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1. Introduction

With nearly one hundred events from coalescing binaries detected by LIGO-Virgo-KAGRA [1],
gravitational-wave (GW) observations have shaped a novel path for studying high-energy phenom-
ena in our Universe. The number of observations is expected to rise with current interferometers
at their design sensitivity, growing by orders of magnitude with the next generations of ground and
space facilities, such as the Einstein Telescope [2], Cosmic Explorer [3], and the LISA satellite
[4]. The loudness of the signals detected by such network of GW observatories will turn GW into
a new tool for precision (astro)physics, enabling the exploration of various scientific phenomena.
Primary objectives of this quest include testing the foundations of General Relativity (GR) and
understanding the nature of gravity in strong field and highly dynamic scenarios [5–8].

One of the most promising approaches for testing gravity, particularly a key prediction of
GR, namely, the uniqueness of Kerr black holes (BHs), revolves around the so-called black hole
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spectroscopy. This approach exploits the signal following a binary merger, known as the ringdown,
which can be described in terms of series of damped oscillations with characteristic frequencies
called quasi-normal modes (QNMs). In General Relativity, QNMs are uniquely determined by the
mass and angular momentum of the BH [9–11]. Measuring the frequency and damping time of a
single QNM allows for the determination of the BH mass and spin, while multiple modes could
provide null-hypothesis tests of GR [12–14]. This correspondence also makes QNMs a versatile
diagnostic tool, leading, for example, to consistency checks between inspiral and post-merger
parameters inferred from binary events, searches for exotic states of matter at the horizon scale, and
detection of signatures of modified theories of gravity [7, 15, 16]. This plethora of opportunities sets
the foundations of QNMs spectroscopy, in complete analogy with the longstanding efforts devoted
to atomic and condensed matter physics.

In these notes, we outline the essential components necessary for calculating the BH response
to an external perturbation, including its QNMs spectrum. We begin by examining the fundamental
properties of stationary BH solutions in GR (Section 2) and their geodesic structure (Section 3).
Subsequently, our focus shifts to Section 4, where we delve into the formalism required to compute
relativistic perturbations of Schwarzschild BHs, further explored in Section 5. Throughout, we
adopt geometric units, 𝑐 = 𝐺 = 1.

2. The Schwarzschild solution

Historically, the Schwarzschild metric represents the first exact solution of the Einstein equa-
tions, alongside Minkowski flat spacetime, discovered by Karl Schwarzschild in 1916, just one
year after the publication of GR. The Schwarzschild metric is a non-trivial solution of the Einstein
vacuum field equations

𝑅𝜇𝜈 = 0 , (1)

describing a Ricci-flat manifold (hereafter, lowercase Greek letters represent spacetime indices
𝜇, 𝜈, . . . = 0, 1, 2, 3). This metric determines the gravitational field generated by a static, spheri-
cally symmetric, electrically uncharged, and non-rotating mass, assuming a vanishing cosmological
constant. From a physical perspective, the Schwarzschild metric finds various applications, partic-
ularly in describing the vacuum outer region of non-spinning stars and planets.

2.1 The Birkhoff theorem

The Schwarzschild spacetime comes with a remarkable feature dictated by the Birkhoff theorem.
This theorem asserts that the Schwarzschild metric is the unique vacuum solution with spherical
symmetry, which is also static. In the following we shall provide the proof of the theorem.

Consider a (3 + 1)-dimensional spacetime exhibiting spatial spherical symmetry, namely, a
manifold with the three-dimensional special orthogonal group 𝑆𝑂 (3) (representing rotations in
three-dimensional Euclidean space) as its group of symmetries. The three generators of the action
of 𝑆𝑂 (3) on the spacetime are the following [17]:

𝐽1 = 𝑥2 𝜕3 − 𝑥3 𝜕2 = − sin 𝜑 𝜕𝜃 − cot 𝜃 cos 𝜑 𝜕𝜑 ,

𝐽2 = 𝑥3 𝜕1 − 𝑥1 𝜕3 = cos 𝜑 𝜕𝜃 − cot 𝜃 sin 𝜑 𝜕𝜑 ,

𝐽3 = 𝑥1 𝜕2 − 𝑥2 𝜕1 = 𝜕𝜑 ,

(2)
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where 𝑥𝑖 are Cartesian coordinates (with spatial indices 𝑖, 𝑗 , . . . = 1, 2, 3), and 𝑟 ∈ [0, +∞),
𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋) are spherical coordinates. The transformation between Cartesian and
spherical coordinates is given by the usual expressions

𝑥1 = 𝑟 sin 𝜃 cos 𝜑 , 𝑥2 = 𝑟 sin 𝜃 sin 𝜑 , 𝑥3 = 𝑟 cos 𝜃 . (3)

The generators 𝐽𝑖 satisfy the commutation relations

[𝐽𝑖 , 𝐽 𝑗] = 𝜀𝑖 𝑗𝑘𝐽𝑘 , (4)

where 𝜀𝑖 𝑗𝑘 is the Levi-Civita symbol. The generators of symmetries are also known as Killing
vectors since they satisfy the Killing equation:

L𝐽𝑔𝜇𝜈 = ∇𝜇𝐽𝜈 + ∇𝜈𝐽𝜇 = 0 , (5)

where L𝐽 is the Lie derivative along the Killing vector 𝐽 (in this case, a generator of 𝑆𝑂 (3)), and
∇𝜇 represents the covariant derivative associated with the spacetime metric 𝑔𝜇𝜈 . In other words,
Killing vectors generate transformations that preserve the metric, defining isometries.

