6.3) to compute the star commutator 𝑥𝜈 ★ 𝑓 − 𝑓 ★𝑥𝜈
we can verify that

𝜕𝜇 𝑓 = (Θ−1)𝜇𝜈 [𝑥𝜈 , 𝑓 ]★ . (6.5)
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Therefore, the Leibniz rule is automatically satisfied because of the associativity of the star-product:

[𝑥, 𝑓 ★ 𝑔]★ = [𝑥, 𝑓 ]★★ 𝑔 + 𝑓 ★ [𝑥, 𝑔]★ . (6.6)

Derivations that are realized as commutators are called inner derivations. Therefore, inner deriva-
tions defined in terms of star-commutators, are automatically star-derivations. ■

Example 2 (Lie-algebra type noncommutativity). A less trivial kind of noncommutativity is Lie-
algebra noncommutativity, where the noncommutative matrix is linear in the coordinate functions.
In this case, the star-commutator of the coordinate functions is given by

[𝑥𝜇, 𝑥𝜈]★ = 𝑐
𝜇𝜈
𝜎 𝑥

𝜎 , (6.7)

where 𝑐𝜇𝜈𝜎 are the structure constants of a Lie algebra. Ordinary derivatives 𝜕𝜇 cease to be
star-derivations, but similarly to the previous case, we do have a family of star-derivations, given by
inner derivatives:

𝐷𝜇 𝑓 B 𝑘 [𝑥𝜇, 𝑓 ]★ , (6.8)

where 𝑘 is a suitable dimensional constant. In the commutative limit, they do not reproduce ordinary
derivatives, as we shall see in Section 8 where an example of linear noncommutativity is considered
in detail. ■

If we are to interpret spacetime noncommutativity as a relic of a yet-to-be-achieved quantum
gravity theory, a desirable characteristic of noncommutative field theories and noncommutative
dynamical systems in general, is that they certainly should reproduce standard theories in the
commutative limit Θ→ 0 (see for example [42] for a discussion on this issue). Definitely, the issue
of a well-defined differential calculus that is not only mathematically sound but also physically
adequate, is an important one. Different proposals in this regard have been made.

One important approach involves employing a twisted differential calculus for noncommutative
spaces whose star-product is defined in terms of a twist operator [43–46], as we will see in Section
11. Another approach is the so-called derivation-based differential calculus, which we are going to
review in the following.

6.1 Derivation-based differential calculus

The concept of derivation-based differential calculus was introduced in the context of non-
commutative geometry by Dubois–Violette and Michor in their publications [38, 47, 48]. For a
more general perspective see [49–51]. This is an algebraic definition of differential calculus that
can be applied to any associative algebra, whether commutative or not. For mathematical details
and applications to noncommutative field theory also see [52–57] The following review is based on
[57].

Given an orientable 𝑛-dimensional differentiable manifold 𝑀 , it is well known that the dif-
ferential calculus on it is the differential graded algebra (d,Ω(𝑀) = ⊕𝑁

𝑘=0Ω
𝑘 (𝑀)), with Ω𝑘 (𝑀)

the set of 𝑘-exterior forms and d : Ω𝑘 (𝑀) → Ω𝑘+1(𝑀) the (graded) exterior derivative3. The

3The exterior derivative is formally defined as an antiderivation. In general, a linear map D is referred to as a graded
derivation of degree 𝑘 if it maps Ω𝑟 → Ω𝑟+𝑘 and satisfies the graded Leibniz rule: D(𝑎𝑏) = D(𝑎) 𝑏 + (−1)𝑘 |𝑎 |𝑎 D(𝑏),
where |𝑎 | denotes the rank of 𝑎. When 𝑘 is odd, D is specifically called an antiderivation. Hence, according to this
definition, the exterior derivative is an antiderivation of degree 𝑘 = +1 with d2 = 0 [58].
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commutative algebra of smooth functions on 𝑀 is identified with the zero forms, F (𝑀) = Ω0(𝑀).
The F (𝑀)-bimodule4 of one-forms is dual to the set of vector fields X(𝑀). The set X(𝑀) co-
incides with the space of all derivations of F (𝑀); it is an infinite-dimensional Lie algebra, with
the Lie bracket provided by the commutator [𝑋,𝑌 ] 𝑓 = 𝑋 (𝑌 𝑓 ) − 𝑌 (𝑋 𝑓 ) (with 𝑋,𝑌 ∈ X(𝑀) and
𝑓 ∈ F (𝑀)). As we have already mentioned, X(𝑀) is also a left F (𝑀)-module, namely, given a
vector field 𝑋 , the product 𝑓 𝑋 is again a vector field, hence a derivation of the algebra of functions;
this is an important difference with respect to the noncommutative case, as we will see below.

The differential calculus can be defined algebraically by means of the duality between one-forms
and vector fields, now seen as derivations. Since the construction is similar, we shall illustrate the
construction in detail for the noncommutative case, the commutative case being trivially obtained on
replacing star derivations with derivations, andA-modules withF (𝑀)-modules. We shall highlight
the differences when relevant. When the algebra F (𝑀) is replaced by a noncommutative algebra
A, the problem of defining a differential calculus is to be addressed within the Gelfand duality
[35]. It has been widely studied, yielding different proposals, as we already mentioned. Within the
approach considered here, one starts from a (finite-dimensional) Lie algebra of derivations acting
on A. The latter dually defines a A-bimodule of forms5 and a whole differential graded algebra
that we interpret as a differential calculus on A.

Let us assume indeed (see [32, 49–51]) that g is a Lie algebra acting upon an associative algebra
with unity, (A, ★), by derivations, i.e., 𝜌 : g → End(A) is a linear map with [𝜌(𝑋𝑎), 𝜌(𝑋𝑏)] =
𝜌( [𝑋𝑎, 𝑋𝑏]) and 𝜌(𝑋) ( 𝑓 ★ 𝑔) = (𝜌(𝑋) 𝑓 ) ★ 𝑔 + 𝑓 ★ (𝜌(𝑋)𝑔) for any 𝑋, 𝑋𝑎, 𝑋𝑏 ∈ g and 𝑓 , 𝑔

in A. Let us denote by 𝐶𝑛∧ (g,A) the set6 of 𝑍 (A)-multilinear alternating maps 𝜔 : 𝑋1 ∧
· · · ∧ 𝑋𝑛 ↦→ 𝜔(𝑋1, . . . , 𝑋𝑛) from g⊗𝑛 to A. Let us consider then the graded vector space
𝐶∧(g,A) = ⊕ 𝑗=dim g

𝑗=0 𝐶𝑛∧ (g,A), with 𝐶0
∧(g,A) = A. We can define a wedge product by

(𝜔 ∧ 𝜔′) (𝑋1, . . . , 𝑋𝑘+𝑠) =
1
𝑘!𝑠!

∑︁
𝜎∈S𝑘+𝑠

sign(𝜎) 𝜔(𝑋𝜎 (1) , . . . , 𝑋𝜎 (𝑘 ) ) 𝜔′(𝑋𝜎 (𝑘+1) , . . . , 𝑋𝜎 (𝑘+𝑠) ) ,

(6.9)
where𝜔 ∈ 𝐶𝑘∧ (g,A), 𝜔′ ∈ 𝐶𝑠∧(g,A), 𝑋 𝑗 ∈ g, andS𝑘+𝑠 is the set of permutations of 𝑘+𝑠 elements.
Thus we define the operator d : 𝐶𝑛∧ (g,A) → 𝐶𝑛+1∧ (g,A) by

d𝜔 (𝑋0, 𝑋1, . . . , 𝑋𝑛) =
𝑛∑︁
𝑘=0
(−1)𝑘𝜌(𝑋𝑘)𝜔(𝑋0, . . . , 𝑋̂𝑘 , . . . , 𝑋𝑛) (6.10)

+ 1
2

∑︁
𝑟 ,𝑠

(−1)𝑘+𝑠 𝜔( [𝑋𝑟 , 𝑋𝑠], 𝑋0, . . . , 𝑋̂𝑟 , . . . , 𝑋̂𝑠, . . . , 𝑋𝑛) , (6.11)

with 𝑋̂𝑟 denoting that the 𝑟-th term is omitted. Such operator is easily proven to be a graded
antiderivation with d2 = 0, so (𝐶∧(g,A), d) is a graded differential algebra. Operatively, it is
constructed by starting with zero-forms (the elements of A) and the operator d to build 𝐶1

∧(g,A)

4Namely, left and right F (𝑀)-module.
5Note that in the noncommutative case, left and right modules do not in general coincide.
6Differently from the commutative case, the space of derivations for a given noncommutative algebra A is a left

module only with respect to the center 𝑍 (A) of the algebra, since ( 𝑓 ★ 𝑋) (𝑔★ ℎ) ≠ 𝑓 ★ 𝜌(𝑋) (𝑔)★ ℎ + 𝑔★ 𝑓 ★ 𝜌(𝑋) (ℎ),
unless 𝑓 ∈ 𝑍 (A).
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as a left (or right) star-module,

𝐶1
∧(g,A) ∋ 𝜔 =

∑︁
𝑓 𝑗 d𝑔 𝑗 (𝑋) = 𝑓 𝑗 ★ 𝜌(𝑋)𝑔 𝑗 , (6.12)

with higher forms obtained iteratively, e.g., for two-forms 𝛼 =
∑
𝑓𝑖 d𝜔𝑖 , 𝜔𝑖 ∈ 𝐶1

∧(g,A).
Although the relations (6.9) and (6.11) are valid for both commutative and noncommutative

algebras, with 𝑍 (A) replaced by the whole F (𝑀) in the commutative case, when the algebraA is
not commutative one easily sees that it is in general 𝑓1d 𝑓2 ≠ (d 𝑓2) 𝑓1 and 𝜔 ∧ 𝜔′ ≠ (−1)𝑘𝑠𝜔′ ∧ 𝜔.
One has indeed ( 𝑓1d 𝑓2) (𝑋) = 𝑓1 ★ (𝜌(𝑋) 𝑓2) and ((d 𝑓2) 𝑓1) (𝑋) = (𝜌(𝑋) 𝑓2) ★ 𝑓1, while, for
𝜔, 𝜔′ one-forms, (𝜔 ∧ 𝜔′) (𝑋1, 𝑋2) = 𝜔(𝑋1) ★𝜔′(𝑋2) − 𝜔(𝑋2) ★𝜔′(𝑋1) and (𝜔′ ∧ 𝜔) (𝑋1, 𝑋2) =
𝜔′(𝑋1) ★ 𝜔(𝑋2) − 𝜔′(𝑋2) ★ 𝜔(𝑋1). This exterior algebra is an example of a derivation-based
calculus, where the derivations come from the action of the Lie algebra g upon the algebra A. By
construction, every element in 𝐶∧(g,A) can be written as a sum of 𝑎0 d𝑎1 ∧ · · · ∧ d𝑎𝑛 terms with
𝑎 𝑗 ∈ A.

Upon the graded differential algebra 𝐶∧(g,A) a contraction operator 𝜄𝑋 can be defined. If
𝑋 ∈ g, then

𝜄𝑋𝜔 (𝑋1, . . . , 𝑋𝑛) = 𝜔(𝑋, 𝑋1, . . . , 𝑋𝑛) , 𝑋 𝑗 ∈ g, (6.13)

gives a degree (−1) antiderivation from 𝐶𝑛+1∧ (g,A) → 𝐶𝑛∧ (g,A). The operator defined by L𝑋 =

𝜄𝑋d + d 𝜄𝑋 is the degree zero Lie derivative along 𝑋 , and the set (𝐶∧(g,A), d, 𝜄𝑋,L𝑋 = 𝜄𝑋d + d𝜄𝑋)
gives a Cartan calculus on A depending on the Lie algebra g of derivations.

When one is concretely searching for derivations of a given noncommutative algebra, in view
of physical applications, two other important properties are required:

i. Derivations must be independent. A set of derivations is considered independent if any linear
combination of them, with functions as coefficients, is nonzero unless all the coefficients
are zero everywhere. As an example, let us consider the commutative algebra of smooth
functions on R3, and the set of vector fields 𝑌𝑖 = 𝜀 𝑘

𝑖 𝑗
𝑥 𝑗𝜕𝑘 . They belong to the left module of

derivations of F (R3), namely 𝑓 𝑌𝑖 is also a derivation, but they are not independent, since it
is easily checked that the combination 𝑥𝑖𝑌𝑖 = 0 for 𝑥𝑖 ≠ 0. This means in particular that they
cannot generate the whole module of derivations for F (R3), namely, they are not enough to
retrieve the standard differential calculus of R3.

ii. Derivations must be sufficient, meaning that only constant functions are annihilated by all of
them. In the previous example, functions which depend on 𝑟 =

(∑
𝑖 (𝑥𝑖)

2)1/2 are annihilated
by all 𝑌𝑖 = 𝜀 𝑘

𝑖 𝑗
𝑥 𝑗𝜕𝑘 , but they are certainly not constant. Therefore, this set of derivations is

neither independent nor sufficient.

These two conditions trivially extend to the noncommutative case. When derivations are inner,
namely, they are realized through star-commutators, the request that they are sufficient is equivalent
to requiring that only elements that belong to the center of the algebra are in the kernel of the module
of derivations. The center of the algebra, in turn, should only contain constant functions. This
request is important to recover the right commutative limit, as we shall see in the coming sections
when considering Lie-algebra type noncommutativity.

Returning to the example of derivations in R3, if we consider a Lie-algebra type noncommu-
tativity, as in Eq. (6.7), with 𝑐𝑖 𝑗

𝑘
= 𝜀

𝑖 𝑗

𝑘
, the star-commutators [𝑥𝑖 , ·]★ := 𝐷𝑖 are star-derivations.
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They are independent because the only linear combination with nonzero functions that adds to zero
is given by 𝑥𝑖 ★ 𝐷𝑖 ( 𝑓 ) + 𝐷𝑖 ( 𝑓 ) ★ 𝑥𝑖 = 0. But the product 𝑥𝑖𝐷𝑖 is not a derivation because 𝑥𝑖 is
not in the center of the algebra. However, these derivations are not sufficient, because functions of∑
𝑖 (𝑥𝑖)2 are in the center of the algebra, therefore they are annihilated by 𝐷𝑖 , 𝑖 = 1, . . . 3 but they

are not constant functions. We shall see in Section 8 what are the physical consequences of this
observation.

7. Noncommutative scalar field theory on Moyal space

In Section 5 we discussed various examples of star-products, including the Moyal star-product
for the noncommutative algebra of functions A = R𝑘

𝜃
, introduced in Example 1. The latter gives

rise to canonical noncommutativity or quantum-mechanics-like noncommutativity, with the star-
commutator between the coordinate functions of the associated noncommutative space, known as
the Moyal space, given by

[𝑥𝜇, 𝑥𝜈]★ = 𝑖Θ𝜇𝜈 . (7.1)

This is exactly the canonical phase-space noncommutativity if 𝑘 , the dimension of spacetime,
is even, and the spacetime coordinates (𝑥 𝑗 , 𝑥 𝑗+ 𝑘

2 ), with 𝑗 ∈ (1, . . . 𝑘2 ), are replaced by (𝑞 𝑗 , 𝑝 𝑗).
Indeed, the Moyal space is modeled on the phase space of quantum mechanics. In the WWM
formulation, as discussed in Section 3, classical observables undergo a process of quantization
(Weyl quantization), where phase-space coordinates 𝑞 and 𝑝 are transformed into noncommuting
operators 𝑞 and 𝑝. In order to have a classical-like description (Wigner picture) a process of
dequantization takes place, where quantum observables are converted into operator symbols, which
are smooth functions on the phase space, equipped with a noncommutative product (the Moyal
product). This noncommutative algebra of functions over the phase space provides an equivalent
description of quantum mechanics. A similar approach can be applied to spacetime, resulting in
a constant noncommutativity between spacetime coordinates. In the following, we give a more
formal definition of the Moyal algebra.

7.1 The Moyal algebra

Consider a finite dimensional space R𝑘 (Euclidean for simplicity) and an antisymmetric 𝑘 × 𝑘
matrix, Θ. Let 𝑓 , 𝑔 ∈ S(R𝑘) be Schwartz functions, which are smooth and rapidly decreasing. The
Moyal product is defined as follows (see the appendix of [59] for a review):

( 𝑓 ★Θ 𝑔) (𝑥) B 1
(2𝜋 )𝑘

∫
d𝑘𝑢 d𝑘𝑣 𝑓 (𝑥 − 1

2Θ𝑢) 𝑔(𝑥 + 𝑣)𝑒
−𝑖 𝑢𝑣 . (7.2)

If the antisymmetric matrix Θ is nondegenerate, then the space must be even-dimensional, 𝑘 = 2𝑛.
By making the invertible change of variables 𝑠 = − 1

2Θ𝑢, and defining 𝜃 > 0 as 𝜃2𝑛 B detΘ, we
can rewrite the Moyal product as

( 𝑓 ★Θ 𝑔) (𝑥) = 1
(𝜋𝜃 )2𝑛

∫
𝑑2𝑛𝑠 𝑑2𝑛𝑣 𝑓 (𝑥 + 𝑠) 𝑔(𝑥 + 𝑣)𝑒−2𝑖Θ−1𝑠𝑣 , (7.3)

which is a familiar expression in the classical-like description of quantum mechanics [60]. (R2𝑛,Θ−1)
is a symplectic vector space with the inverse Θ−1 being the canonical symplectic two-form
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𝜔 = 1
2Θ
−1
𝜇𝜈𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 , or, equivalently, Λ = 1
2Θ

𝜇𝜈𝜕𝜇 ∧ 𝜕𝜈 the non-degenerate Poisson bracket.
In Darboux coordinates, Θ and its inverse are thus represented by

Θ𝜇𝜈 =

(
0 −I𝑛
I𝑛 0

)
, Θ𝜇𝜈 =

(
0 I𝑛
−I𝑛 0

)
, (7.4)

where I𝑛 denotes the 𝑛 × 𝑛 identity matrix. It can be checked that the popular expression already
introduced for the Moyal product, Eq. (6.4), is nothing but the asymptotic expansion of its integral
formula, Eq. (7.2).

The zeroth order of the Moyal product corresponds to the commutative product, while the first
and higher orders involve the first and higher derivatives of the functions under consideration. It is
therefore highly non-local. Once more, when computing the Moyal star-commutator of coordinate
functions, one retrieves canonical, or quantum mechanics-like, noncommutativity.

As discussed in Section 2, a non-trivial commutator between coordinate functions leads to
the existence of a minimal area in spacetime. The Moyal space, being the simplest example of
noncommutativity, has been extensively studied in various contexts, including field theories, gauge
theories, condensed matter theories, and more.

7.2 Differential calculus on the Moyal algebra

In order to define a derivation-based differential calculus for the Moyal space, according to
Section 6, it is necessary to define derivations. We have already seen that standard derivatives
𝜕𝜇, 𝜇 = 1, . . . , 𝑘 , are at the same time derivations of the commutative algebra F (𝑀) and star-
derivations of the noncommutative algebra R𝑘

𝜃
. They give a representation of the Lie algebra of

translations in 𝑘 dimensions, t. For even values of 𝑘 , there is a larger algebra with this property, it is
the Lie algebra of the inhomogeneous symplectic group 𝐼𝑆𝑝(𝑘,R), which consists of translations
and real symplectic transformations of R𝑘 . Such a large algebra of derivations has been employed
in [52, 57] to obtain a derivation-based differential calculus for Lie-algebra type noncommutative
spaces, which can be realized as subalgebras of a suitable Moyal algebra. However, for the purpose
of developing a differential calculus for the Moyal space, it is enough to consider the minimal
algebra of derivations represented by translations, t. The generators of translations, denoted as 𝑃𝜇,
are given by

𝜌(𝑃𝜇) B 𝜕𝜇 = −𝑖𝐷𝜇 = −𝑖(Θ−1)𝜇𝜈 [𝑥𝜈 , ·]★ , (7.5)

as in Eq. (6.5), namely they are inner derivations. They are a left module over the center of the
algebra, 𝑍 (R𝑛

𝜃
), therefore we have fewer derivations than in the commutative case, as expected.

According to the definitions (6.11) and (6.13), the exterior derivative d and the contraction
operator 𝜄𝑋 are defined by duality, acting on translations. When acting on functions, d operates as
follows:

d 𝑓 (𝑃𝜇) = 𝜌(𝑃𝜇) ( 𝑓 ) = −𝑖(Θ−1)𝜇𝜈 [𝑥𝜈 , 𝑓 ]★ , (7.6)

while, when 𝜄𝑋 acts on the one-form 𝛼 = 𝑔d 𝑓 , we have

𝜄𝑃𝜇
𝛼 = 𝛼(𝑃𝜇) = 𝑔 ★ d 𝑓 (𝑃𝜇) = 𝑔 ★ 𝜌(𝑃𝜇) 𝑓 = 𝑔 ★ 𝜕𝜇 𝑓 . (7.7)

The generalization to higher forms is straightforward. For example, for 𝜔 = 𝑓 d𝑔 ∧ dℎ we have
(𝜄𝑃𝜇

𝜔) (𝑃𝜈) = 𝜔(𝑃𝜇, 𝑃𝜈) = 𝑓 ★ (𝜕𝜇𝑔 ★ 𝜕𝜈ℎ − 𝜕𝜇ℎ ★ 𝜕𝜈𝑔).
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An additional significant property of the Moyal product is its cyclicity under integration, namely∫
dΩ 𝑓1 ★ · · ·★ 𝑓𝑛 =

∫
dΩ 𝑓𝑖 ★ · · ·★ 𝑓𝑛 ★ 𝑓1 ★ · · ·★ 𝑓𝑖−1 , ∀ 𝑛 , 𝑖 ≤ 𝑛 . (7.8)

This property is often referred to as the trace property, as it characterizes the trace operation in
linear algebra. In particular, the Moyal product is closed, namely we have [61]∫

dΩ 𝑓1 ★ 𝑓2 =

∫
dΩ 𝑓2 ★ 𝑓1 =

∫
dΩ 𝑓1 𝑓2 . (7.9)

The latter can be easily proven by using the asymptotic expansion of the product and repeatedly
integrating by parts. Notice that other products yielding the same spacetime noncommutativity
are cyclic but not closed (e.g., the Wick–Voros and 𝑠-ordered products [17, 18]). Cyclicity is an
important requirement in noncommutative gauge theory, as it ensures gauge invariance of the action
functional, and in general, it is a suitable requirement in noncommutative field theory because it
guarantees that the action functional is a scalar, as we shall explore in more detail in the following
section.

7.3 Noncommutative 𝑔𝜑★4 scalar field theory on Moyal space

In what follows, we will review an important and well-studied example of a field theory on R𝑛
𝜃
.

We consider the noncommutative analog of the Euclidean scalar field theory 𝑔𝜑4 with a mass term,
described by the action functional

𝑆𝑁𝐶 [𝜑] =
∫

d4𝑥
(

1
2𝐷

𝜇𝜑 ★ 𝐷𝜇𝜑 − 1
2𝑚

2𝜑★2 − 1
4!𝑔𝜑

★4
)
, (7.10)

where the notation 𝜑★𝑛 stands for 𝜑★ · · ·★𝜑 𝑛 times, and★ is the Moyal product. The commutative
case is retrieved when replacing the★-product with the pointwise product. The first two terms in the
action correspond to the kinetic and mass terms, respectively. When only these terms are present,
we have the action of a free massive scalar field. Both terms are quadratic in the fields, therefore
the closure property of the Moyal product (7.9) applies. Thus, the free action is the same for the
commutative and noncommutative case. In the framework of quantum field theory, this implies that
the Feynman propagator is identical in the two cases, namely

Δ𝐹 (𝑥 − 𝑥′) =
∫

d4𝑘

(2𝜋)4
𝑖𝑒−𝑖𝑘 (𝑥−𝑥

′ )

𝑘2 + 𝑚2 . (7.11)

Indeed, given its definition, in analogy with the commutative case,

Δ𝐹 (𝑥 − 𝑥′) B ⟨0|𝑇𝜑(𝑥) ★ 𝜑(𝑥′) |0⟩
= 𝜃 (𝑡 − 𝑡′) ⟨0|𝜑(𝑥) ★ 𝜑(𝑥′) |0⟩ + 𝜃 (𝑡′ − 𝑡) ⟨0|𝜑(𝑥′) ★ 𝜑(𝑥) |0⟩ ,

(7.12)

with 𝑇 the time-ordering operator,

𝑇𝜑(𝑥) ★ 𝜑(𝑥′) =
{
𝜑(𝑥) ★ 𝜑(𝑥′) , 𝑡 > 𝑡′ ,

𝜑(𝑥′) ★ 𝜑(𝑥) , 𝑡 < 𝑡′ ,
(7.13)
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and 𝜃 (𝑡 − 𝑡′) the Heaviside step function, it is sufficient to observe that the ★-product can be safely
removed from (7.12) because of the closure property (7.9), and the star-derivations 𝐷𝜇 are given by
the ordinary derivatives. Then the computation of Δ𝐹 (𝑥 − 𝑥′) becomes the standard one, contained
in any introductory textbook of quantum field theory (see for example [62, 63]). Therefore, the
Feynman propagator remains the same in both the commutative and noncommutative cases, if the
Moyal product is employed.

The third term of the action (7.10) is the self-interaction term, which involves three star-
products. In the commutative case, the momentum-space Feynman rules provide a framework for
calculating scattering amplitudes in field theory. According to these rules, each vertex contributes
with a factor of 𝑔, and the momentum conservation must be imposed by including the delta function
(2𝜋)4𝛿4 (∑4

𝑎=1 𝑘𝑎
)
, where 𝑘𝑎 are the momenta of the incoming and outgoing fields. Finally, the

Feynman rules prescribe that we integrate overall undetermined momenta using
∫

d4𝑘
(2𝜋 )4 [62, 63].

In the noncommutative case, the interaction term is modified, resulting in a deformed expression
for the vertex, which presents an additional phase factor relative to the commutative theory (see
Appendix A for proof),

𝑉★ = −𝑖𝑔
∏
𝑎<𝑏

𝑒
− 𝑖2 𝑘𝑎∧𝑘𝑏 . (7.14)

Here we introduced the convenient notation 𝑘𝑎 ∧ 𝑘𝑏 = 𝑘𝑎𝜇Θ
𝜇𝜈𝑘𝑏𝜈 , where Latin indices 𝑎, 𝑏, . . .

enumerate the momenta of different fields, and Greek indices 𝜇, 𝜈 . . . are spacetime indices. This
star-vertex is therefore not invariant under arbitrary permutations of 𝑘𝑎, but it retains cyclic-
permutation invariance. It is important to note that in the commutative limit, where Θ𝜇𝜈 → 0, the
commutative vertex is recovered, i.e., 𝑉★ → 𝑉 [64]. This is the only modification to the Feynman
rules.

With the Feynman propagator and star-vertex at hand, we can now proceed to calculate loop
corrections to the propagator (see Appendix A for the explicit calculation). In the noncommutative
case, the propagator receives one-loop corrections from two diagrams, one planar and the other
non-planar (Fig. 1),

Δ
(1)
𝑝𝑙𝑎𝑛𝑎𝑟

=
𝑔2

3

∫
d4𝑘

(2𝜋)4
1

𝑘2 + 𝑚2 , Δ
(1)
𝑛𝑜𝑛−𝑝𝑙𝑎𝑛𝑎𝑟 =

𝑔2

6

∫
d4𝑘

(2𝜋)4
𝑒𝑖𝑘∧𝑝

𝑘2 + 𝑚2 , (7.15)

Figure 1: Planar (on the left) and non-planar (on the right) one-loop corrections to the tree-level
propagator in 𝑔𝜑4 theory.

The planar diagram is proportional to the one-loop correction of the commutative theory, while the
non-planar diagram differs from its commutative analog by a phase factor, which tends to 1 in the
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commutative limit [64]. This new factor in the noncommutative case renders the one-loop diagrams
finite in the UV regime. However, it also introduces new challenges in the IR regime, giving rise
to the problem known as UV/IR mixing [64]. Various approaches have been proposed to address
this issue, including the development of quantum field theories with alternative noncommutative
products or the modification of the 𝑔𝜑4 action through the addition of new terms [65–68].

8. Linear noncommutativity: the case of R3
𝜆

Motivated by what we encountered in the case of quantum mechanics in Section 3, it is clear
that we have focused so far on the easiest example of noncommutativity in spacetime. This is the
constant noncommutativity, which gives rise to the Moyal noncommutative space. In Section 7,
we studied in detail an interacting scalar field theory formulated on the Moyal space. It is worth
mentioning that even in the simplest examples of noncommutativity and field theory, the resulting
scenario is not without its troubles. In this section, we will go beyond constant noncommutativity to
deal with a different type of noncommutativity, known as Lie-algebra type or, more generally, linear
noncommutativity. These cases are characterized by a star-commutator of coordinate functions,
which replicates the Lie-bracket structure of classical Lie algebras. This linear noncommutativity
was thoroughly analyzed in [59], and various star-products were proposed to reproduce three-
dimensional Lie algebras at the coordinate level. In this section, we will consider the su(2) Lie
algebra that gives rise to the noncommutative space R3

𝜆
introduced in [69].

8.1 The algebra of R3
𝜆

In the following, we will show how to implement a su(2)-like noncommutativity on the Eu-
clidean space R3 using a star-product in F (R3). This star-product ensures that the star-commutator
of coordinate functions is

[𝑥𝑖 , 𝑥 𝑗]★ = 𝑖𝜆𝜖 𝑘𝑖 𝑗𝑥𝑘 . (8.1)

In general, the construction of a non-formal star-product for a given algebra of functions starting
from the commutator of the coordinate functions is not an easy task. In the case under consideration,
the classical analog of the so-called Jordan–Schwinger map7 has been employed. The latter embeds
the algebra of functions on R3 into the algebra of functions on R4 via a quadratic realization of the
R3 coordinates. Therefore, the former is shown to be a★-subalgebra of the latter, as we will shortly
review below.

We will consider the so-called Wick-Voros star-product [71], which is a variation of the Moyal
star-product that produces normal-ordered operators instead of symmetric-ordered ones. This
star-product yields

(𝜙 ★𝑉 𝜓) (𝑧𝑎, 𝑧𝑎) = 𝜙(𝑧, 𝑧) exp(𝜃←−𝜕 𝑧𝑎
−→
𝜕 𝑧̄𝑎 )𝜓(𝑧, 𝑧) , 𝑎 = 1, 2 , (8.2)

where 𝑧𝑎 are complex coordinates in C2 ≃ R4, with 𝑧1 = 1√
2
(𝑦0 + 𝑖𝑦3) and 𝑧2 = 1√

2
(𝑦1 + 𝑖𝑦2). The

star-commutator for complex coordinate functions in this case yields

[𝑧𝑎, 𝑧𝑏]★ = 𝜃𝛿𝑎𝑏 , (8.3)

7In physics, the Jordan–Schwinger map allows the realization of the su(2) Lie algebra in terms of annihilation and
creation operators of the two-dimensional harmonic oscillator [70].
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with 𝜃 being a constant real parameter, namely the Moyal star-commutator of Eq. (6.4) for the real
coordinates 𝑦𝜇 8. The Jordan–Schwinger map is then explicitly given by

𝑥𝜇 =
1
2
𝑧𝑎𝜎

𝑎𝑏
𝜇 𝑧𝑏 , 𝜇 = 0, . . . , 3 , (8.4)

with 𝜎0 the identity matrix, and 𝜎𝑖 being the Pauli matrices. This map accomplishes the aforemen-
tioned embedding by identifying the coordinates in R3 as a quadratic combination of coordinates
in R4 (represented as two copies of C2).

The above coordinate functions generate a subalgebra that is closed with respect to the Wick–
Voros star-product, where one can check that 𝑓 ★𝑉 𝑔(𝑥) ∈ F (R3). Indeed, it is possible to obtain a
closed expression for the induced star-product in R3, which reads

(𝜙 ★𝜆 𝜓) (𝑥) = exp
[
𝜆

2

(
𝛿𝑖 𝑗𝑥0 + 𝑖𝜖 𝑘𝑖 𝑗𝑥𝑘

) 𝜕

𝜕𝑢𝑖

𝜕

𝜕𝑣 𝑗

]
𝜙(𝑢)𝜓(𝑣)

����
𝑢=𝑣=𝑥

. (8.5)

This implies that9

𝑥𝑖 ★ 𝑥 𝑗 = 𝑥𝑖𝑥 𝑗 +
𝜆

2

(
𝛿𝑖 𝑗𝑥0 + 𝑖𝜖 𝑘𝑖 𝑗𝑥𝑘

)
,

𝑥0 ★ 𝑥𝑖 = 𝑥0𝑥𝑖 +
𝜆

2
𝑥𝑖 ,

𝑥0 ★ 𝑥0 = 𝑥0

(
𝑥0 +

𝜆

2

)
=

∑︁
𝑖

𝑥𝑖 ★ 𝑥𝑖 − 𝜆𝑥0 ,

(8.6)

resulting in the star-commutation relation

[𝑥𝑖 , 𝑥 𝑗]★ = 𝑖𝜆𝜖 𝑘𝑖 𝑗𝑥𝑘 . (8.7)

Hence, we have successfully implemented the linear noncommutativity we were seeking. It is
important to emphasize that Eq. (8.5) is a new ★-product by definition. Moreover, notice that 𝑥0

star-commutes with 𝑥𝑖 , which is also evident from the fact that∑︁
𝑖

𝑥2
𝑖 = 𝑥

2
0 . (8.8)

Therefore, R3
𝜆
= (F (R3), ★𝜆) can also be defined as the star-commutant of 𝑥0 with respect to the

star-product in Eq. (8.5). The commutative limit is recovered when 𝜆 → 0. According to [59], the
same procedure can be applied to get any other type of linear noncommutativity in three dimensions.
For another example, we refer the reader to [73], where a star-product for the 𝜅-Minkowski spacetime
is obtained using the same technique, by replacing the su(2) generators with those of the sl(2,C)
Lie algebra10.