A three-dimensional space with 𝑆𝑂 (3) as it isometry group can be foliated into two-spheres
centered at the same origin but with varying radii. These two-spheres represent the homogeneous
spaces of the 𝑆𝑂 (3) group, meaning that any point on the sphere can be reached through a rotation
starting from an arbitrarily chosen origin. This procedure, which cannot be applied to the center of
the spheres, where the homogeneous space becomes zero-dimensional, is graphically depicted in
Fig. 1. Each of these two-dimensional homogeneous spaces corresponds to a standard two-sphere
with a metric, in spherical coordinates, given by:

𝑑𝑠2 = 𝑟2𝑑Ω2 = 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃 𝑑𝜑2 , (6)

where 𝑟 represents the radius of the sphere (constant within each sphere).

Figure 1: Foliation of R3 (minus the origin) by two-spheres.

The process of spacetime foliation into maximally symmetric submanifolds, such as the two-
spheres in our scenario, allows us to choose coordinates adapted to this foliation. For instance,
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consider a generic 𝑛-dimensional manifold foliated by 𝑚-dimensional submanifolds. We can use
a set of 𝑚 coordinates 𝑢𝑖 , where 𝑖 = 1, . . . , 𝑚, to represent the submanifold, and another set of
𝑚 − 𝑛 coordinates 𝑣𝑎, where 𝑎 = 1, . . . , 𝑚 − 𝑛, to specify the particular submanifold we are on.
By combining these two sets of coordinates, we can coordinatize the entire manifold as 𝑢𝑖 , 𝑣𝑎.
Remarkably, when these submanifolds are maximally symmetric, a theorem (for the proof, see
Ref. [18]) guarantees that the metric can be expressed in the following form:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = 𝑔𝑎𝑏 (𝑣)𝑑𝑣𝑎𝑑𝑣𝑏 + 𝑓 (𝑣)ℎ𝑖 𝑗 (𝑢)𝑑𝑢𝑖𝑑𝑢 𝑗 , (7)

where ℎ𝑖 𝑗 represents the metric of the maximally symmetric submanifold. We can make two
important observations based on the form of Eq. (7): (i) there are no mixed terms 𝑑𝑣𝑖𝑑𝑢𝑎, namely
the metric 𝑔𝜇𝜈 is a block-diagonal matrix, and (ii) both 𝑔𝑎𝑏 and 𝑓 depends uniquely on the variables
𝑣𝑎. The absence of mixed terms indicates that the submanifolds are consistently aligned throughout
the entire space, which allows us to move across them while crossing points with the same 𝑢𝑖

coordinates but on different submanifolds. Additionally, the fact that 𝑔𝑎𝑏 and 𝑓 do not depend on
𝑢𝑖 implies that the metric of different submanifolds remains the same (up to a numerical factor), as
the coordinates 𝑣𝑎 remain constant on a given submanifold.

In our case, the submanifold coordinates are given by the spherical coordinates 𝜃 and 𝜑, and
the corresponding metric is ℎ𝑖 𝑗 (𝑢)𝑑𝑢𝑖𝑑𝑢 𝑗 = 𝑑Ω2. Consequently, we can express the metric of the
entire spacetime as follows:

𝑑𝑠2 = 𝑔11(𝑣)𝑑𝑣1𝑑𝑣1 + 2𝑔12(𝑣)𝑑𝑣1𝑑𝑣2 + 𝑔22(𝑣)𝑑𝑣2𝑑𝑣2 + 𝑟2(𝑣)𝑑Ω2 , (8)

where we have redefined the yet-to-be-determined function as 𝑓 (𝑣) = 𝑟2(𝑣). To simplify the
calculations, we can invert the function 𝑟 (𝑣1, 𝑣2) with respect to one of the two variables on which
it depends, for instance, with respect to 𝑣1. Moreover, we shall find another function 𝑡 (𝑣2, 𝑟) such
that, when expressed in terms of 𝑡 and 𝑟 , the metric does not exhibit cross terms like 𝑑𝑡𝑑𝑟. It can
be shown (see Ref. [19]) that this is always possible, which allows us to recast the metric in the
following form:

𝑑𝑠2 = 𝑎1(𝑡, 𝑟)𝑑𝑡2 + 𝑎2(𝑡, 𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2 , (9)

The variable 𝑟 works as a scale factor in front of the metric of the two-sphere. This is also the
case in the Minkowski spacetime in spherical coordinates, where 𝑑𝑠 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑Ω2. The
latter can indeed be obtained by setting 𝑎1 = −1 and 𝑎2 = 1 in Eq. (9), with the minus sign arising
from the fact that the Minkowski spacetime is a Lorentzian manifold with signature (−, +, +, +).
Following the same procedure for our case, we can fix 𝑎1 and 𝑎2 such that

𝑑𝑠2 = −𝑒2𝛼(𝑡 ,𝑟 )𝑑𝑡2 + 𝑒2𝛽 (𝑡 ,𝑟 )𝑑𝑟2 + 𝑟2𝑑Ω2 . (10)

We remark that the form of Eq. (10) is only dictated by the assumption of spherical symmetry, and
depends on the two functions 𝛼 and 𝛽, that can be determined by solving the Einstein vacuum field
equations (1).

To solve the Einstein equations, we need to explicitly calculate the components of the Ricci
tensor 𝑅𝜇𝜈 , derived from the Riemann curvature tensor 𝑅𝜇

𝜈𝜎𝜌:

𝑅𝜇𝜈 = 𝑅𝜎
𝜇𝜎𝜈 , 𝑅

𝜇
𝜈𝜎𝜌 = 𝜕𝜎Γ

𝜇
𝜌𝜈 − 𝜕𝜌Γ

𝜇
𝜎𝜈 + Γ𝜇

𝜎𝜆Γ
𝜆
𝜌𝜈 − Γ𝜇

𝜌𝜆Γ
𝜆
𝜎𝜈 , (11)
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where Γ𝜇
𝜈𝜎 are the Christoffel symbols

Γ𝜇
𝜈𝜎 =

1
2
𝑔𝜇𝜆(𝜕𝜈𝑔𝜆𝜎 + 𝜕𝜎𝑔𝜆𝜈 − 𝜕𝜆𝑔𝜈𝜎) . (12)

In our case, the only non-zero components of the metric are given by the diagonal terms 𝑔𝑡𝑡 =

−𝑒2𝛼(𝑡 ,𝑟 ) , 𝑔𝑟𝑟 = 𝑒2𝛽 (𝑡 ,𝑟 ) , 𝑔𝜃 𝜃 = 𝑟2, 𝑔𝜑𝜑 = 𝑟2 sin2 𝜃. Replacing the former into Eq. (11), we obtain:

𝑅𝑡𝑡 = 𝜕2
𝑡 𝛽 + (𝜕𝑡 𝛽)2 − 𝜕𝑡𝛼 𝜕𝑡 𝛽 + 𝑒2(𝛼−𝛽)

[
𝜕2
𝑟 𝛼 + (𝜕𝑟𝛼)2 − 𝜕𝑟𝛼 𝜕𝑟 𝛽 + 2

𝑟
𝜕𝑟𝛼

]
,

𝑅𝑟𝑟 = −𝜕2
𝑟 𝛼 − (𝜕𝑟𝛼)2 + 𝜕𝑟𝛼 𝜕𝑟 𝛽 + 2

𝑟
𝜕𝑟𝛼 + 𝑒−2(𝛼−𝛽) [𝜕2

𝑡 𝛽 + (𝜕𝑡 𝛽)2 − 𝜕𝑡𝛼 𝜕𝑡 𝛽
]
,

𝑅𝑡𝑟 = 𝑅𝑟𝑡 =
2
𝑟
𝜕𝑡 𝛽 ,

𝑅𝜃 𝜃 = 1 + 𝑒−2𝛽 (𝑟𝜕𝑟 𝛽 − 𝑟𝜕𝑟𝛼 − 1) ,

𝑅𝜑𝜑 = 𝑅𝜃 𝜃 sin2 𝜃 ,

(13)

with all the other components vanishing. We require each term to be zero. The simplest to solve is
given by 𝑅𝑡𝑟 = 0, which tells us that the function 𝛽 depends only on 𝑟 . This provides a significant
simplification, as time derivatives can be set to zero in all the other Ricci components. Moreover,
we can differentiate 𝑅𝜃 𝜃 with respect to 𝑡, yielding 𝜕𝑡𝜕𝑟𝛼 = 0. This means that the function 𝛼

can be expressed as the sum of a function depending solely on 𝑟 and another depending only on 𝑡,
namely 𝛼(𝑡, 𝑟) = 𝛼1(𝑟) + 𝛼2(𝑡). With these results, we can rewrite the metric as follows:

𝑑𝑠2 = −𝑒2𝛼1 (𝑟 )𝑒2𝛼2 (𝑡 )𝑑𝑡2 + 𝑒2𝛽 (𝑟 )𝑑𝑟2 + 𝑟2𝑑Ω2 . (14)

However, we can always change the variable 𝑡 to a new time coordinate 𝑡′ such that 𝑑𝑡′ = 𝑒𝛼2 (𝑡 )𝑑𝑡

and, in terms of 𝑡′, the metric reads

𝑑𝑠2 = −𝑒2𝛼1 (𝑟 )𝑑𝑡′2 + 𝑒2𝛽 (𝑟 )𝑑𝑟2 + 𝑟2𝑑Ω2 . (15)

We relabel for sake of simplicity 𝛼1 and 𝑡′ as 𝛼 and 𝑡, obtaining a metric that in these coordinates
does not depend explicitly on time. This is a key result of the Birkhoff theorem, i.e., a spherically
symmetric gravitational field in empty space must be static.