8A comparison of Moyal and Wick–Voros star-products, as well as their corresponding noncommutative field theories,
are investigated in [72]

9We consider here 𝑧𝑎 to have length dimension 1/2, so we choose 𝜆 = 𝜃, of length dimension 1.
10This is the Lie algebra of the group of complex 2 × 2 upper triangular matrices with unit determinant and real

diagonal.
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8.2 The matrix basis for the algebra of R3
𝜆

In noncommutative field theory, it is convenient to introduce a matrix basis so that noncom-
mutative functions can be represented as (finite or infinite) matrices, making star-products become
matrix products. Consequently, the integral in the action functional of noncommutative field theory
is replaced by a trace. For instance, a matrix basis for the Moyal algebra was first introduced in
[74, 75] and was successfully applied in [65, 66] to show the renormalizability to all orders of
the 𝑔𝜑4 models. Similarly, a matrix basis was introduced for the Wick–Voros product in [76–78].
Thanks to the Jordan–Schwinger map described above, this basis could be projected onto a matrix
basis for R3

𝜆
in [79], where it was applied to 𝜑4 field theory, and in [80] to gauge models. For a

review on matrix basis for star-products, see [18].
According to the literature cited above, matrix basis elements for R3

𝜆
read

𝑣
𝑗

𝑚𝑚̃
(𝑥) = 𝑒−2 𝑥0

𝜆

𝜆2 𝑗
(𝑥0 + 𝑥3) 𝑗+𝑚(𝑥0 − 𝑥3) 𝑗−𝑚̃(𝑥1 − 𝑖𝑥2)𝑚̃−𝑚√︁
( 𝑗 + 𝑚)!( 𝑗 − 𝑚)!( 𝑗 + 𝑚̃)!( 𝑗 − 𝑚̃)!

, (8.9)

with 𝑗 ∈ N2 and − 𝑗 ≤ 𝑚, 𝑚̃ ≤ 𝑗 . Any arbitrary function can then be expanded as follows:

𝜙(𝑥) =
∑︁
𝑗∈ N2

𝑗∑︁
𝑚,𝑚̃=− 𝑗

𝜙
𝑗

𝑚𝑚̃
𝑣
𝑗

𝑚𝑚̃
(𝑥) , (8.10)

where 𝜙 𝑗
𝑚𝑚̃

are complex coefficients. Noticing that 𝑣 𝑗
𝑚𝑚̃
(𝑥) is a suitable operator symbol of the

operator | 𝑗 + 𝑚, 𝑗 − 𝑚⟩⟨ 𝑗 + 𝑚̃, 𝑗 − 𝑚̃ |, one can demonstrate that the basis elements are orthogonal,
namely

𝑣
𝑗

𝑚𝑚̃
★ 𝑣

𝑗

𝑛𝑛̃
(𝑥) = 𝛿𝑚̃𝑛𝛿 𝑗 𝑗𝑣 𝑗𝑚𝑛̃ (𝑥) . (8.11)

Hence, the star-product in R3
𝜆

transforms into a block-diagonal infinite-matrix product of the form

𝜙 ★𝜓 =
∑︁

𝑗 ,𝑚1,𝑚̃2

𝜙
𝑗

𝑚1𝑚̃1
𝜓
𝑗

𝑚2𝑚̃2
𝑣
𝑗

𝑚1𝑚̃1
★ 𝑣

𝑗

𝑚2𝑚̃2
=

∑︁
𝑗 ,𝑚1,𝑚̃2

(
Φ 𝑗 · Ψ 𝑗

)
𝑚1𝑚̃2

𝑣
𝑗

𝑚1𝑚̃2
, (8.12)

where Φ is a block-diagonal infinite matrix, such that each block is the (2 𝑗 + 1) × (2 𝑗 + 1) matrix
Φ 𝑗 = {𝜙 𝑗𝑚𝑛} with − 𝑗 ≤ 𝑚, 𝑛 ≤ 𝑗 . In particular, one can show that the coordinate functions are
represented in the matrix basis as

𝑥− = 𝜆
∑︁
𝑗𝑚

√︁
( 𝑗 − 𝑚) ( 𝑗 + 𝑚 + 1)𝑣 𝑗

𝑚𝑚+1 ,

𝑥+ = 𝜆
∑︁
𝑗𝑚

√︁
( 𝑗 + 𝑚) ( 𝑗 − 𝑚 + 1)𝑣 𝑗

𝑚𝑚−1 ,

𝑥3 = 𝜆
∑︁
𝑗𝑚

𝑚𝑣
𝑗
𝑚𝑚 ,

𝑥0 = 𝜆
∑︁
𝑗𝑚

𝑗𝑣
𝑗
𝑚𝑚 ,

(8.13)
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where 𝑥± = 𝑥1 ± 𝑖𝑥2. Therefore, we obtain the following star-product of coordinate functions with
basis elements:

𝑥− ★ 𝑣
𝑗

𝑚𝑚̃
= 𝜆

√︁
( 𝑗 + 𝑚) ( 𝑗 − 𝑚 + 1)𝑣 𝑗

𝑚−1𝑚̃ ,

𝑥+ ★ 𝑣
𝑗

𝑚𝑚̃
= 𝜆

√︁
( 𝑗 − 𝑚) ( 𝑗 + 𝑚 + 1)𝑣 𝑗

𝑚+1𝑚̃ ,

𝑥3 ★ 𝑣
𝑗

𝑚𝑚̃
= 𝜆𝑚𝑣

𝑗

𝑚𝑚̃
,

𝑥0 ★ 𝑣
𝑗

𝑚𝑚̃
= 𝜆 𝑗𝑣

𝑗

𝑚𝑚̃
.

(8.14)

Analogous expressions are obtained when considering the coordinate functions acting from the
right. We observe that this basis diagonalizes the coordinates 𝑥3 and 𝑥0, which has eigenvalues 𝜆𝑚
and 𝜆 𝑗 , respectively. In contrast, the coordinates 𝑥− and 𝑥+ change the value of 𝑚 (decreasing and
increasing by one, respectively). This also applies with respect to 𝑚̃ when the coordinate functions
star-multiply from the right. Note that the value of 𝑗 remains fixed. This is an important aspect that
will be further emphasized later on in this section.

According to the picture given here, the space R3
𝜆

is the quantum analog of the R3 foliated into
the 𝑆2 spheres, with an increasing radius represented by 𝑥0. In this spirit, 𝑗 can be seen as the radius
eigenvalue.

8.3 Differential calculus over the algebra of R3
𝜆

As we discussed in Section 8.1, the R3
𝜆

algebra is considered as a subalgebra of the R4
𝜃

algebra when we use the Wick–Voros star-product. This identification has an interesting geometric
interpretation in the commutative case, where the so-called Kustaanheimo–Stiefel map (KS) [81]
comes into play. We will briefly review this setting, which will prove useful for defining a differential
calculus and an integral calculus11.

The key observation here is the fact that both R4 − {0} and R3 − {0} can be endowed with
the structure of trivial bundles over spheres, being R4 − {0} ≃ 𝑆3 × R+ and R3 − {0} ≃ 𝑆2 × R+.
Thus, recognizing 𝑆3 as the group manifold of 𝑆𝑈 (2), we can use the the so-called Hopf fibration
map of the principal bundle 𝑆𝑈 (2) with the base manifold 𝑆2 and structure group𝑈 (1). This map,
denoted as 𝜋𝐻 : 𝑆𝑈 (2) → 𝑆2, allows us to project the derivations of R4 − {0} down to derivations
of R3− {0}. To clarify, let 𝑦𝜇 be the coordinates in R4 and 𝑥𝑖 be the coordinates in R3. We can view
𝑆3 and 𝑆2 as submanifolds of R4 and R3, respectively, with the constraints 𝑦𝜇𝑦𝜇 = 1 for the former
and 𝑥𝑖𝑥𝑖 = 1 for the latter. Then, by associating points in 𝑆3 with the 𝑆𝑈 (2) matrices according to
the map

{𝑦𝜇} → 𝑠 = 𝑦0𝜎0 + 𝑖𝑦𝑖𝜎𝑖 , (8.15)

where det 𝑠 = 1, and points in 𝑆2 with the 2 × 2 hermitian matrices

{𝑥𝑖} → 𝑋 = 𝑥𝑖𝜎𝑖 , (8.16)

where det 𝑋 = −1, the map 𝜋𝐻 is given by

𝜋𝐻 : 𝑠 ∈ 𝑆𝑈 (2) → 𝑠𝜎3𝑠
† := 𝑥𝑖𝜎𝑖 , (8.17)

11We will only review the former. For the latter, which essentially relies on replacing integrals with traces, we refer
the reader to [79, 82, 83].
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such that

𝑥𝑖 =
1
2

Tr (𝜎𝑖𝑠𝜎3𝑠
†) . (8.18)

The Hopf fibration map is then extended to the principal bundle R4 − {0} → R3 − {0}, with
structure group𝑈 (1), by relaxing the radial constraints of the 𝑆3 and 𝑆2 spheres so that 𝑦𝜇𝑦𝜇 = 𝑅2

and 𝑥𝑖𝑥𝑖 = 𝑟2, respectively, where 𝑅, 𝑟 ∈ R+. This is the the Kustaanheimo–Stiefel map 𝜋𝐾𝑆 ,
defined as follows:

𝜋𝐾𝑆 : 𝑔 ∈ R4 − {0} → ®𝑥 ∈ R3 − {0} , 𝑔𝜎3𝑔
† = 𝑅2𝑠𝜎3𝑠

−1 := 𝑥𝑘𝜎𝑘 , (8.19)

where we have introduced 𝑔 = 𝑅𝑠. Analogously to Eq. (8.18), the coordinate functions of R3 − {0}
are thus obtained as

𝑥𝑖 =
1
2

Tr (𝜎𝑖𝑔𝜎3𝑔
†) . (8.20)

It can be easily verified that this expression coincides (up to a factor 2) with the classical Jordan–
Schwinger result given in Eq. (8.4), where again we have 𝑧1 = 1√

2
(𝑦0 + 𝑖𝑦3), 𝑧2 = 1√

2
(𝑦1 + 𝑖𝑦2), and

the identification

𝑥0 =
𝑅2

4
. (8.21)

where 𝑥0 = 𝑟 is the radius in R3 and 𝑅 is the radius in R4. The KS map was employed in [82]
to obtain a basis of derivations for F (R3 − {0}) by projecting derivations of F (R4 − {0}). The
procedure was later extended in [79, 83] to the noncommutative setting, where, using the previously
mentioned matrix basis, the restriction to R3 − {0} can be removed, as the latter is well defined at
0 ∈ R3.

In the commutative case, a natural basis for derivations in F (R4) is represented by translations
𝑃𝜇 = 𝜕

𝜕𝑦𝜇
. However, since derivations are a left module, we can equivalently choose a basis that

is adapted to the respective foliation by means of three-spheres and to the subsequent projection
to two-spheres. The appropriate basis in this case consists of su(2) generators, which are tangent
vector fields to 𝑆3,

𝑌𝑖 = 𝑦
0 𝜕

𝜕𝑦𝑖
− 𝑦𝑖 𝜕

𝜕𝑦0 − 𝜖
𝑘
𝑖 𝑗 𝑦

𝑗 𝜕

𝜕𝑦𝑘
, 𝑖 = 1 . . . , 3 , (8.22)

and the dilation generators,

𝑌𝑑 = 𝑦𝜇
𝜕

𝜕𝑦𝜇
. (8.23)

Let us then denote {𝐷 (4)𝜇 } = ({𝑌𝑖}, 𝑌𝑑) as the set generating the whole left module of derivations for
F (R4−{0}), and hence defining the derivations ofF (R3−{0}). Furthermore, it is worth mentioning
that, if these generators are projectable, then 𝐷 (3)

𝑖
:= (𝜋𝐾𝑆)∗𝐷 (4)𝜇 , where 𝜋∗ : X(R4 − {0}) →

X(R3−{0}) is the push-forward map [27] induced by 𝜋 on vector fields. We observe thatF (R3−{0})
is the kernel of the vector field:

𝑌0 = 𝑦0 𝜕

𝜕𝑦3 − 𝑦
3 𝜕

𝜕𝑦0 + 𝑦
1 𝜕

𝜕𝑦2 − 𝑦
2 𝜕

𝜕𝑦1 , (8.24)
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which is the generator of the 𝑈 (1) fiber12. Therefore, projectable vector fields are those that
commute with 𝑌0. Direct calculation reveals that this condition is satisfied by 𝑌𝑖 for 𝑖 = 1, . . . , 3
and 𝑌𝑑 , resulting in

𝜋𝐾𝑆∗(𝑌𝑖) = 𝑋𝑖 = 𝜖𝑖 𝑗 𝑘𝑥 𝑗
𝜕

𝜕𝑥𝑘
, 𝜋𝐾𝑆∗(𝑌𝑑) = 𝑥𝑖

𝜕

𝜕𝑥𝑖
. (8.25)

Therefore 𝐷 (3)
𝑖

:= 𝑋𝑖 and 𝐷
(3)
𝑑

:= 𝑋𝑑 generate the entire module of derivations on R3 − {0}. The
first three generate rotations in three dimensions, and thus are not independent (indeed 𝑥𝑖𝑋𝑖 = 0),
while 𝑋𝑑 is the dilation in R3.

In the noncommutative case, it is easily verified that the generators of rotations are star-
derivations of the R3

𝜆
algebra, since they can be expressed as inner derivations by means of the

star-commutator given by
𝑋𝑖 (𝜑) = −

𝑖

𝜆
[𝑥𝑖 , 𝜑]★ , 𝑖 = 1, 2, 3 . (8.26)

The Leibniz rule is then trivially satisfied, and these generators become independent, unlike the
commutative case, due to the presence of the star-product. Indeed, even though there exists a null
combination with non-zero coefficients such that 𝑥𝑖 ★ 𝑋𝑖 (𝜙) + 𝑋𝑖 (𝜙) ★ 𝑥𝑖 = 0, this combination
is not a star-derivation, as discussed in Section 6.1, since star-derivations are a module only over
the center of the algebra. Finally, according to the definition in Section 6.1, these generators are
sufficient because only functions belonging to the center of the R3

𝜆
algebra are annihilated by all of

them.
On the other hand, the generators of three-dilations 𝑋𝑑 are not derivations anymore since the

Leibniz rule is not satisfied. This can be easily checked by applying 𝑋𝑑 to the star-product of
coordinates. As a consequence, despite having a set of independent derivations for the R3

𝜆
algebra,

(which is technically sufficient), the coordinate 𝑥0, associated with the radial direction in R3, is in
the center of the algebra. Consequently, it is annihilated by all available derivations, which are inner.
This means that, when defining derivation-based dynamics, we will not be able to appropriately
describe the radial dynamics. To address this problem, there is a proposal to enlarge the R3

𝜆
algebra

to have dilations as an outer derivative. We refer to [83] for details.
Finally, let us comment on the construction of the Laplacian operator, which will be employed

in the next Section 8.4. The problem that arises in this case is addressed in [79, 83] and can be
traced back to two main requirements: the sought Laplacian should be built upon derivations of the
algebra, and it should reproduce the standard commutative limit when 𝜆 is set to zero. 13 Therefore,
in order to cope with the problem discussed above, a multiplicative operator that is quadratic in
𝑥0 was added in [79] to the natural candidate 𝐷𝑖𝐷𝑖 . This solution can be interpreted as a way to
generate radial dynamics, although the commutative limit does not yield the standard Laplacian in
R3.

12We have previously seen that the 𝜋𝐾𝑆 map defined in Eq. (8.19) establishes a principal fiber bundle R4 − {0} →
R3 − {0} with structure group𝑈 (1).Then, F (R3 − {0}) can be mapped to F (R4 − {0}) through the pull-back map 𝜋∗

𝐾𝑆

[27],
𝜋∗
𝐾𝑆

: 𝑓 ∈ F (R3 − {0}) → 𝑓 ◦ 𝜋𝐾𝑆 ∈ F (R4 − {0}) ,

hence F (R3 − {0}) can be regarded as the subalgebra of F (R4 − {0}) of constant functions along the fiber𝑈 (1).
13Alternative proposals make direct use of the Moyal structures in R4 without requiring that they induce derivations

in R3
𝜆

[84].
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8.4 The 𝑔𝜑★4 scalar field theory on R3
𝜆

Once we have the R3
𝜆

algebra with its star-product and the corresponding derivations (along
with a well-defined integration procedure in the matrix basis), the action for the 𝑔𝜙★4 scalar field
theory becomes well-defined:

𝑆[𝜙] =
∫

d3𝑥

(
1
2
𝐷𝑖𝜙 ★ 𝐷

𝑖𝜙 − 1
2
𝑚2𝜙★2 − 𝑔

4!
𝜙★4

)
. (8.27)

This is formally the same action as in Eq. (7.10), with the star-product now given by Eq. (8.5). After
performing an integration by parts, we obtain

𝑆[𝜑] =
∫

d3𝑥

(
−1

2
𝜑 ★ (Δ + 𝑚2)𝜑 − 𝑔

4!
𝜑★4

)
, (8.28)

where Δ stands for the Laplacian operator defined as follows [79, 83]:

Δ𝜑 = 𝛼 𝐷𝑖𝐷
𝑖𝜑 + 𝛽 𝑥★2

0 ★ 𝜑 , (8.29)

with 𝛼 and 𝛽 being constant real parameters. As anticipated, let us remark that the second term
contains the desired dilation operator,

𝑥0 ★ 𝜙 = 𝑥0𝜙 +
𝜆

2
𝑥𝑖𝜕

𝑖𝜙 , (8.30)

which is indeed necessary to describe radial dynamics in R3. However, it can be easily checked,
using Eqs. (8.14), that in the matrix basis 𝑣 𝑗

𝑚𝑚̃
the term 𝑥★2

0 is diagonal with eigenvalue 𝜆2 𝑗2, and
thus radial dynamics is not established. Indeed, radial dynamics should change the radial eigenvalue
𝑗 , which is clearly not the case here.