Before proceeding with our calculations, let us remind that a metric is said to be stationary if
it appears the same at each instant of time, implying the existence of a timelike Killing vector. By
choosing coordinates adapted to this Killing vector, the metric does not depend on time. The most
general stationary metric can be written as

𝑑𝑠2 = 𝑔00(®𝑥)𝑑𝑥0𝑑𝑥0 + 2𝑔0𝑖 (®𝑥)𝑑𝑥0𝑑𝑥𝑖 + 𝑔𝑖 𝑗 (®𝑥)𝑑𝑥𝑖𝑑𝑥 𝑗 . (16)

If we further ask the metric to be static, in addition to requiring the existence of a timelike Killing
vector, we also require this vector to be orthogonal to a family of spacelike hypersurfaces. This
condition leads to the absence of cross terms 𝑑𝑡𝑑𝑥𝑖 in the metric, namely:

𝑑𝑠2 = 𝑔00(®𝑥)𝑑𝑥0𝑑𝑥0 + 𝑔𝑖 𝑗 (®𝑥)𝑑𝑥𝑖𝑑𝑥 𝑗 . (17)

The spherically symmetric solution we derived in Eq. (15), expressed in the coordinates 𝑟 and 𝑡

with respect to which it is time-independent, is in the form of Eq. (17).
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We are then left with the following set of equations to solve:

𝑅𝑡𝑡 = 𝑒2(𝛼−𝛽)
[
𝜕2
𝑟 𝛼 + (𝜕𝑟𝛼)2 − 𝜕𝑟𝛼 𝜕𝑟 𝛽 + 2

𝑟
𝜕𝑟𝛼

]
= 0 ,

𝑅𝑟𝑟 = −𝜕2
𝑟 𝛼 − (𝜕𝑟𝛼)2 + 𝜕𝑟𝛼 𝜕𝑟 𝛽 + 2

𝑟
𝜕𝑟𝛼 = 0 ,

𝑅𝜃 𝜃 = 1 + 𝑒−2𝛽 (𝑟𝜕𝑟 𝛽 − 𝑟𝜕𝑟𝛼 − 1) = 0 ,

𝑅𝜑𝜑 = 𝑅𝜃 𝜃 sin2 𝜃 = 0 ,

(18)

An interesting observation is that if 𝑅𝜃 𝜃 = 0, it automatically implies 𝑅𝜑𝜑 = 0, so we do not need
to worry about the latter. Moreover, since 𝑅𝑡𝑡 and 𝑅𝑟𝑟 must vanish independently, this condition
also applies to their linear combination

𝑒−2(𝛼−𝛽)𝑅𝑡𝑡 + 𝑅𝑟𝑟 =
2
𝑟
𝜕𝑟 (𝛼 + 𝛽) = 0 , (19)

implying 𝛼 + 𝛽 is a constant, or equivalently 𝛼 = −𝛽 + (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). However, we can rescale the
time coordinate 𝑡 → 𝑡′ = 𝑒 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) 𝑡 to reabsorb this factor, leading the metric to read (once again,
relabeling 𝑡′ as 𝑡):

𝑑𝑠2 = −𝑒−2𝛽 (𝑟 )𝑑𝑡2 + 𝑒2𝛽 (𝑟 )𝑑𝑟2 + 𝑟2𝑑Ω2 . (20)

Focusing now on 𝑅𝜃 𝜃 = 0, and using the expression 𝛼 = −𝛽 we obtained above, the equation
becomes

𝑅𝜃 𝜃 = 1 + 𝑒−2𝛽 (𝑟𝜕𝑟 𝛽 − 𝑟𝜕𝑟𝛼 − 1) = 1 − 𝑒−2𝛽 (1 − 2𝑟𝜕𝑟 𝛽) = 0 , (21)

which simplifies to
𝜕𝑟 (𝑟𝑒−2𝛽) = 1 , (22)

The solution is given by 𝑒−2𝛽 = 1 − 𝑅𝑆/𝑟, where 𝑅𝑆 is an integration constant. Direct calculations
confirm that this expression for 𝑒−2𝛽 satisfies 𝑅𝑡𝑡 = 𝑅𝑟𝑟 = 0. As a result, the metric takes the form

𝑑𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
𝑑𝑡2 +

(
1 − 𝑅𝑆

𝑟

)−1
𝑑𝑟2 + 𝑟2𝑑Ω2 . (23)

This is the Schwarzschild metric, obtained as a solution of the vacuum Einstein equations, assuming
spherical symmetry.

2.2 Physical interpretation of the Schwarzschild radius

The Schwarzschild metric we derived is actually a one-parameter family of solutions, which
depends on the Schwarzschild radius 𝑅𝑆 . This parameter holds a straightforward physical inter-
pretation in the weak-field regime. In such regime, we can consider a curved metric as a small
perturbation of the Minkowski flat spacetime 𝜂𝜇𝜈 = diag(−1, 1, 1, 1):

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , |ℎ𝜇𝜈 | ≪ 1 . (24)

We focus moreover on the Newtonian limit, such that test particles move slowly in a weak and
stationary gravitational field. This implies that particles are non-relativistic, and their four-velocity
components satisfy

𝑑𝑥𝑖

𝑑𝜏
≪ 𝑑𝑥0

𝑑𝜏
, (25)
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where 𝜏 is the proper time. The motion of the particle is then described by the geodesic equation,
which in this case simplifies as follows:

𝑑2𝑥𝜇

𝑑𝜏2 + Γ𝜇
𝜈𝜎

𝑑𝑥𝜈

𝑑𝜏

𝑑𝑥𝜎

𝑑𝜏
≃ 𝑑2𝑥𝜇

𝑑𝜏2 + Γ𝜇
00
𝑑𝑥0

𝑑𝜏

𝑑𝑥0

𝑑𝜏
= 0 , (26)

where all terms involving 𝑑𝑥𝑖

𝑑𝜏
have been neglected due to the non-relativistic assumption (25).

Furthermore, since the gravitational field is stationary, all time derivatives of the metric vanish, and
the Christoffel symbols become:

Γ𝜇
00 = −1

2
𝑔𝜇𝜈𝜕𝜈𝑔00 ≃ −1

2
𝜂𝜇𝜈𝜕𝜈ℎ00 , (27)

where we used of the weak-field ansatz (24). As a result, the time component of the geodesic
equation simply becomes 𝑑𝑥0

𝑑𝜏
= constant. For the space components, we find

𝑑2𝑥𝑖

𝑑𝜏2 − 1
2
𝛿𝑖 𝑗𝜕 𝑗ℎ00

𝑑𝑥0

𝑑𝜏

𝑑𝑥0

𝑑𝜏
= 0 , (28)

which can be rewritten as
𝑑2®𝑥
𝑑𝜏2

𝑑𝜏

𝑑𝑥0
𝑑𝜏

𝑑𝑥0 =
𝑑2®𝑥

(𝑑𝑥0)2 =
1
2
®∇ℎ00 . (29)

When we compare this with the corresponding Newtonian equation

𝑑2®𝑥
(𝑑𝑥0)2 = −®∇Φ , (30)

which describes the acceleration of a particle in a gravitational potential Φ = −𝑀
𝑟

generated by a
mass 𝑀 at a distance 𝑟 from the particle. Requiring that in the Newtonian limit we recover the
classical result, (30) implies that

ℎ00 = −2Φ + (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) . (31)

Moreover, asking the metric to approach the Minkowskian solution at spatial infinity from the
gravitational source, leads the integration constant to vanish, such that the perturbation ℎ00 reads

ℎ00 = −2Φ , ⇒ 𝑔00 = −(1 + 2Φ) = −
(
1 − 2𝑀

𝑟

)
. (32)

We can apply this arguments to the Schwarzschild metric. Far from the source, for 𝑟 ≫ 𝑅𝑆 , in
the weak-field regime, the solution must approach the form of Eq. (32). This allows us to identify
𝑅𝑆 = 2𝑀 , where the mass 𝑀 is the source of the gravitational field. In the limit where the ratio
𝑀/𝑟 is small, i.e, when 𝑀 → 0 or 𝑟 → ∞, we recover the Minkowskian spacetime, such that the
metric is asymptotically flat.

2.3 The Schwarzschild singularity

Studying the Schwarzschild metric (23), we can identify two problematic values of the radial
coordinate, namely 𝑟 = 0 and 𝑟 = 𝑅𝑆 . In both cases, one of the metric components vanishes while
another tends to infinity. However, such metric components depend on the choice of coordinates.
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This poses the problem of determining whether the values 𝑟 = 0 and 𝑟 = 𝑅𝑆 correspond to physical
singularities or if they are artifacts given by our particular coordinate system. To address this
issue, we need to study quantities that characterize the curvature of the manifold in a coordinate-
independent way. These quantities are scalars constructed from the Riemann curvature tensor and
the metric.