This two-parameter family of models (with parameters 𝛼 and 𝛽) has been investigated in the
matrix basis at the one-loop level in [79], where it was shown to be free from UV/IR mixing.
Beyond the details of the specific results, these are interesting toy models that provide an explicit
realization of a coordinate-dependent noncommutativity, allowing for detailed calculations.

9. Noncommutative gauge theory on Moyal space

Let us go back to the Moyal space R2𝑛
Θ

, namely the noncommutative algebra of functions on
R2𝑛 with constant noncommutativity. The aim of this section is to introduce gauge theories on this
noncommutative space. In the previous sections, we defined the Moyal algebra and a derivation-
based differential calculus to describe the dynamics of the theory. Moreover, in Section 5 we
encountered some of the structures that we will need in the following. More specifically, we will
define

• A noncommutative analog of matter fields, replacing the concept of vector bundles over
space(time) as presented in Section 4.1.

• A noncommutative analog of gauge connection and curvature.

• A group of transformations acting from the left, representing gauge transformations.
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9.1 Noncommutative connection, curvature, and gauge transformations

The concepts mentioned above will be defined in the following for the Moyal space, but the
generalization to other noncommutative spaces is straightforward. We first focus on Maxwell’s
theory in R2𝑛, which is abelian and has a structure group 𝑈 (1). Consequently, charged matter
fields interacting with the electromagnetic field are one-dimensional complex vector fields, namely
sections of one-dimensional complex vector bundles over R2𝑛. As discussed in Section 4, these
can be identified with one-dimensional complex modules over F (R2𝑛). Then, the noncommutative
generalization to the Moyal space is immediate: charged matter fields with 𝑈 (1) interaction are
elements of a one-dimensional complex right module over R2𝑛

Θ
. We will denote this module by

M = C ⊗ R2𝑛
Θ , (9.1)

and endow it with a Hermitian structure ℎ, such that14

ℎ(𝝍1,𝝍2) = 𝜓†1 ★𝜓2 . (9.2)

The general setup for a non-abelian gauge theory (Yang–Mills theory) inR2𝑛 is similar. The structure
group is 𝑆𝑈 (𝑁), and charged matter fields under 𝑆𝑈 (𝑁) are 𝑁-dimensional complex vector fields
in the defining/fundamental representation of the group, i.e., sections of 𝑁-dimensional complex
vector bundles overR2𝑛. In Moyal space then, charged matter fields under 𝑆𝑈 (𝑁) are𝑁-dimensional
complex right modules over R2𝑛

Θ
, i.e.,M = C𝑁 ⊗ R2𝑛

Θ
.

We now focus on the Moyal algebra R2𝑛
Θ

, its algebra of derivations denoted as Der(R2𝑛
Θ
), and

the complex right module M representing matter fields. According to [55], we will introduce
a generalization of the concepts of connection, curvature, and gauge transformations (see also
[38, 39, 47] for more details). A noncommutative connection on M is defined as the linear map
∇ : Der(R2𝑛

Θ
) ×M→ M satisfying the following properties:

∇𝑋 (𝝍 𝑓 ) = 𝝍𝑋 ( 𝑓 ) + ∇𝑋 (𝝍) 𝑓 ,
∇𝑐𝑋 (𝝍) = 𝑐∇𝑋 (𝝍) ,
∇𝑋+𝑌 (𝝍) = ∇𝑋 (𝝍) + ∇𝑌 (𝝍) ,

(9.3)

for all 𝑓 ∈ R2𝑛
Θ

, 𝑐 ∈ Z(R2𝑛
Θ
) (the center of the algebra), 𝑋,𝑌 ∈ Der(R2𝑛

Θ
), and 𝝍 ∈ M. Additionally,

this connection is considered Hermitian if it satisfies the condition

𝑋ℎ(𝝍1,𝝍2) = ℎ(∇𝑋 (𝝍1),𝝍2) + ℎ(𝝍1,∇𝑋𝝍2) , (9.4)

for any real derivation 𝑋 ∈ Der(R2𝑛
Θ
), where ℎ is the previously introduced Hermitian structure. The

curvature associated to the noncommutative connection ∇ is defined as the linear map 𝑭(𝑋,𝑌 ) :
M→ M, which satisfies

𝑭(𝑋,𝑌 )𝝍 = 𝑖
(
[∇𝑋,∇𝑌 ] − ∇[𝑋,𝑌 ]

)
𝝍 . (9.5)

14A Hermitian form ℎ is a (sesquilinear) map ℎ : M ×M→ R2𝑛
Θ

such that the following properties hold:

ℎ(𝝍1 𝑓 ,𝝍2𝑔) = 𝑓 †ℎ(𝝍1,𝝍2)𝑔 ,

ℎ(𝝍1,𝝍2)† = ℎ(𝝍2,𝝍1) ,

for all 𝑓 , 𝑔 ∈ R2𝑛
Θ

and 𝝍1,𝝍2 ∈ M [55].
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The group of (unitary) gauge transformations ofM, denoted asU(M), is the group of automorphisms
ofM verifying compatibility conditions with both the structure of the right R2𝑛

Θ
-module, i.e.,

𝑔(𝝍 𝑓 ) = 𝑔(𝝍) 𝑓 , (9.6)

and with the Hermitian structure ℎ, i.e.,

ℎ(𝑔(𝝍1), 𝑔(𝝍2)) = ℎ(𝝍1,𝝍2) , (9.7)

for all 𝑔 ∈ U(M). Finally, let us stress that these definitions can be generalized trivially to
any other noncommutative space by simply substituting the Moyal algebra with the correspondent
noncommutative algebra.

9.2 Noncommutative electrodynamics on Moyal space

Now, let us explore the noncommutative formulation of Maxwell’s theory on Moyal space,
using the tools introduced above. For the 𝑈 (1) gauge theory, the basis of M is one-dimensional,
therefore we have 𝝍 = 𝒆𝜓 ∈ M with 𝜓 ∈ R2𝑛

Θ
, 𝒆 the generator of the module. The (Hermitian)

connection is then determined by its action on 𝒆,

∇𝑋 (𝝍) = ∇𝑋 (𝒆𝜓) = 𝒆𝑋 (𝜓) + ∇𝑋 (𝒆)𝜓 , (9.8)

with ∇𝑋 (𝒆)† = −∇𝑋 (𝒆). The gauge connection one-form 𝑨 is consequently defined as

𝑨 : 𝑋 → 𝑨(𝑋) := 𝑖∇𝑋 (𝒆) , (9.9)

for all 𝑋 ∈ Der(R2𝑛
Θ
). In this case, the algebra of derivations is generated by translations (represented

as ordinary derivatives in the algebra of functions) 𝜕𝜇, as seen in Section 7. In this basis of
derivations, we have then

∇𝐴𝜕𝜇 (𝒆) ≡ ∇𝜇 (𝒆) := −𝑖𝑨(𝜕𝜇) = −𝑖𝒆𝐴(𝜕𝜇) = −𝑖𝒆𝐴𝜇 , (9.10)

with 𝐴†𝜇 = 𝐴𝜇. Hence
∇𝜇 (𝝍) = ∇𝜇 (𝒆𝜓) = 𝒆(𝜕𝜇𝜓 − 𝑖𝐴𝜇 ★𝜓) . (9.11)

One can also show that the curvature two-form 𝑭 can be written as

𝑭(𝜕𝜇, 𝜕𝜈) = 𝒆𝐹 (𝜕𝜇, 𝜕𝜈) = 𝒆𝐹𝜇𝜈 = 𝒆(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝑖[𝐴𝜇, 𝐴𝜈]★) . (9.12)

The above expression, obtained for the noncommutative abelian gauge theory, resembles that of
the commutative non-abelian gauge theories despite the fact that we are still working with 𝑈 (1).
This can be traced back to having a noncommutative algebra of functions. This implies that the
noncommutative 𝑈 (1) gauge theory has distinct features from its commutative counterpart. For
example, the self-interaction terms will now appear due to the presence of the Moyal star-product.
Moreover, all the structures defined above reduce to their commutative analogs for standard 𝑈 (1)
gauge theory in the commutative limit.
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Concerning gauge transformations, the compatibility condition with the Hermitian structure
allows to identify gauge transformations with the group of unitary elements of the Moyal algebra.
Note that, by considering the gauge transformation 𝑔,

𝑔(𝝍) = 𝑔(𝒆𝜓) = 𝑔(𝒆) ★𝜓 , (9.13)

with 𝑔(𝒆) := 𝒆 𝑓𝑔, the compatibility condition gives

ℎ(𝑔(𝝍1), 𝑔(𝝍2)) = ℎ(𝒆, 𝒆) ( 𝑓𝑔 ★𝜓1)† ★ 𝑓𝑔 ★𝜓2 = ℎ(𝝍1,𝝍2) , (9.14)

implying that
𝑓 †𝑔 ★ 𝑓𝑔 = 1 . (9.15)

Then, we can conclude that 𝑓𝑔 ∈ U(R2𝑛
Θ
), and in turn gauge transformations, form the group of

unitary elements of R2𝑛
Θ

(acting on R2𝑛
Θ

from the left). As such, we can write

𝑓𝑔 = 𝑒
𝑖𝛼(𝑥 )
★ , (9.16)

where the star-exponential is defined as

𝑒𝑖𝛼★ :=
∞∑︁
𝑛=0

𝑖𝑛

𝑛!
𝛼(𝑥) ★ · · ·★𝛼(𝑥)︸                ︷︷                ︸

n times

, (9.17)

and the gauge parameters 𝛼(𝑥) are functions in R2𝑛
Θ

.
Finally, we outline the properties of the noncommutative connection and curvature under gauge

transformations. The gauge connection is, by definition, gauge covariant. By defining

(∇𝐴𝜇 )𝑔 (𝝍) := 𝑔(∇𝐴𝜇 (𝑔−1𝝍)) , (9.18)

we find that
(∇𝐴𝜇 )𝑔 (𝝍) = ∇𝐴

𝑔

𝜇 (𝝍) , (9.19)

provided that the connection one-form transforms as

𝐴
𝑔
𝜇 = 𝑓𝑔 ★ 𝐴𝜇 ★ 𝑓𝑔−1 + 𝑖 𝑓𝑔 ★ 𝜕𝜇 𝑓𝑔−1 . (9.20)

Consequently, one can verify the covariance of the curvature two-form, i.e.,

𝐹
𝑔
𝜇𝜈 = 𝑓𝑔 ★ 𝐹𝜇𝜈 ★ 𝑓𝑔−1 . (9.21)

As before, gauge transformations for the noncommutative abelian gauge theory are similar to those
of a commutative non-abelian gauge theory, recovering the standard 𝑈 (1) gauge transformations
in the commutative limit. The above-outlined properties are important elements because an action
that is invariant under gauge transformations can be constructed from them. Indeed, since 𝐹𝜇𝜈 is
gauge covariant, the term 𝐹𝜇𝜈 ★ 𝐹

𝜇𝜈 is gauge covariant as well, and an invariant action is possible
because of the cyclicity of the Moyal star-product under integration. Explicitly, upon introducing a
metric,

𝑆[𝐴𝜇] = − 1
4

∫
d2𝑛𝑥 𝐹𝜇𝜈 ★ 𝐹

𝜇𝜈 , (9.22)

is a natural candidate for the action of the noncommutative𝑈 (1) gauge theory on Moyal space.
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9.3 Spacetime symmetries of electrodynamics on Moyal space

An important feature of the action (9.22) resides in the fact that the latter is not only invariant
under gauge transformations, but also under standard observer Poincaré transformations. An
observer (or passive) transformation is essentially a change of coordinates; therefore, everything
gets affected by a transformation of this type: background and physical fields (while keeping the
underlying unchanged) [85]. From the physics point of view, a passive transformation is better
understood as a change of perspective, with a different observer describing the same physical
situation. In this respect, the noncommutativity matrix Θ in the Moyal space may be regarded as a
background field and thus transforms accordingly. It was shown in [86] that the Moyal star-product
is covariant under passive Poincaré transformations such that the action (9.22) turned out to be
invariant. In the cited paper it was shown that the covariance of the Moyal product is actually larger,
as it extends to all linear affine transformations, in particular the entire Weyl group, which includes
dilations (for earlier references concerning spacetime symmetries of noncommutative algebras also
see [87–91]).

To be more precise, in the remainder of this section, we will focus on the Weyl group.
The Weyl group W(1, 3) extends the Poincaré group by including dilations (the Poincaré group
ISO(1, 3) = SO(1, 3) ⋉ R4 is the semi-direct product of the Lorentz group and the group of
translations). The action of a Weyl group element Ω = (𝐿, 𝑎) on a point 𝑥 ∈ R4 is given by

𝑥 −→ 𝑥′ = Ω · 𝑥 = 𝐿𝑥 + 𝑎 , (9.23)

where 𝐿 represents the Lorentz group transformations and dilations, and 𝑎 represents translations.
The group law is then given by

ΩΩ′ = (𝐿 𝐿′, 𝐿𝑎′ + 𝑎) , (9.24)

with the inverse given by Ω−1 = (𝐿−1,−𝐿−1𝑎). Moreover, the action on real functions on R4 is
defined as

𝑓 (𝑥) −→ 𝑓 ′(𝑥) = [Ω · 𝑓 ] (𝑥) = 𝑓

(
Ω−1 · 𝑥

)
= 𝑓

(
𝐿−1(𝑥 − 𝑎)

)
, (9.25)

such that
Ω1 · [Ω2 · 𝑓 ] = (Ω1Ω2) · 𝑓 . (9.26)

To check the covariance of the Moyal star-product ★Θ under the Weyl group transformations, one
needs to compute [Ω · 𝑓 ] ★Θ [Ω · 𝑔]. It has been shown in [86] that

[Ω · 𝑓 ] ★Θ [Ω · 𝑔] = Ω · ( 𝑓 ★Ω−1 ·Θ 𝑔) , (9.27)

or equivalently,
[Ω · 𝑓 ] ★Ω·Θ [Ω · 𝑔] = Ω · ( 𝑓 ★Θ 𝑔) , (9.28)

provided that the Moyal noncommutativity tensor Θ (the background field) transforms as

Ω · Θ = 𝐿Θ𝐿𝑡 . (9.29)

These results show that the Moyal star-product is covariant under standard observer Weyl transforma-
tions. Therefore, in [86], an (𝑥,Θ)-space was considered to incorporate the following transformation
under the action of the Weyl group:

(𝑥,Θ) −→ (𝑥′,Θ′) = Ω · (𝑥,Θ) = (𝐿𝑥 + 𝑎, 𝐿Θ𝐿𝑡 ) . (9.30)
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The infinitesimal generators of these transformations in the (𝑥,Θ)-space are differential operators,

𝐺Θ := −(𝜖 𝜇 + 𝐶𝜇𝜈 𝑥𝜈)𝜕𝜇 −
1
2
(𝐶𝜇𝜌Θ𝜌𝜈 + Θ𝜇𝜌𝐶𝜈𝜌 )

𝜕

𝜕Θ𝜇𝜈
, (9.31)

where 𝐶𝜇𝜈 = 𝜆𝛿
𝜇
𝜈 +𝜔𝜇𝜈 , and 𝜔 is an antisymmetric matrix. Let us notice that the second term on the

RHS is the Lie derivative of the contravariant skew-tensor Θ = Θ𝜇𝜈𝜕𝜇 ∧ 𝜕𝜈 along the vector field
𝜀(𝑥) = 𝐶𝜇𝜈 𝑥𝜈𝜕𝜇,

(L𝜀Θ)𝜇𝜈 = −(𝐶𝜇𝜌Θ𝜌𝜈 + Θ𝜇𝜌𝐶𝜈𝜌 ) . (9.32)

By comparing this with the standard generators in the 𝑥-space, given by

𝐺 := −(𝜖 𝜇 + 𝐶𝜇𝜈 𝑥𝜈)𝜕𝜇 = −(𝜖 𝜇 + 𝜆𝑥𝜇 + 𝜔𝜇𝜈𝑥𝜈)𝜕𝜇 , (9.33)

one can easily identify the infinitesimal generators of translations, Lorentz transformations, and
dilations,

𝑃Θ
𝜇 = −𝜕𝜇 , 𝑀Θ

𝜇𝜈 = 𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇 +Θ
𝜌
𝜇

𝜕

𝜕Θ𝜌𝜈
−Θ𝜌𝜈

𝜕

𝜕Θ𝜌𝜇
, 𝐷Θ = −𝑥𝜇𝜕𝜇 −Θ𝜇𝜈

𝜕

𝜕Θ𝜇𝜈
. (9.34)

It is then clear that, as expected, the generators of translations remain the same, whereas the others
acquire linear contributions in Θ.

The procedure employed above, i.e., showing global covariance and descending to the infinites-
imal generators, ensures that the latter are derivations of the Moyal algebra, namely, they satisfy the
Leibniz rule according to

𝐺Θ( 𝑓 ★Θ 𝑔) = 𝐺Θ 𝑓 ★Θ 𝑔 + 𝑓 ★Θ 𝐺
Θ𝑔 , (9.35)

as in the commutative setting. Moreover, the new generators obey the same commutation relations
as the generators of the standard Weyl Lie algebra. In particular, these relations are[

𝑃Θ
𝜇 , 𝑃

Θ
𝜈

]
= 0 ,

[𝑀Θ
𝜇𝜈 , 𝐷

Θ] = 0 ,

[
𝑃Θ
𝜇 , 𝑀

Θ
𝜈𝜌

]
= 𝜂𝜇𝜈𝑃

Θ
𝜌 − 𝜂𝜇𝜌𝑃Θ

𝜈 , [𝑃Θ
𝜇 , 𝐷

Θ] = −𝑃Θ
𝜇 ,

[𝑀Θ
𝜇𝜈 , 𝑀

Θ
𝜌𝜎] = 𝜂𝜇𝜎𝑀Θ

𝜈𝜌 + 𝜂𝜈𝜌𝑀Θ
𝜇𝜎 − 𝜂𝜇𝜌𝑀Θ

𝜈𝜎 − 𝜂𝜈𝜎𝑀Θ
𝜇𝜌 ,

(9.36)

where 𝜂 stands for the Minkowski metric tensor. Then, we can conclude that the generators
{𝑃Θ

𝜇 , 𝑀
Θ
𝜇𝜈 , 𝐷

Θ} realize the Weyl Lie algebra in the (𝑥,Θ)-space.
Now, let us return to the classical action of the noncommutative electrodynamics on Moyal

space (9.22) and check its invariance under observer-dependent Weyl transformations. Since 𝐴𝛼 is
independent of Θ, the action of the Weyl group on the gauge connection, that is given by

𝐴𝛼 (𝑥) −→ 𝐴′𝛼 (𝑥) = [Ω · 𝐴𝛼] (𝑥) = Ω · 𝐴𝛼
(
Ω−1 · 𝑥

)
, (9.37)

must remain unchanged, as in the commutative case. Therefore, the action of the generators
{𝑃Θ

𝜇 , 𝑀
Θ
𝜇𝜈 , 𝐷

Θ}, is undeformed, namely

𝑃Θ
𝜇 [𝐴𝛼] = −𝜕𝜇𝐴𝛼 ,

𝑀Θ
𝜇𝜈 [𝐴𝛼] = (𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇)𝐴𝛼 + 𝜂𝜇𝛼𝐴𝜈 − 𝜂𝛼𝜈𝐴𝜇 ,
𝐷Θ [𝐴𝛼] = −(1 + 𝑥𝜇𝜕𝜇)𝐴𝛼 .

(9.38)
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Concerning the field strength, it is sufficient to observe that {𝑃Θ
𝜇 , 𝑀

Θ
𝜇𝜈 , 𝐷

Θ} are derivations of the
star-product. Hence, their respective actions on 𝐹𝛼𝛽 = 𝜕𝛼𝐴𝛽−𝜕𝛽𝐴𝛼−𝑖[𝐴𝛼, 𝐴𝛽]★Θ

are functionally
the same for all values of Θ, including when Θ = 0 and the action on 𝐹𝜇𝜈 is then the usual one

𝑃Θ
𝜇 [𝐹𝛼𝛽] = 𝜕𝜇𝐹𝛼𝛽 ,

𝑀Θ
𝜇𝜈 [𝐹𝛼𝛽] = (𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇)𝐹𝛼𝛽 + 𝜂𝛼𝜇𝐹𝜈𝛽 − 𝜂𝛼𝜈𝐹𝜇𝛽 + 𝜂𝛽𝜇𝐹𝜈𝛼 − 𝜂𝛽𝜈𝐹𝜇𝛼 ,
𝐷Θ [𝐹𝛼𝛽] = −(2 + 𝑥𝜇𝜕𝜇)𝐹𝛼𝛽 .

(9.39)

This result could be verified directly using the action on the gauge potential and the explicit
expression of the deformed generators. As a consequence, Eq. (9.22) is Weyl-invariant in the same
way as in the commutative case. As a final remark, we recall that the classical Maxwell action
in four spacetime dimensions is also invariant under special conformal transformations, which are
quadratic in the coordinates and whose infinitesimal generators read

𝐾𝜇 = 𝑥2𝜕𝜇 − 2𝑥𝜇𝑥𝜈𝜕𝜈 . (9.40)

It was shown in [86] that it is not possible to deform such an operator (or, in general, operators that are
more than linear in coordinates) to obtain star-derivations. We refer to the cited literature for details.
Therefore, we can conclude that only linear affine transformations (hence, Weyl transformations)
remain symmetries of the Moyal star-product.

9.4 Problems of QED on Moyal space

We conclude this section by mentioning two main issues of noncommutative QED on Moyal
space, which have been widely analyzed in the past years, namely, the UV/IR mixing and the Gribov
ambiguity.

The UV/IR mixing is a feature of noncommutative gauge theories [92, 93] which qualitatively
manifests itself in the same way as for the scalar field theory considered in Section 7. Therefore,
similar proposals have been contemplated, such as the addition of harmonic terms to the classical
action. The addition of a ‘harmonic oscillator’ term was first proposed in the case of the scalar
field theory. The resulting model was remarkably shown to be renormalizable to all orders. This
was accomplished initially in the matrix basis for the Moyal algebra, both in two dimensions [65]
and in four dimensions [66], and then ultimately achieved without employing the matrix basis
[94]. This modification of the classical action by a harmonic term has also been proposed for
QED [95, 96]. Alternatively, noncommutative QED with different star-products beyond constant
noncommutativity has been considered. As an example, we will review the case of noncommutative
QED on R3

𝜆
in Section 10.

The existence of the so-called Gribov copies in noncommutative Moyal QED has been shown
in [97–100]. In standard gauge theory, Gribov ambiguity is a feature of non-abelian gauge theories,
consisting in the fact that they exhibit different field configurations that obey the same gauge-
fixing condition, yet they are related by a gauge transformation, meaning that they are on the same
gauge orbit. This results in an (infinite) overcounting of field configurations. As first shown by
Singer [101], and independently by Narasimhan and Ramadas [102], it can be given a precise
mathematical characterization in the language of fiber bundles and it only manifests with non-
abelian gauge groups. It is also shown in [97–100] that abelian noncommutative gauge theory
behaves in a manner analogous to non-abelian gauge theory in this respect.
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10. Noncommutative gauge theory on R3
𝜆

Let us go back to the noncommutative space R3
𝜆
, namely the noncommutative algebra of

functions in R3 with linear noncommutativity of coordinate functions of su(2) type. In Section 8,
we described the algebra and the corresponding derivation-based differential calculus that allowed
for the analysis of a scalar field theory with quartic self-interaction. To analyze a gauge theory for
this spacetime, we need to adapt the analysis performed in the previous section in the Moyal setting
to this case. Hence, in this section, we will review the construction of the𝑈 (1) gauge theory on the
noncommutative space R3

𝜆
as performed in [80].

10.1 Noncommutative electrodynamics on R3
𝜆

Repeating the analysis performed in 9 for the Moyal case, matter fields are a one-dimensional
complex module over the algebraR3

𝜆
,M = C⊗R3

𝜆
, namely they are represented as𝝍 = 𝒆𝜓 ∈ M, with

𝜓 ∈ R3
𝜆
, and 𝒆 is the generator of the module [80]. The derivations of the algebra are inner, namely

the action of any derivation 𝑋 ∈ Der(R3
𝜆
) on any function 𝜓 ∈ R3

𝜆
is given by the star-commutator

(8.26). The connection and curvature are derived by applying the definitions from Section 9.1, and
gauge transformations are given by the unitary elements of the algebra R3

𝜆
.

To reformulate the action functional as a matrix model [80], it is convenient to introduce a
fundamental one-form 𝜼, such that

𝑋𝑖 (𝜓) ≡ d𝜓(𝑋 𝑖) = [𝜂(𝑋𝑖), 𝜓]★ , (10.1)

with 𝜂(𝑋𝑖) = − 𝑖𝜆 ∈ R
3
𝜆
. One can verify that [55]

∇inv
𝑋 (𝝍) := 𝑋 (𝝍) − 𝜼(𝑋)𝝍 = −𝝍𝜼(𝑋) , (10.2)

defines a gauge invariant connection, ∇inv (known as the canonical connection), in accordance with
the definitions of Section 9.1. Moreover,

A(𝑋) := ∇𝑋 (𝒆) − ∇inv
𝑋 (𝒆) = −𝑖𝑨(𝑋) + 𝜼(𝑋) , (10.3)

where ∇𝑋𝑖
(𝒆) is the connection one-form 𝐴𝑖 , defines a gauge covariant one-form A, which will be

useful in the definition of the gauge action.
The derivations of the algebra R3

𝜆
given by Eq. (8.26), rescaled by a factor of 𝜆,

Der(R3
𝜆) :=

{
𝐷𝑖 := −1

𝜆
𝑋𝑖 =

𝑖

𝜆2 [𝑥𝑖 , ·]★ , 𝑖 = 1, 2, 3
}
, (10.4)

close a Lie algebra:

[𝐷𝑖 , 𝐷 𝑗] = −
1
𝜆
𝜖 𝑘𝑖 𝑗𝐷𝑘 , (10.5)

with 𝐷0 being central, since [𝐷0, 𝐷𝑖] = 0 , ∀𝑖, and 𝐷0 𝑓 = 0 , ∀ 𝑓 ∈ R3
𝜆
. In this basis of derivations,

for the gauge connection one-form 𝑨 we have

∇𝐷𝑖
(𝒆) ≡ ∇𝑖 (𝒆) := −𝑖𝑨(𝐷𝑖) = −𝑖𝒆𝐴(𝐷𝑖) = −𝑖𝒆𝐴𝑖 , (10.6)
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from which we obtain the covariant derivative

∇𝑖 (𝝍) = ∇𝑖 (𝒆𝜓) = 𝒆(𝐷𝑖𝜓 − 𝑖𝐴𝑖 ★𝜓) . (10.7)

For the fundamental one-form 𝜼, in this basis we have

𝜼(𝐷𝑖) = 𝒆𝜂(𝐷𝑖) = 𝒆𝜂𝑖 = 𝒆
𝑖

𝜆2 𝑥𝑖 , (10.8)

so that the gauge invariant connection ∇inv and the gauge covariant one-form A read, respectively,

∇inv
𝑖 (𝝍) = −𝒆

𝑖

𝜆2𝜓 ★ 𝑥𝑖 , (10.9)

and
A(𝐷𝑖) = 𝒆A(𝐷𝑖) = 𝒆A𝑖 = −𝑖𝒆

(
𝐴𝑖 −

1
𝜆2 𝑥𝑖

)
. (10.10)

Therefore, the covariant derivative (10.7) can be equivalently rewritten in terms of the gauge
covariant one-form

∇𝑖 (𝝍) = 𝒆

(
A𝑖 ★𝜓 −

𝑖

𝜆2𝜓 ★ 𝑥𝑖

)
. (10.11)

Analogously, the curvature two-form 𝑭

𝑭(𝐷𝑖 , 𝐷 𝑗) = 𝒆𝐹 (𝐷 𝑗 , 𝐷 𝑗) = 𝒆𝐹𝑖 𝑗 = 𝒆

(
𝐷𝑖𝐴 𝑗 − 𝐷 𝑗𝐴𝑖 − 𝑖[𝐴𝑖 , 𝐴 𝑗]★ +

1
𝜆
𝜖 𝑘𝑖 𝑗𝐴𝑘

)
, (10.12)

can be rewritten in terms of A as

𝐹 = 𝒆𝐹𝑖 𝑗 = 𝒆

(
[A𝑖 ,A 𝑗]★ −

𝑖

𝜆
𝜖 𝑘𝑖 𝑗A𝑘

)
. (10.13)

Notice that the latter does not contain the derivations anymore, resulting in an action functional that
is a matrix model.

It is argued in [80] that the gauge-invariant most general action for noncommutative QED on
R3
𝜆

is indeed a polynomial in the gauge covariant one-form A,

𝑆[A] =
∫

d3𝑥
(
𝛼A𝑖 ★A 𝑗 ★A 𝑗 ★A𝑖 + 𝛽A𝑖 ★A 𝑗 ★A𝑖 ★A 𝑗

+ 𝛾𝜖 𝑘𝑖 𝑗A𝑖 ★A 𝑗 ★A𝑘 + 𝛿A𝑖 ★A𝑖
)
,

(10.14)

where the Euclidean metric is implicitly introduced. The (real) parameters 𝛼 and 𝛽 are dimension-
less, while 𝛾 and 𝛿 have mass dimension 1. In order for the action to be dimensionless, an overall
constant usually denoted as 1

𝑔2 with mass dimension −1 is needed in three dimensions, but we omit
it for simplicity. Going back to the physical field 𝐴, the action becomes [80]

𝑆[𝐴] =
∫

d3𝑥
(
𝑎𝐹𝑖 𝑗 ★ 𝐹

𝑖 𝑗 + 𝑏𝜖 𝑘𝑖 𝑗A𝑖 ★A 𝑗 ★A𝑘 + 𝑐A𝑖 ★A𝑖
)
, (10.15)

where 𝑎, 𝑏, and 𝑐 are real parameters. This action has the form of a Yang–Mills action (the analog
of Eq. (9.22)) with a Chern–Simons term. This theory has been investigated up to one-loop order
in the matrix basis, and no UV/IR mixing was found in the analysis [80].
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11. The twist approach to the description of spacetime symmetries

Up to this point, our focus has been on observer (or passive) transformations underlying
the spacetime symmetries of QED on Moyal space. In particular, in Section 9 we showed that
the Moyal star-product is covariant under linear affine (specifically Weyl) transformations. This
aspect eventually led to the invariance of noncommutative QED on Moyal spacetime under observer-
dependent Weyl transformations. However, the covariance of the Moyal star-product is not preserved
by active Weyl transformations. An active (or particle) transformation is performed in a fixed
reference frame, meaning that the background fields remain unchanged while the physical fields
are transformed, generally modifying the physics [85]. We recall that the background field in our
context is the noncommutativity matrix. From the previous section, it can be deduced that the
Moyal star-product can no longer be covariant under active Weyl transformations. Nevertheless, the
Moyal star-product remains covariant under a deformed version of the latter, defined in terms of a
twist operator. This deformed version gives rise to a quantum group of symmetries.

We will first have to review the concept of Hopf algebra, and from it that of twisted Hopf
algebra in order to study the corresponding covariance of the Moyal star-product. The twist
approach to describing spacetime symmetries in the noncommutative field and gauge theory was
initially introduced in [103] and further investigated in [104]. Since then, a large literature has been
produced. Early relevant works in this direction include, for instance, [43, 44, 105–110] and the
references therein.

11.1 Hopf algebras, twisted Hopf algebras, and twisted symmetries

In this section, we will briefly summarize the fundamental concepts of Hopf algebras, with
more detailed information available in [111].

Essentially, a Hopf algebra is an associative algebra, whether commutative or not, with costruc-
tures, which are dual to the algebra structures. These structures define a coalgebra, which is (co)-
associative, and it can be (co)-commutative or not. Relevant examples include the algebra of smooth
functions on a given manifold,𝐶∞(𝑀), and the universal enveloping algebra of a Lie algebra,𝑈 (g).
The former is both commutative and cocommutative, whereas the latter is not commutative but is
cocommutative. We now give the definition of a Hopf algebra.

Definition 5 (Hopf algebra). A Hopf algebra (H, 𝜇, 𝑖,Δ, 𝜖 , 𝑆) over a commutative ring 𝑅 is an
𝑅-module H equipped with the following 𝑅-module maps:

i. The product (or multiplication) map, 𝜇 : H ⊗ H→ H.

ii. The unit map, 𝑖 : 𝑅 → H.

iii. The coproduct (or comultiplication map), Δ : H→ H ⊗ H.

iv. The counit map, 𝜖 : H→ 𝑅.

v. The antipode map, 𝑆 : H→ H.