In a 𝑁-dimensional manifold, the Riemann tensor and the metric have 1
12𝑁

2(𝑁2 − 1) and
1
2𝑁 (𝑁 + 1) independent components, respectively. However, with a change of variables we can
locally fix 𝑁2 of them. As a result, the number of independent scalars that can be constructed from
𝑅𝛼𝛽𝛾𝛿 and 𝑔𝛼𝛽 is given by

1
12

𝑁2(𝑁2 − 1) + 1
2
𝑁 (𝑁 + 1) − 𝑁2 =

1
12

𝑁 (𝑁 − 1) (𝑁 − 2) (𝑁 + 3) . (33)

Note that for 𝑁 = 1, 2 the previous equation predicts zero curvature invariants. However, in two
dimensions (which is the only exception for this argument), we do have one curvature invariant,
namely the Ricci scalar. In four 4D we have 14 curvature invariants, which can be enumerated
using the following decomposition of the Riemann tensor:

𝑅𝜇𝜈𝜎𝜌 =
1

𝑁 − 2
(𝑔𝜇𝜎𝑅𝜈𝜌 + 𝑔𝜈𝜌𝑅𝜇𝜎 − 𝑔𝜇𝜌𝑅𝜈𝜎 − 𝑔𝜈𝜎𝑅𝜇𝜌)

− 1
(𝑁 − 1) (𝑁 − 2) (𝑔𝜇𝜎𝑔𝜈𝜌 − 𝑔𝜇𝜌𝑔𝜈𝜎)𝑅 + 𝐶𝜇𝜈𝜎𝜌 ,

(34)

where 𝐶𝜇𝜈𝜎𝜌 is the Weyl tensor, i.e., the traceless part of the Riemann tensor. The Weyl tensor is
related to conformal deformations of spacetime. Like the Riemann tensor, it measures spacetime
curvature, but it retains only information about shape deformations, while does not take into account
changes in volume.

Looking at the decomposition (34) we immediately observe that in Ricci-flat manifolds, such
that 𝑅𝜇𝜈 = 0 and 𝑅 = 0, the Weyl tensor provides the only non-zero component of the Riemann
tensor. If the Weyl tensor is also zero, this implies that the metric is conformally flat. Within
Ricci-flat manifolds, 10 of the 14 curvature invariants are given by 𝑅𝜇𝜈 = 0, which represents
an invariant statement despite the Ricci tensor not being a scalar. The remaining four curvature
invariants are given by

𝐶𝜇𝜈𝜎𝜌𝐶𝜇𝜈𝜎𝜌 , 1√
𝑔
𝜀
𝜇𝜈

𝜆𝜏
𝐶𝜆𝜏𝜎𝜌𝐶𝜇𝜈𝜎𝜌 ,

𝐶𝜇𝜈𝜎𝜌𝐶
𝜎𝜌𝜆𝜏𝐶

𝜇𝜈

𝜆𝜏
, 1√

𝑔
𝐶𝜇𝜈𝜎𝜌𝐶

𝜎𝜌𝜆𝜏𝜀
𝜉 𝜅

𝜆𝜏
𝐶

𝜇𝜈

𝜉 𝜅
.

(35)

These expressions allow us to compute the curvature invariants for the Schwarzschild metric (23).
Coming back to our problem, the invariants we defined are finite when evaluated at 𝑟 = 𝑅𝑆 , while
become singular for 𝑟 = 0. This shows that the “singularity” at the Schwarzschild radius is merely
a coordinate singularity, and it is possible to identify a coordinate system where the metric is well-
behaved at 𝑅𝑆 . On the other hand, the singularity at the origin is genuine and retains its character
regardless of the coordinate system [18].

However, it is important to reiterate that the Schwarzschild metric we have derived applies
exclusively in vacuum: it remains valid only outside the massive spherical body, that is, the source
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of the metric, such as a planet or a star. For example, if we consider the Sun with a radius of
𝑅⊙ = 106𝑀⊙, significantly surpassing its Schwarzschild radius 𝑅𝑆 ⊙ = 2𝑀⊙, we find both the
Schwarzschild radius and the origin of coordinates to be inside the Sun, which is however described
by a different metric and the Schwarzschild solution does not apply anymore. Nevertheless, there
exist objects like black holes for which the exterior metric is valid everywhere, as we will see in
Sec. 4 [19].

3. Geodesics of Schwarzschild

In this section, our focus is on the geodesic structure of the Schwarzschild spacetime, providing
a clear physical interpretation of the QNM frequencies discussed in the subsequent sections. As
briefly mentioned in Sec. 2.2, geodesics represent the paths followed by free particles in a given
spacetime, and their trajectory is described by the equation

𝑑2𝑥𝜇

𝑑𝜏2 + Γ
𝜇
𝜈𝜎

𝑑𝑥𝜈

𝑑𝜏

𝑑𝑥𝜎

𝑑𝜏
= 0 , (36)

where the the Christoffel symbols Γ𝜇
𝜈𝜎 are defined in Eq. (12). Geodesics are curves that parallel

transport their own tangent vector. Representing the “strightest” path on a manifold, they provide a
local extremum for the length of a curve connecting two points. Indeed, the geodesic equation (36)
can be derived from a variational principle, starting with the action of a free test particle