These maps need to satisfy certain conditions, ensuring the compatibility of the unital associative
algebra (H, 𝜇, 𝑖) and the counital coassociative coalgebra (H,Δ, 𝜖) (see [111] for details). Hence,
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(H, 𝜇, 𝑖,Δ, 𝜖) is a bialgebra. The additional antipode map 𝑆 can be considered as a generalization
of the inverse map. □

As already mentioned, the algebra of smooth functions 𝐶∞(𝐺) over a Lie group 𝐺, and the
universal enveloping algebra𝑈 (g) of the Lie algebra g of𝐺 naturally have Hopf algebra structures.
The latter is particularly relevant for the purposes of this section. Let us recall its definition:

Definition 6 (Universal enveloping algebra of a Lie algebra). Let g be a Lie algebra over a field 𝐾 .
Consider its tensor algebra 𝑇 (g) = ⊕𝑛≥0g

⊗𝑛 (with g0 = 𝐾) as a vector space. Let h be the ideal15
of 𝑇 (g) generated by 𝑋 ⊗ 𝑌 − 𝑌 ⊗ 𝑋 − [𝑋,𝑌 ], with 𝑋,𝑌 ∈ g. The universal enveloping algebra of
g is𝑈 (g) = 𝑇 (g)/h. □

The costructures that characterize𝑈 (g) as a Hopf algebra are defined for Lie algebra elements
and then extended. The coproduct, count, and antipode read, respectively, as follows:

Δ(𝑋) = 𝑋 ⊗ 1 + 1 ⊗ 𝑋 , 𝜖 (𝑋) = 0 , 𝑆(𝑋) = −𝑋 , (11.1)

with 𝑋 ∈ g. In fact, the coproduct is the only map that we will use in the following discussion. For
𝐶∞(𝐺), the corresponding costructures are given by

Δ(𝑔) = 𝑔 ⊗ 𝑔 , 𝜖 (𝑔) = 1 , 𝑆(𝑔) = 𝑔−1 , (11.2)

with 𝑔 ∈ 𝐺. Now, we are ready to formally introduce the concept of twist.

Definition 7 (Twist). Let H be a Hopf algebra. A twist is an element F ∈ H ⊗ H that is invertible
and satisfies the following properties:

i. (1 ⊗ F )(id ⊗ Δ)F = (F ⊗ 1) (Δ ⊗ id)F ;

ii. (𝜖 ⊗ id)F = (id ⊗ 𝜖)F = 1 ⊗ 1;

where id denotes the identity map on H. The first property is referred to as the 2-cocycle condition.
The second property is simply a compatibility condition with the counit map. □

The twist F allows for the definition of a new coproduct denoted by ΔF as follows:

ΔF (ℎ) = FΔ(ℎ)F −1 , (11.3)

with ℎ ∈ H. The latter, in turn, defines a new Hopf algebra, called twisted Hopf algebra and denoted
by HF . Twisted Hopf algebras are concrete examples of quantum groups, namely noncommutative
and noncocommutative Hopf algebras, with the twist inducing a deformation that only affects the
coproduct map. See, for example, [111, 112] for more details on quantum groups and related topics.

Let us consider a Hopf algebra H, acting on an associative algebra A, with 𝑚 denoting the
product map in A

𝑚(𝑎 ⊗ 𝑏) = 𝑎𝑏 . (11.4)

For ℎ ∈ H, the action of ℎ on 𝑎𝑏 is given by

ℎ ⊲ (𝑎𝑏) = ℎ ⊲ 𝑚(𝑎 ⊗ 𝑏) = 𝑚 ◦ Δ(ℎ) ⊲ (𝑎 ⊗ 𝑏) , (11.5)

15Recall that an ideal h of a Lie algebra g is a Lie subalgebra such that [h, g] ⊆ h.
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where Δ represents the coproduct of 𝐻. We are interested in the case in whichA is the commutative
algebra of smooth functions on a spacetime manifold 𝑀 (with the pointwise product), and ℎ is an
element of some Lie algebra g, generating the infinitesimal spacetime symmetries of 𝑀 . The latter
act on C∞(𝑀) as derivations. Therefore, in this case, Eq. (11.5) becomes the Leibniz rule. The
twisted coproduct in Eq. (11.3) is compatible with a deformed or twisted product inA, denoted by
𝑚F , with respect to which Eq. (11.5) continues to hold. Indeed, defining the twisted product as

𝑚F (𝑎 ⊗ 𝑏) = 𝑚 ◦ F −1(𝑎 ⊗ 𝑏) , (11.6)

we have

ℎ ⊲ 𝑚F (𝑎 ⊗ 𝑏) = ℎ ⊲ 𝑚 ◦ F −1(𝑎 ⊗ 𝑏) = 𝑚 ◦ Δ(ℎ)F −1(𝑎 ⊗ 𝑏)
= 𝑚 ◦ F −1ΔF (ℎ) (𝑎 ⊗ 𝑏) = 𝑚F ◦ ΔF (ℎ) (𝑎 ⊗ 𝑏) ,

(11.7)

namely that, the twisted algebraHF is represented on the new algebra (A, 𝑚F) by its action through
ΔF . Similarly, it is possible to define an antipode and a counit, which transform HF into a Hopf
algebra. Indeed, the associativity of the product (11.6) and the coassociativity of the coproduct
(11.3) are ensured by the cocycle condition of the twist.

For the case of the commutative algebra of smooth functions considered above, Eq. (11.6)
shows how to deform the pointwise product to a noncommutative one using a twist, with the
Leibniz rule twisted through Eq. (11.7).

However, not all star-products are associated with a twist operator. This is the case, for instance,
of the Moyal star-product for R4

Θ
, but not for the Lie-algebra type star-product of R3

𝜆
in Eq. (8.5).

The consequences of Eq. (11.7) are of great importance as well. It implies that a star-
product obtained in terms of a twist is always twist-covariant. Accordingly, an action functional
that is invariant under some spacetime transformations in the commutative case can always be
transformed into a noncommutative action, which is invariant under the corresponding twisted
transformations (when a twist operator is available). These transformations should be regarded as
active or particle-dependent transformations since they do not affect the noncommutativity matrix
[86].

11.2 The Moyal space revisited

The goal of this section is to recover the Moyal star-product in terms of a twist and, ultimately,
analyze the application of the twist approach to the description of spacetime symmetries of the
noncommutative QED action given in Eq. (9.22). We discussed its invariance under standard
observer-dependent (passive) Weyl transformations in Section 9. It can be easily verified that
the action cannot be invariant under active Weyl transformations, but only under the subgroup of
invariance of the matrix Θ [86].

Let us consider the group of diffeomorphisms of R4. The Lie algebra of generators consists
of all vector fields on R4 equipped with the usual Lie bracket of vector fields, denoted by d(R4).
We then consider its universal enveloping algebra 𝑈 (d), which is a Hopf algebra. In particular,
the coproduct is defined for elements of the Lie algebra ℎ ∈ D(R4) by Δ(ℎ) = ℎ ⊗ 1 + 1 ⊗ ℎ, and
extended to all of𝑈 (d) through Δ(ℎℎ′) = Δ(ℎ)Δ(ℎ′). The algebra of smooth functions on R4 with
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the pointwise product carries a representation of 𝑈 (d). It is well-known that the Moyal product in
F (R4) can be realized as a twisted product, with a twist given by

FΘ = exp
{
− 𝑖

2
Θ𝜇𝜈𝜕𝜇 ⊗ 𝜕𝜈

}
, (11.8)

in terms of the Moyal noncommutativity tensor. The twist is an element of 𝑈 (d) ⊗ 𝑈 (d), and its
inverse is F −1

Θ
= exp

{
𝑖
2Θ

𝜇𝜈𝜕𝜇 ⊗ 𝜕𝜈
}
. One can check that the cocycle condition is satisfied as well.

The Moyal star-product, as expressed in Eq. (6.3), follows then from Eq. (11.6) according to

𝑚FΘ ( 𝑓 ⊗ 𝑔) = 𝑚
(
F −1
Θ · ( 𝑓 ⊗ 𝑔)

)
= 𝑓 ★Θ 𝑔 . (11.9)

Additionally, any generator of the Lie algebra of diffeomorphisms may be given a twisted coproduct
by means of Eq. (11.7) [113]

ΔFΘ (ℎ) = FΘΔ(ℎ)F −1
Θ , (11.10)

ensuring that the Moyal product 𝑚FΘ is covariant under the action of the entire diffeomorphisms
algebra. Hereafter, we will denote these maps as ΔΘ and 𝑚Θ.

As the classical Maxwell action is invariant under both passive and active Weyl transformations,
the deformed action with the Moyal product will be invariant under twisted Weyl transformations.
The twisted coproduct for the generators reads [104, 107]

ΔΘ(𝑃𝜇) = 𝑃𝜇 ⊗ 1 + 1 ⊗ 𝑃𝜇 ,
ΔΘ(𝑀𝜇𝜈) = 𝑀𝜇𝜈 ⊗ 1 + 1 ⊗ 𝑀𝜇𝜈

+ 𝑖
2
Θ𝜇𝜈 [𝑃𝜇 ⊗ (𝜂𝛼𝜈𝑃𝛽 − 𝜂𝛽𝜈𝑃𝛼) + (𝜂𝛼𝜇𝑃𝛽 − 𝜂𝛽𝜇𝑃𝛼) ⊗ 𝑃𝜈] ,

ΔΘ(𝐷) = 𝐷 ⊗ 1 + 1 ⊗ 𝐷 − 𝑖Θ𝜇𝜈𝑃𝜇 ⊗ 𝑃𝜈 ,

(11.11)

with 𝑃𝜇, 𝑀𝜇𝜈 , 𝐷 indicating the generators of translations, Lorentz transformations, and dilations,
respectively. Except for translations, which are undeformed, the other symmetries get twisted.
We can conclude that, in the context of Moyal noncommutativity, the twist-deformed Maxwell
action is invariant under twisted Weyl transformations (Poincaré and dilations). These should be
understood as being of the particle type16. Moreover, Eq. (11.7) generically holds for any generator
ℎ being an infinitesimal diffeomorphism. Hence, Eq. (11.7) can be applied to any generator of
the universal enveloping algebra. As the Maxwell action in 3 + 1 dimensions has an additional
symmetry, invariance under special conformal transformations, one can then compute the coproduct
for the generators of special conformal transformations given in Eq. (9.40), and thus obtain ΔΘ(𝐾𝜇)
[107, 108]. Therefore, in analogy with the commutative case, the noncommutative Maxwell action
on Moyal space not only possesses twisted Weyl invariance but also enjoys a twisted conformal
invariance. We stress once more that this is a feature of twist-deformed models: due to the

16One can demonstrate [86] that, given an infinitesimal diffeomorphism which is polynomial in coordinates

𝑚Θ

(
ΔΘ (𝑥𝛼1 . . . 𝑥𝛼𝑁 ) (𝑥𝜇 ⊗ 𝑥𝜈 − 𝑥𝜈 ⊗ 𝑥𝜇)

)
= 0 ,

Θ𝜇𝜈 remains unchanged. Then, the twist approach accounts only for particle-dependent transformations, as transforma-
tions of Θ cannot be contemplated within this framework.
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covariance of the Moyal product under twisted transformations, all symmetries of the untwisted
action are mapped to quantum symmetries of the twisted action.

To conclude, the difference between observer-dependent, or passive transformations, and
particle-dependent, or active transformations, in Moyal spacetime amounts to the difference be-
tween covariance and twist-covariance of the star-product. This difference can be summarized by
the following pair of relations for any given infinitesimal generator 𝐺:

𝐺Θ𝑚Θ = 𝑚ΘΔ(𝐺) , (11.12)

which accounts for covariance, and

𝐺𝑚Θ = 𝑚ΘΔΘ(𝐺) . (11.13)

which accounts for twist-covariance. We refer to the cited literature for more details.

12. The twist approach to noncommutative field theory

A different approach to noncommutative gauge theories has been developed within the twist
formalism described in Section 11, for those noncommutative spacetimes that admit a twist. The
twist approach to noncommutative field and gauge theory is based on twisting not only the product
in the algebra of functions, but also the other relevant bilinear maps, establishing, eventually, a
well-defined differential calculus, known as a twisted differential calculus. In this section, instead
of starting with formal definitions, we will go directly into an example and introduce the concepts
of twisted differential calculus required for our the discussion.

12.1 Angular noncommutativity: the case of 𝜆-Minkowski

Let us consider another noncommutative spacetime exhibiting linear noncommutativity be-
tween coordinates. It is indeed simpler than the linear noncommutative space R3

𝜆
introduced in

Section 8. Its noncommutativity is such that [114]

[𝑥0, 𝑥𝑖]★ = [𝑥1, 𝑥2]★ = 0 , [𝑥2, 𝑥3]★ = −𝑖𝜆𝑥1 , [𝑥1, 𝑥3]★ = 𝑖𝜆𝑥2 , (12.1)

where 𝑥0 is the time coordinate, 𝑥𝑖 (with 𝑖 = 1, 2, 3) are the space coordinates, and 𝜆 is a constant
with a length dimension. It is also said to reproduce angular noncommutativity, since

[𝑥3, 𝜌]★ = 0 , [𝑥3, 𝜑]★ = 𝑖𝜆 , (12.2)

after expressing them in cylindrical coordinates with 𝑥1 = 𝜌 cos 𝜑 and 𝑥2 = 𝜌 sin 𝜑. It is then clear
that the noncommutativity involves the angular coordinates. This is the so-called 𝜆-Minkowski
spacetime17. Another variant is the so-called 𝜚-Minkowski spacetime, where the role of the coordi-
nates 𝑥0 and 𝑥3 is exchanged. This was actually the case in the original work [114]. Notice that, from
an abstract perspective, both are described by the same Lie algebra, but the conceptual differences
are notable from a physical point of view. In the former, the time coordinate stays commutative,
whereas in the latter it becomes noncommutative. They are, in turn, a variation of the well-known

17Indeed, the Lie algebra (12.1) can be obtained by the su(2) Lie algebra underling R3
𝜆
.
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𝜅-Minkowski spacetime [115, 116], where coordinate functions satisfy [𝑥0, 𝑥𝑖]★ = 𝑖/𝜅𝑥𝑖 (although
as Lie algebras they are quite different). Noncommutative field and gauge theory on 𝜅-Minkowski
spacetime are extensively investigated in the literature, and we refer the reader for more details
to [67, 117–121]. The 𝜆- and 𝜚-Minkowski spacetimes with their symmetries have been recently
investigated in [122–124].

The Lie algebra underlying Eq. (12.1) is the Euclidean algebra e(2) with a central term.
Analogously to the case of R3

𝜆
, a star-product reproducing Eqs. (12.1) for coordinate functions

was obtained in terms of a Jordan–Schwinger map in [59]. Alternatively, and more relevant
for this section, it is also possible to obtain another star-product, with the same fundamental
noncommutativity (12.1) in terms of a twist. In this case, the twist is an element in 𝑈 (p ⊗ 𝑈 (p,
where p is the Poincaré Lie algebra. It reads

F = exp
{
− 𝑖𝜆

2
[𝜕3 ⊗ (𝑥1𝜕2 − 𝑥2𝜕1) − (𝑥1𝜕2 − 𝑥2𝜕1) ⊗ 𝜕3]

}
, (12.3)

and, in cylindrical coordinates, it is expressed as

F = exp
{
− 𝑖𝜆

2
(𝜕3 ⊗ 𝜕𝜑 − 𝜕𝜑 ⊗ 𝜕3)

}
. (12.4)

This is an abelian twist18, meaning that the generators of the Poincaré group considered to construct
the twist commute with each other. As a consequence, the associativity of the resulting star-product
is automatically guaranteed, since the cocycle condition in Definition 7 is directly verified. The
explicit expression of the twisted star-product reads then

𝑓 ★ 𝑔 = 𝑚

(
F −1( 𝑓 ⊗ 𝑔)

)
= 𝑓 𝑔 + 𝑖𝜆

2
(𝜕3 𝑓 𝜕𝜑𝑔 − 𝜕𝜑 𝑓 𝜕3𝑔) + O(𝜆2) . (12.5)

The twisted differential calculus [46] for this spacetime was first introduced in [114].
It is particularly convenient for developing a calculus in field theory to compute the star-

product of two plane waves. In the case of the Moyal star-product, we have that (see Appendix A)
𝑒𝑖 𝑝 ·𝑥 ★Θ 𝑒

𝑖𝑞 ·𝑥 = 𝑒𝑖 (𝑝+𝑞) ·𝑥+𝑝𝜇Θ
𝜇𝜈𝑞𝜈 . One can show [128] that, for the star-product in Eq. (12.5),

𝑒−𝑖 𝑝 ·𝑥 ★ 𝑒−𝑖𝑞 ·𝑥 = 𝑒−𝑖 (𝑝+★𝑞) ·𝑥 , (12.6)

where we defined the star-sum of four-momenta as

𝑝 +★ 𝑞 = 𝑅(𝑞3)𝑝 + 𝑅(−𝑝3)𝑞 , (12.7)

with 𝑅 being the matrix

𝑅(𝑡) ≡
©­­­­«

1 0 0 0
0 cos

(
𝜆
2 𝑡

)
sin

(
𝜆
2 𝑡

)
0

0 − sin
(
𝜆
2 𝑡

)
cos

(
𝜆
2 𝑡

)
0

0 0 0 1

ª®®®®¬
. (12.8)

Notice that this is a rotation matrix in the 𝑝1𝑝2 plane, with the angle of rotation being proportional to
the noncommutativity parameter. As expected, it becomes the identity matrix in both the commuta-
tive and low-momentum limit. One can check that the star-sum turns out to be noncommutative but

18This is an instance of a more general expression introduced in [125–127].
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associative. It can also be checked that, for an arbitrary four-momentum 𝑘 , we have 𝑘 +★ (−𝑘) = 0.
One can further show that, for the star-product of three plane waves

𝑒−𝑖 𝑝 ·𝑥 ★ 𝑒−𝑖𝑞 ·𝑥 ★ 𝑒−𝑖𝑟 ·𝑥 = 𝑒−𝑖 (𝑝+★𝑞+★𝑠) ·𝑥 , (12.9)

where

𝑝 +★ 𝑞 +★ 𝑟 = 𝑅(𝑞3 + 𝑟3)𝑝 + 𝑅(−𝑝3 + 𝑟3)𝑞 + 𝑅(−𝑝3 − 𝑞3)𝑟 . (12.10)

This can be generalized by induction

𝑒−𝑖 𝑝
(1) ·𝑥 ★ · · ·★ 𝑒−𝑖 𝑝 (𝑛) ·𝑥 = 𝑒−𝑖 (𝑝 (1)+★· · ·+★𝑝 (𝑛) ) ·𝑥 , (12.11)

with

𝑝 (1) +★ · · · +★ 𝑝 (𝑛) =
𝑛∑︁
𝑗=1

𝑅
©­«−

∑︁
1≤𝑘< 𝑗

𝑝
(𝑘 )
3 +

∑︁
𝑗<𝑘≤𝑛

𝑝
(𝑘 )
3

ª®¬ 𝑝 ( 𝑗 ) . (12.12)

12.2 The twisted Poincaré Hopf algebra

As we commented in Section 11, the twist in Eq. (12.4) defines a twisted Poincaré Hopf algebra,
𝑈F(p) which is the original Hopf algebra (the universal enveloping algebra of the Poincaré algebra),
but with the coproduct map (and antipode) twisted. 𝑈F(p) was derived in [114], except for the
fact that, for the 𝜆 case, the role of 𝜕0 and 𝜕3 have to be exchanged. We report here the explicit
expression of the twisted coproduct of the generators of the Poincaré algebra, given by

𝑃𝜇 = −𝑖𝜕𝜇 , 𝑀𝜇𝜈 = 𝑖(𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇) , (12.13)

for translations and Lorentz transformations, respectively, and with Lie brackets

[𝑃𝜇, 𝑃𝜈] = 0 ,
[𝑃𝜇, 𝑀𝜈𝜌] = 𝑖(𝜂𝜇𝜈𝑃𝜌 − 𝜂𝜇𝜌𝑃𝜈) ,
[𝑀𝜇𝜈 , 𝑀𝜌𝜎] = 𝑖(𝜂𝜇𝜎𝑀𝜈𝜌 + 𝜂𝜈𝜌𝑀𝜇𝜎 − 𝜂𝜇𝜌𝑀𝜈𝜎 − 𝜂𝜈𝜎𝑀𝜇𝜌) ,

(12.14)

with 𝜂 being the Minkowski metric tensor. The twisted coproduct of 𝑃𝜇 is given by

ΔF (𝑃0) = 𝑃0 ⊗ 1 + 1 ⊗ 𝑃0 ,

ΔF (𝑃1) = 𝑃1 ⊗ cos
(
𝜆
2𝑃3

)
+ cos

(
𝜆
2𝑃3

)
⊗ 𝑃1 + 𝑃2 ⊗ sin

(
𝜆
2𝑃3

)
− sin

(
𝜆
2𝑃3

)
⊗ 𝑃2 ,

ΔF (𝑃2) = 𝑃2 ⊗ cos
(
𝜆
2𝑃3

)
+ cos

(
𝜆
2𝑃3

)
⊗ 𝑃2 − 𝑃1 ⊗ sin

(
𝜆
2𝑃3

)
+ sin

(
𝜆
2𝑃3

)
⊗ 𝑃1 ,

ΔF (𝑃3) = 𝑃3 ⊗ 1 + 1 ⊗ 𝑃3 ,

(12.15)
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while the twisted coproduct of 𝑀𝜇𝜈 is given by

ΔF (𝑀10) = 𝑀10 ⊗ cos
(
𝜆
2𝑃3

)
+ cos

(
𝜆
2𝑃3

)
⊗ 𝑀10 + 𝑀20 ⊗ sin

(
𝜆
2𝑃3

)
− sin

(
𝜆
2𝑃3

)
⊗ 𝑀20 ,

ΔF (𝑀20) = 𝑀20 ⊗ cos
(
𝜆
2𝑃3

)
+ cos

(
𝜆
2𝑃3

)
⊗ 𝑀20 − 𝑀10 ⊗ sin

(
𝜆
2𝑃3

)
+ sin

(
𝜆
2𝑃3

)
⊗ 𝑀10 ,

ΔF (𝑀30) = 𝑀30 ⊗ 1 + 1 ⊗ 𝑀30 − 𝜆
2𝑃0 ⊗ 𝑀12 + 𝜆2𝑀12 ⊗ 𝑃0 ,

ΔF (𝑀12) = 𝑀12 ⊗ 1 + 1 ⊗ 𝑀12 ,

ΔF (𝑀31) = 𝑀31 ⊗ cos
(
𝜆
2𝑃3

)
+ cos

(
𝜆
2𝑃3

)
⊗ 𝑀31 + 𝑀32 ⊗ sin

(
𝜆
2𝑃3

)
− sin

(
𝜆
2𝑃3

)
⊗ 𝑀32

− 𝑃1 ⊗ 𝜆
2𝑀12 cos

(
𝜆
2𝑃3

)
+ 𝜆2𝑀12 cos

(
𝜆
2𝑃3

)
⊗ 𝑃1

− 𝑃2 ⊗ 𝜆
2𝑀12 sin

(
𝜆
2𝑃3

)
− 𝜆

2𝑀12 sin
(
𝜆
2𝑃3

)
⊗ 𝑃2 ,

ΔF (𝑀32) = 𝑀32 ⊗ cos
(
𝜆
2𝑃3

)
+ cos

(
𝜆
2𝑃3

)
⊗ 𝑀32 − 𝑀31 ⊗ sin

(
𝜆
2𝑃3

)
+ sin

(
𝜆
2𝑃3

)
⊗ 𝑀31

− 𝑃2 ⊗ 𝜆
2𝑀12 cos

(
𝜆
2𝑃3

)
+ 𝜆2𝑀12 cos

(
𝜆
2𝑃3

)
⊗ 𝑃2

+ 𝑃1 ⊗ 𝜆
2𝑀12 sin

(
𝜆
2𝑃3

)
+ 𝜆2𝑀12 sin

(
𝜆
2𝑃3

)
⊗ 𝑃1 .

(12.16)

Note that the coproducts of 𝑃0, 𝑃3, and 𝑀12 (the generator of rotations in the 𝑥1𝑥2 plane) remain
undeformed, while the rest become clearly deformed. It can be demonstrated that the twisted
coproduct of the momenta 𝑃𝜇 is indeed related to the star-sum of momenta of Eq. (12.7) [128].

12.3 The twisted differential calculus

In the spirit of twist-deforming all bilinear maps, the twist is applied to define a twist-deformed
differential calculus. As for the twist in Eq. (12.4), the differential calculus was developed in [114]
(see also [46] and [113, 129] for the general setting). According to [46], for an arbitrary bilinear
map 𝜇 in some module space of the noncommutative algebra, we have

𝜇 : 𝐴 × 𝐵→ 𝐶 =⇒ 𝜇★ = 𝜇 ◦ F −1 . (12.17)

Thus, the wedge product of two forms of arbitrary degree, 𝜔1 and 𝜔2, is twist-deformed into the
star-wedge product

(𝜔1 ∧★ 𝜔2) (𝑥) = F −1(𝑦, 𝑧)𝜔1(𝑦) ∧ 𝜔2(𝑧)
���
𝑥=𝑦=𝑧

, (12.18)

which is (graded) noncommutative and associative. The Leibniz rule is satisfied by the standard
exterior derivative, namely

d( 𝑓 ★ 𝑔) = d 𝑓 ★ 𝑔 + 𝑓 ★ d𝑔 . (12.19)

This is because the exterior derivative commutes with the Lie derivatives that enter the twisted star
product of Eq. (12.5) [128]. The nilpotency property, i.e., d2 = 0, is verified as well. The standard
exterior derivative can then be utilized as the noncommutative exterior derivative. Additionally, the
integral is cyclic since the twist (12.4) is abelian, namely∫

𝜔1 ∧★ · · · ∧★ 𝜔𝑝 = (−1)𝑑1𝑑2 · · ·𝑑𝑝
∫

𝜔𝑝 ∧★ 𝜔1 ∧★ · · · ∧★ 𝜔𝑝−1 , (12.20)

with the sum of the degrees of the forms being 𝑑1 + 𝑑2 + · · · + 𝑑𝑝 = 4. Indeed, the twisted product
enjoys a stronger property: it can be checked to be closed, i.e.,∫

d4𝑥 𝑓 ★ 𝑔 =

∫
d4𝑥 𝑔 ★ 𝑓 =

∫
d4𝑥 𝑓 · 𝑔 . (12.21)

45



P
o
S
(
Q
G
-
M
M
S
c
h
o
o
l
s
)
0
0
7

NCFT Patrizia Vitale

The closure of the integral is not fulfilled in general for star-products. The simplest example
where it is violated is the Wick–Voros star product, but also 𝜅-Minkowski star-products obtained
by Jordanian twists, which are not even cyclic [73], and the linear star-product of R3

𝜆
that we have

discussed previously, which is cyclic but not closed. For details on the closure property of star
products and its relation with the Kontsevich approach, see, for example, [130].

12.4 The 𝑔𝜙★4 scalar field theory on 𝜆-Minkowski spacetime

Similarly to the case of R3
𝜆

discussed previously, the 𝜆-Minkowski spacetime with its twisted
star-product and twisted differential calculus have been considered to study the 𝑔𝜙★4 scalar field
theory [128]. The action functional is formally the same as for R3

𝜆
considered in Section 8.4

𝑆[𝜑] =
∫

d4𝑥

(
1
2
𝜕𝜇𝜑 ★ 𝜕

𝜇𝜑 − 1
2
𝑚2𝜑★2 − 𝑔

4!
𝜑★4

)
. (12.22)

However, the closure property of the star-product under integration allows the removal of the star-
product from the quadratic terms of the action. Accordingly, the free (tree-level) propagator of the
theory is the same as in the commutative setting. The vertex, as well as the interacting (one-loop)
propagator, will change with respect to the commutative counterparts.

Upon expanding the scalar field 𝜑(𝑥) in Fourier modes,

𝜑(𝑥) = 1
(2𝜋)2

∫
𝑑4𝑝 𝑒−𝑖 𝑝 ·𝑥 𝜑̃(𝑝) (12.23)

the action is rewritten in momentum space as

𝑆[𝜑] = −1
2

∫
d4𝑝 d4𝑞

(
𝑝 · 𝑞 + 𝑚2

)
𝜑̃(𝑝)𝜑̃(𝑞)𝛿 (4) (𝑝 +★ 𝑞)

− 1
(2𝜋)4

𝑔

4!

∫
d4𝑝 d4𝑞 d4𝑟 d4𝑠 𝜑̃(𝑝)𝜑̃(𝑞)𝜑̃(𝑟)𝜑̃(𝑠)𝛿 (4) (𝑝 +★ 𝑞 +★ 𝑟 +★ 𝑠) ,

(12.24)

where the star-multiplication of plane waves (12.6) is used. This expression differs from that of the
commutative theory due to the appearance in the Dirac delta functions of the star-sum of momenta,
which modifies of the momentum conservation in the vertex. The noncommutative theory is
therefore characterized by a deformed conservation of momentum. When only two momenta are
involved, this ‘twisted’ conservation of momentum reverts to the usual one. This is because the
deformation, encoded in the matrix in Eq. (12.8), does not affect the conservation of the 𝑝0 and 𝑝3

components of the momenta, as this matrix represents a rotation in the 𝑝1𝑝2 plane. Then, we have

𝛿 (4) (𝑝 +★ 𝑞) = 𝛿 (4) (𝑅(𝑞3)𝑝 + 𝑅(−𝑝3)𝑞) = 𝛿 (4) (𝑅(−𝑝3) (𝑝 + 𝑞)) = 𝛿 (4) (𝑝 + 𝑞) , (12.25)

where we used the property of the 𝑛-dimensional Dirac delta function, yielding

𝛿 (𝑛) (𝑀 𝑓 ) = 1
| det𝑀 | 𝛿

(𝑛) ( 𝑓 ) , (12.26)

for any 𝑛-component (vector-valued) function 𝑓 and 𝑛× 𝑛 non-degenerate matrix 𝑀 . his model has
been analyzed at one-loop level in momentum space for both the 𝜆-Minkowski and the 𝜚-Minkowski
spacetimes, revealing UV/IR mixing [128]. As in the Moyal space (see Section 7.3), the one-loop
corrections to the propagator result in IR divergences for the non-planar diagram (see Figure 1),
with the planar one being qualitatively the same as in the commutative case.
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13. Concluding remarks

We have reviewed the mathematical framework of noncommutative gauge and field theory
within two main approaches: the derivation-based differential calculus and the twist approach.
These were applied to simple underlying geometries, namely the Moyal space and linear noncom-
mutativity. Besides the details of the calculations, which necessarily depend on the specifics of the
models, we hope to have conveyed the main message of these lecture notes, namely, the importance
of the internal consistency of the construction, which, in the absence of strong phenomenological
indications, should be a guiding tool towards more realistic quantum geometries of spacetime.

In this vein, many interesting directions of research have been recently considered, such as the
𝐿∞ bootstrap approach [131], which, starting from a given noncommutativity, consistently builds
the dynamics and the symmetries of the theory through a sort of inductive algebraic method. A
partially-related approach is Poisson gauge theory [132], which considers a semiclassical limit of
noncommutative spacetime, namely a Poisson manifold, and looks for a geometrically consistent
definition of gauge fields and gauge transformations that agree with the standard gauge theory in the
commutative limit. Another promising line of research explores matrix models [133] as a source
of emergent geometry, matter, gauge fields, and gravity.

Finally, it is important to mention the considerable effort being made to find indirect signatures
of the noncommutative nature of spacetime at the energy scales currently accessible. The COST
action which hosts these notes is specifically designed for such a purpose. For a recent review, we
refer the reader to [134] and references therein.
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Appendices

A. The tadpole diagram in 𝜆𝜑★4 on Moyal space

We derive the expression of the non-planar tadpole for the 𝜆𝜑★4 theory at one loop and show
the correction that the propagator picks up due to the noncommutativity of the product. As we will
see and already mentioned in Section 7, this non-planar diagram has a different behavior from the
planar one. To this aim, we consider the Euclidean action functional for such a field theory that
reads

𝑆[𝜑] =
∫

d4𝑥

(
1
2
𝐷𝜇𝜑 ★ 𝐷𝜇𝜑 −

1
2
𝑚2𝜑★2 − 1

4!
𝜆𝜑★4

)
, (A.1)
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where 𝐷𝜇 → 𝜕𝜇. Since the product is closed, the free action is the same as the undeformed theory
and the tree-level propagators coincide. But the four-vertex is deformed. In momentum space, this
is depicted by Figure 1. In the following, we review the computation which brings to the following
expressions for the propagator (trivial) and the vertex, at one loop:

Δ(0) =
1

𝑝2 + 𝑚2 , 𝑉★ = −𝑖 𝜆
4!
𝛿3

( 4∑︁
𝑎=1

𝑘𝑎

) ∏
𝑎<𝑏

exp
(
− 𝑖

2
𝜃𝑖 𝑗 𝑘𝑎𝑖𝑘𝑏 𝑗

)
. (A.2)

To proceed, it is essential to notice that, since we are working in an Euclidean space, therefore there
are no sign issues coming from the metric. Furthermore, we will see that, up to some point, the
spacetime dimension is not relevant for the purpose of the computation. It will be the case when
it comes to investigating the divergences because then, as in the noncommutative case, the latter
depends on the dimension of the space.

We can separate the action into a kinetic term and an interaction term as follows:

𝑆𝑘 [𝜑] =
∫
R4

d4𝑥
(
𝐷𝜇𝜑 ★ 𝐷

𝜇𝜑 + 𝑚2𝜑★2
)
, (A.3)

𝑆𝑖𝑛𝑡 [𝜑] =
𝜆

4!

∫
R4

d4𝑥 𝜑 ★ 𝜑 ★ 𝜑 ★ 𝜑 , (A.4)

where the star-product is the Moyal one and recall that we have

𝜑 ★𝜓 = 𝜑(𝑥) exp

[
𝑖

2
Θ𝜇𝜈

←−
𝜕

𝜕𝑥𝜇

−→
𝜕

𝜕𝑥𝜇

]
𝜓(𝑥) . (A.5)

Kinetic term. Upon integration, this term is equal to the usual one in the commutative theory.
To this end, let us show that the Moyal star product is not only cyclic but also closed. In order to
compute the integral over (A.5), it is convenient to work in Fourier space because we can then make
use of the star-product of plane waves. This explicitly yields∫

d𝑑𝑥 𝜑 ★ 𝜓 =

∫
d𝑑𝑥

∫
d𝑝𝑑

(2𝜋)𝑑
d𝑞𝑑

(2𝜋)𝑑
𝜑̃(𝑝)𝜓̃(𝑞)𝑒𝑖 𝑝𝑥 ★ 𝑒𝑖𝑞𝑥 . (A.6)

We now compute the star-product of the plane waves in the above integral after expanding the
exponential function appearing in (A.5). We then obtain

𝑒𝑖 𝑝𝑥 ★ 𝑒𝑖𝑞𝑥 = 𝑒𝑖 (𝑝+𝑞)𝑥
(
1 + 𝑖

2Θ
𝜇𝜈

(
𝑖𝑝𝜇

)
(𝑖𝑞𝜈) +

(
𝑖
2
)2
Θ𝜇𝜈Θ𝜌𝜎

(
𝑖𝑝𝜇

)
(𝑖𝑞𝜈)

(
𝑖𝑝𝜌

)
(𝑖𝑞𝜎) + · · ·

)
= 𝑒𝑖 (𝑝+𝑞)𝑥𝑒

𝑖
2 (Θ

𝑖 𝑗 𝑝𝑖𝑞 𝑗 ) , (A.7)

where, in the last line, we re-identified the series expansion with the exponential function. Hence,
we end up with a new factor that reads 𝑒 𝑖

2 (Θ
𝑖 𝑗 𝑝𝑖𝑞 𝑗 ) . The latter is usually written in compact form by

introducing the notation 𝑝 ∧ 𝑞 = Θ𝑖 𝑗 𝑝𝑖𝑞 𝑗 . On inserting this result in the integral, we obtain∫
d𝑑𝑥

∫
d𝑑𝑝
(2𝜋)𝑑

d𝑑𝑞
(2𝜋)𝑑

𝜑̃(𝑝)𝜓̃(𝑞)𝑒𝑖 (𝑝+𝑞)𝑥𝑒− 𝑖
2 𝑝∧𝑞 =

∫
d𝑑𝑝
(2𝜋)𝑑

d𝑑𝑞
(2𝜋)𝑑

𝜑̃(𝑝)𝜓̃(𝑞)𝛿(𝑝 + 𝑞)𝑒 𝑖
2 𝑝∧𝑞

=

∫
d𝑞𝑑

(2𝜋)𝑑
𝜑̃(−𝑝)𝜓̃(𝑞) , (A.8)
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where 𝑝 ∧ (−𝑝) = 0. Therefore, the free action reduces to the undeformed expression

𝑆𝑘 [𝜑] =
∫

d𝑑𝑥
1
2
𝜑

(
−2 + 𝑚2

)
𝜑 , (A.9)

yielding to the standard two-point Green function(
2 + 𝑚2

)
𝐺0(𝑥 − 𝑦) = 𝛿𝑑 (𝑥 − 𝑦) ,

𝐺0(𝑥 − 𝑦) =
∫

d𝑑

(2𝜋)𝑑
𝑒𝑝 (𝑥−𝑦)

𝑝2 + 𝑚2 ,
(A.10)

which allows us to conclude that the tree-level propagator reads

Δ(0) (𝑝) = 1
𝑝2 + 𝑚2 . (A.11)

The obtained result for the propagator explicitly depends on the kind of star-product that one works
with. For instance, for 𝜅-Minkowski, this is not the case. The closure property of the star-product
turns out to be useful, especially in perturbation theory, since this translates into perturbing around
the standard commutative vacuum.

Interaction term. The vertex in this theory is more interesting because it gives rise to the phase
factor in (A.2). To compute it, we have to consider four star-products. We proceed analogously to
the previous case and write the interaction term in Fourier space∫

d𝑑𝑥
d𝑑𝑘1

(2𝜋)𝑑
d𝑑𝑘2

(2𝜋)𝑑
d𝑑𝑘3

(2𝜋)𝑑
d𝑑𝑘4

(2𝜋)𝑑
𝜑̃(𝑘1)𝜑̃(𝑘2)𝜑̃(𝑘3)𝜑̃(𝑘4)𝑒𝑖𝑘1𝑥1 ★ 𝑒𝑖𝑘2𝑥2 ★ 𝑒𝑖𝑘3𝑥3 ★ 𝑒𝑖𝑘4𝑥4 ,

(A.12)

where we can compute, in a similar manner to (A.7), the star-product of the four plane waves

𝑒𝑖𝑘1𝑥1 ★ 𝑒𝑖𝑘2𝑥2 ★ 𝑒𝑖𝑘3𝑥3 ★ 𝑒𝑖𝑘4𝑥4 = 𝑒𝑖 (𝑘1+𝑘2 )𝑥𝑒−
𝑖
2 𝑘1∧𝑘2 ★ 𝑒𝑖 (𝑘3+𝑘4 )𝑥𝑒−

𝑖
2 𝑘3∧𝑘4 . (A.13)

After plugging it back in the interaction integral and integrating over the coordinates, the vertex
amplitude reads∫

d𝑑𝑥
4∏
𝑖=1

d𝑑𝑘𝑖
(2𝜋)𝑑

𝜑̃(𝑘1)𝜑̃(𝑘2)𝜑̃(𝑘3)𝜑̃(𝑘4)𝑒−
𝑖
2 ( (𝑘1+𝑘2 )∧(𝑘3+𝑘4 ) )𝑒−

𝑖
2 (𝑘1∧𝑘2+𝑘3∧𝑘4 )𝑒

∑4
𝑖 𝑘𝑖 𝑥

=

∫ 4∏
𝑎=1

d𝑑𝑘𝑎
(2𝜋)𝑑

𝜑̃(𝑘𝑎)
∏
𝑎<𝑏

𝑒−
𝑖
2 𝑘𝑎∧𝑘𝑏𝛿𝑑

( 4∑︁
𝑎=1

𝑘𝑎

)
. (A.14)

In momentum space, we can write the Feynman rules as follows:

Δ
(0)
𝑝 =

1
𝑝2 + 𝑚2 , (A.15)

𝑉𝑘 =
∏
𝑎<𝑏

𝑒−
𝑖
2 𝑘𝑎∧𝑘𝑏𝛿𝑑

( 4∑︁
𝑎=1

𝑘𝑎

)
. (A.16)
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Now, we can perform the usual techniques using these rules, in an analogous way as we do in
standard field theory to derive one-loop corrections. Notice that the vertex acquires a phase factor
in comparison to the commutative case. As a consequence, it makes the vertex not invariant under
an arbitrary change of momentum flow. We can trace this back to the fact that integrating more
than two functions using the Moyal product (as in the free theory) is not invariant. The property of
invariance is present only for a cyclic rotation of the factors. This will affect the one-loop diagrams.

One-loop tadpole. At one loop, in this theory there is only one connected diagram that corrects
the propagator, and this is the tadpole: since the vertex is a 𝜑★4, we have to match four legs entering
the vertex. In the commutative case, we have a multiplicity of twelve that appears in the propagator
correction, which cancels the coupling factor in the action. We compute the tadpole as follows:
we have a propagator entering the vertex and then a propagator exiting it again, as one can see in
Figure 1. In general, we have the following momentum relations entering the computation of the
amplitude at one-loop:

𝑘1 ∧ 𝑘2 + 𝑘1 ∧ 𝑘3 + 𝑘1 ∧ 𝑘4 + 𝑘2 ∧ 𝑘3 + 𝑘2 ∧ 𝑘4 + 𝑘3 ∧ 𝑘4 . (A.17)

For the planar contributions, we have then

𝑘1 = −𝑘4 = 𝑝 , 𝑘2 = −𝑘3 = 𝑞 , (A.18)

where the minus sign stands for existing momentum 𝑞. Hence, in the case of the planar loop
correction, we have three propagators entering the amplitude, namely two contributions assigned
momenta 𝑝 and one associated with 𝑞. Now, after taking into account the symmetry factor, the
integration over the momentum 𝑞, and the vertex amplitude derived in Eq. A.16, the planar integral
reads

𝐺
𝑝

2 =
𝜆2

3

∫
d𝑑𝑞
(2𝜋)𝑑

𝑒
−𝑖
2 (𝑝∧𝑞+𝑝∧(−𝑞)+𝑞∧(−𝑝)+(−𝑞)∧(−𝑝) )

(𝑝2 + 𝑚2)2(𝑞2 + 𝑚2)
, (A.19)

and since we have 𝑘1 = 𝑘4, the contribution 𝑘1 ∧ 𝑘4 = 𝑘2 ∧ 𝑘3 = 0 gives

𝑝 ∧ 𝑞 + 𝑝 ∧ (−𝑞) + 𝑞 ∧ (−𝑝) + (−𝑞) ∧ (−𝑝) = 0 . (A.20)

Thus, the exponential factor above is identically one, and the planar contribution to the one-loop
correction reads

Δ
(1)
𝑝 =

𝜆2

3

∫
d𝑑𝑞
(2𝜋)𝑑

1
𝑞2 + 𝑚2 . (A.21)

The planar tadpole is then exactly the same because the vertex will be the standard one.
For non-planar cases, we are faced with a different situation, namely

𝑘2 = −𝑘4 = 𝑞 , 𝑘1 = −𝑘3 = 𝑝 , (A.22)

and therefore we will not have the above cancellation in Eq. A.20 but rather the following additional
term:

𝑝 ∧ (−𝑞) + 𝑝 ∧ 𝑞 + (−𝑞) ∧ (−𝑝) + (−𝑝) ∧ 𝑞 = −2𝑞 ∧ 𝑝 , (A.23)
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that will appear in the exponential. Hence, the non-planar term gives

Δ
(1)
𝑛𝑝 =

𝜆2

6

∫
d𝑑𝑞
(2𝜋)𝑑

𝑒𝑖𝑞∧𝑝

𝑞2 + 𝑚2 . (A.24)

It is then clear that the contribution due to 𝑞 does not cancel as in the planar case, and it is precisely
coming from the Moyal phase.

Divergences. To understand divergences, one should go to the effective dimension of the under-
lying spacetime, as we do in standard field theory:

• The planar tadpole, for example in four dimensions, is quadratically divergent because we
would have two momenta in the numerator and two in the denominator, so for large 𝑞, it is
quadratically divergent, namely it is divergent in the ultraviolet.

• In three dimensions, it is linearly divergent, and in two dimensions it is 𝑙𝑜𝑔-divergent.
Therefore, while doing the computations, one should introduce a cut-off for large momenta.

• As for the nonplanar diagram, the oscillating phase softens for any dimension, and in the
ultraviolet divergence, it is better behaved for large 𝑞. But then it gives divergent behavior in
small 𝑞. The calculations can be derived in the case of 𝑑 = 4 and it reads

Π
(1)
𝑛𝑝 =

𝐶1

(𝜃𝑝)2
+ 𝑚2𝐶2 log(𝜃𝑝)2 + 𝐹 (𝑝) . (A.25)

It is UV-finite but IR-divergent when inserted in higher loops. It is also worth noticing that
the model is non-renormalizable.

B. Properties of gauge connections

As we saw in Section 5, matter fields are vector fields, namely sections of a vector bundle (or
elements of a complex right module over the algebra of functions), which can be written in a given
basis. The noncommutative formulation of these fields is detailed in Section 4. In this section, we
would like to prove the following properties of the gauge connection:

1. Gauge covariance: (
∇𝐴𝜇

)𝑔
(𝝍) := 𝑔

(
∇𝐴𝜇

(
𝑔−1𝝍

))
check
= ∇𝐴𝑔𝜇 (𝝍) , (B.1)

with
𝐴
𝑔
𝜇 𝑓𝑔 ★ 𝐴𝜇 ★ 𝑓𝑔−1 + 𝑓𝑔 ★ 𝜕𝜇 𝑓𝑔−1 . (B.2)

2. Curvature:

F𝜇𝜈 :=
( [
∇𝐴𝜇 ,∇𝐴𝜈

]
− ∇𝐴[𝜕𝜇 ,𝜕𝜈]

)
check
=

(
𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝑖

[
𝐴𝜇, 𝐴𝜈

]
★

)
,

F𝑔𝜇𝜈 =
( [
∇𝐴𝑔

𝜇 ,∇𝐴𝑔

𝜈

]
− ∇𝐴𝑔

[𝜕𝜇 ,𝜕𝜈]

)
check
=

(
𝑓𝑔 ★ 𝐹𝜇𝜈 ★ 𝑓𝑔−1

)
,

(B.3)

implying
𝐹
𝑔
𝜇𝜈 ★ 𝐹

𝑔
𝜇𝜈 = 𝑓𝑔 ★ 𝐹𝜇𝜈 ★ 𝐹𝜇𝜈 ★ 𝑓𝑔−1 , (B.4)

with 𝑓𝑔 ∈ U(A) = { 𝑓 ∈ A s.t. 𝑓 † 𝑓 = 1}.
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Let us start with the first property, namely the gauge covariance of the connection. Relying on
the given definition of the gauge transformation, and bearing in mind that the gauge transformation
acts only on the module generator e, as 𝑔(e) := e 𝑓𝑔, we can write

𝑔(𝝍) = 𝑔(e𝜓) = 𝑔(e) ★𝜓 = e 𝑓𝑔 ★𝜓 , (B.5)

and we end up with

𝑔

(
∇𝐴𝜇

(
𝑔−1𝝍

))
= 𝑔

(
∇𝐴𝜇

(
𝑔−1(e)𝜓

))
= 𝑔∇𝐴𝜇

(
e 𝑓𝑔−1 ★𝜓

)
. (B.6)

By applying the Leibniz rule and the definition of the connection one-form, i.e., 𝐴𝜇 = ∇𝐴𝜇 (e), we
have

𝑔∇𝐴𝜇
(
𝑒 𝑓𝑔−1 ★𝜓

)
= 𝑔

(
∇𝐴𝜇 (e) 𝑓𝑔−1 ★𝜓 + e𝜕𝜇

(
𝑓𝑔−1 ★𝜓

))
= 𝑔

(
e𝐴𝜇 ★ 𝑓𝑔−1 ★𝜓 + e𝜕𝜇 𝑓𝑔−1 ★𝜓 + e 𝑓𝑔−1𝜕𝜇𝜓

)
= e

(
𝑓𝑔 ★ 𝐴𝜇 ★ 𝑓𝑔−1 ★𝜓 + 𝑓𝑔 ★ 𝜕𝜇 𝑓𝑔−1 ★𝜓 + 𝑓𝑔 ★ 𝑓𝑔−1𝜕𝜇𝜓

)
. (B.7)

Then, we obtain

𝑔∇𝐴𝜇
(
e 𝑓𝑔−1 ★𝜓

)
= e

[(
𝑓𝑔 ★ 𝐴𝜇 ★ 𝑓𝑔−1 + 𝑓𝑔 ★ 𝜕𝜇 𝑓𝑔−1

)
★𝜓 + 𝜕𝜇𝜓

]
. (B.8)

We can then recognize the gauge-transformed connection as follows:

𝐴
𝑔
𝜇 = 𝑓𝑔 ★ 𝐴𝜇 ★ 𝑓𝑔−1 + 𝑓𝑔 ★ 𝜕𝜇 𝑓𝑔−1 . (B.9)

Therefore, (B.8) is the covariant derivative acting on the matter field 𝜓 with a gauge-transformed
connection satisfying the above form.

To prove the transformation property satisfied by the curvature, let us first prove, starting form
the definition, that the equality (B.3) holds. We have

𝐹𝜇𝜈𝝍 =

(
[∇𝜇,∇𝜈] − ∇[𝜕𝜇 ,𝜕𝜈 ]

)
(e𝜓) , (B.10)

where the last term can be omitted because we are using the coordinate basis {𝜕𝜇}, which is
commutative. By repeatedly using the definition ∇𝜇 (e𝜓) = ∇𝜇 (𝑒)𝜓 + e𝜕𝜇𝜓), we compute

F𝜇𝜈 (e𝜓) =
( [
∇𝜇,∇𝜈

] )
(e𝜓) = ∇𝜇 (∇𝜈 (e𝜓)) − ∇𝜈 (∇𝜇 (e𝜓))

= e
(
𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇

)
𝜓 + e

(
𝐴𝜇 ★ 𝐴𝜈 − 𝐴𝜈 ★ 𝐴𝜇

)
𝜓

= e
(
𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 −

[
𝐴𝜇, 𝐴𝜈

]
★

)
𝜓 . (B.11)

To verify the covariance of the field strength, we start from

F𝑔𝜇𝜈 = 𝜕𝜇𝐴
𝑔
𝜈 − 𝜕𝜈𝐴𝑔𝜇 −

[
𝐴
𝑔
𝜇, 𝐴

𝑔
𝜈

]
★
, (B.12)

and substitute the gauge transformed potential, Eq. (B.9). Then, it is a matter of straightforward
algebra to check that all non-homogeneous terms cancel out, and we are left with

𝐹
𝑔
𝜇𝜈 = 𝑓𝑔 ★

(
𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 −

[
𝐴𝜇, 𝐴𝜈

]
★

)
★ 𝑓𝑔−1 = 𝑓𝑔 ★ 𝐹𝜇𝜈 ★ 𝑓𝑔−1 , (B.13)

which is what we wanted to prove.
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