𝑆[𝑥] =
ˆ

𝑑𝜆

√︂
𝑔𝜇𝜈 (𝑥)

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
, (37)

where 𝜆 is the curve parameter. Variation of 𝑆[𝑥] yields the Euler–Lagrange equations of motion

𝜕𝐿

𝜕𝑥𝜇
− 𝑑

𝑑𝜆

𝜕𝐿

𝜕 ¤𝑥𝜇 = 0 , (38)

where dots identify derivatives with respect to the parameter 𝜆, and the Lagrangian 𝐿 (𝑥, ¤𝑥, 𝜆) is
given by

𝐿 =

√︂
𝑔𝜇𝜈 (𝑥)

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
. (39)

Calculations of the Euler–Lagrange equations leads to

¥𝑥𝜇 + 1
2
𝑔𝜇𝜈 (𝜕𝜎𝑔𝜈𝜌 + 𝜕𝜌𝑔𝜈𝜎 − 𝜕𝜈𝑔𝜎𝜌) ¤𝑥𝜎 ¤𝑥𝜌 = 0 . (40)

Using the definition of Christoffel symbols discussed in the previous sections (see Eq. (12)), this
calculation immediately leads to the geodesic equation (36). However, geodesic equations can be
derived in various ways, including a direct application of the equivalence principle [18].

3.1 Constants of motion

Using the explicit expressions of the Christoffel symbols for the Schwarzschild metric

Γ𝑟
𝑟𝑟 = − 𝑀

𝑟 (𝑟−2𝑀 ) ,

Γ𝑟
𝜑𝜑 = −(𝑟 − 2𝑀) sin2 𝜃 ,

Γ𝜃
𝜑𝜑 = − sin 𝜃 cos 𝜃 ,

Γ𝑟
𝑡𝑡 =

𝑀 (𝑟−2𝑀 )
𝑟3 ,

Γ𝑡
𝑡𝑟 = 𝑀

𝑟 (𝑟−2𝑀 ) ,

Γ𝜑
𝑟𝜑 = 1

𝑟
,

Γ𝑟
𝜃 𝜃 = −(𝑟 − 2𝑀) ,

Γ𝜃
𝑟 𝜃 = 1

𝑟
,

Γ𝜑
𝜃𝜑 = cos 𝜃

sin 𝜃
,

(41)

10
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we can derive the four components of the geodesic equation

𝑑2𝑡
𝑑𝜆

2
= − 2𝑀

𝑟 (𝑟−2𝑀 )
𝑑𝑟
𝑑𝜆

𝑑𝑡
𝑑𝜆

,

𝑑2𝑟
𝑑𝜆

2
= −𝑀 (𝑟−2𝑀 )

𝑟3

(
𝑑𝑡
𝑑𝜆

)2
+ 𝑀

𝑟 (𝑟−2𝑀 )

(
𝑑𝑟
𝑑𝜆

)2
+ (𝑟 − 2𝑀)

[(
𝑑𝜃
𝑑𝜆

)2
+ sin2 𝜃

(
𝑑𝜑

𝑑𝜆

)2
]
,

𝑑2 𝜃
𝑑𝜆

2
= − 2

𝑟
𝑑𝜃
𝑑𝜆

𝑑𝑟
𝑑𝜆

+ sin 𝜃 cos 𝜃
(
𝑑𝜑

𝑑𝜆

)2
,

𝑑2𝜑
𝑑𝜆

2
= − 2

𝑟
𝑑𝑟
𝑑𝜆

𝑑𝜑

𝑑𝜆
− 2 cos 𝜃

sin 𝜃
𝑑𝜃
𝑑𝜆

𝑑𝜑

𝑑𝜆
.

(42)

These equations form a system of coupled ordinary differential equations that can be solved by
taking advantage of the symmetries of the Schwarzschild metric. As discussed in Sec. 2.1, the
spherically symmetric Schwarzschild metric possesses three Killing vectors (the generators of the
action of 𝑆𝑂 (3) on spacetime). Furthermore, the Birkhoff theorem establishes that the unique
vacuum solution with spherical symmetry must also be static, implying the existence of a timelike
Killing vector. Consequently, the Schwarzschild metric possesses four Killing vectors:

𝐽0 = 𝜕𝑡 ,

𝐽1 = − sin 𝜑 𝜕𝜃 − cot 𝜃 cos 𝜑 𝜕𝜑 ,

𝐽2 = cos 𝜑 𝜕𝜃 − cot 𝜃 sin 𝜑 𝜕𝜑 ,

𝐽3 = 𝜕𝜑 ,

(43)

where 𝐽0 represents the timelike Killing vector, orthogonal to spacelike hypersurfaces, generating
time translations. Meanwhile, 𝐽𝑖=1,2,3 are the three Killing vectors associated with spatial rotations.
The geodesic equation (36) can be rewritten in the compact form as follows:

𝑈𝜇∇𝜇𝑈
𝜈 = 0 , (44)

where𝑈𝜇 = ¤𝑥𝜇 is the tangent vector. It is straightforward to prove that𝑈𝜇𝐽𝜇 is a constant of motion
associated with the Killing vector 𝐽. Indeed,

𝑈𝜇∇𝜇 (𝑈𝜈𝐽𝜈) = 𝑈𝜇∇𝜇𝑈
𝜈𝐽𝜈 +𝑈𝜇𝑈𝜈∇𝜇𝐽𝜈 = 𝑈𝜇∇𝜇𝑈

𝜈𝐽𝜈 +
1
2
𝑈𝜇𝑈𝜈 (∇𝜇𝐽𝜈 + ∇𝜈𝐽𝜇) = 0 . (45)

This expression vanishes since both terms in the last equality are zero, due to Eq. (44) and the
Killing equation, respectively. Therefore, we have four conserved quantities.

Since the Schwarzschild metric is asymptotically flat, we can determine the physical meaning
of these quantities studying their far-field limit, i.e., their behavior at large spatial distances. The
constant of motion associated with the invariance under time translations can be interpreted as the
energy per unit mass of the particle. Constants related to the generators of spatial rotations can
be interpreted as the three components of angular momentum. For the Schwarzschild metric in
particular we have for 𝐽0 and 𝐽3:

𝐸 = −𝑔𝜇𝜈𝑈𝜇𝐽𝜈0 =

(
1 − 2𝑀

𝑟

)
𝑑𝑡

𝑑𝜆
,

𝐿 = 𝑔𝜇𝜈𝑈
𝜇𝐽𝜈3 = 𝑟2 sin2 𝜃

𝑑𝜑

𝑑𝜆
= 𝑟2 𝑑𝜑

𝑑𝜆
,

(46)
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where 𝐸 and 𝐿 are the energy of the test particle, and the magnitude of its angular momentum.
Note that if the direction of the latter is conserved, the motion is constrained to a fixed plane during
time evolution. We always have the freedom to rotate our coordinate system in such a way that this
plane coincides with the equatorial one, i.e., to set 𝜃 = 𝜋/2.

Finally, it is worth mentioning that another constant of motion exists, which can be derived
directly recognising that the metric itself is a trivial solution of the Killing equation, being the
connection compatible with the metric, ∇𝜇𝑔𝜈𝜎 = 0. Therefore

𝑈𝜇∇𝜇 (𝑔𝜈𝜎𝑈𝜈𝑈𝜎) = 𝑈𝜇∇𝜇𝑔𝜈𝜎𝑈
𝜈𝑈𝜎 + 2𝑔𝜈𝜎𝑈𝜈𝑈𝜇∇𝜇𝑈

𝜎 = 0 , (47)

namely 𝑈𝜇𝑈𝜇 is a constant motion, with 𝑈𝜇𝑈𝜇 < 0 and 𝑈𝜇𝑈𝜇 = 0 for massive and massless
particles, respectively. Note also that for massive bodies we can choose the proper time1 𝜏 to
parametrize the geodesic, such that 𝑈𝜇𝑈𝜇 = −1.

In the case of the Schwarzschild spacetime, Eq. (47) takes the explicit form

𝑈𝜇𝑈𝜇 = 𝑔𝜇𝜈
𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
= −

(
1 − 2𝑀

𝑟

) (
𝑑𝑡

𝑑𝜆

)2
+
(
1 − 2𝑀

𝑟

)−1 (
𝑑𝑟

𝑑𝜆

)2
+ 𝑟2

(
𝑑𝜑

𝑑𝜆

)2
= 𝜖 , (48)

where 𝜖 = −1, 0 for a massive and massless test particles, respectively. Using Eq. (46) we can
rewrite Eq. (48) as

−𝐸2 +
(
𝑑𝑟

𝑑𝜆

)2
+
(
1 − 2𝑀

𝑟

) (
𝐿2

𝑟2 − 𝜖

)
= 0 , (49)

which is a differential equation for the variable 𝑟 (𝜆). This equation can be recast in the following
form:

1
2

(
𝑑𝑟

𝑑𝜆

)2
+𝑉𝑒𝑓 𝑓 (𝑟) = E , (50)

where 𝑉𝑒𝑓 𝑓 (𝑟) is the radial-dependent effective potential given by

𝑉𝑒𝑓 𝑓 (𝑟) = −1
2
𝜖 + 𝜖

𝑀

𝑟
+ 𝐿2

2𝑟2 − 𝛾
𝑀𝐿2

𝑟3 , E =
1
2
𝐸2 . (51)

The second term on the right-hand side represents the standard gravitational potential, while the
third and fourth components account for angular momentum contributions. The parameter 𝛾 allows
a direct comparison between General Relativity (GR) and Newtonian Gravity (NG), namely, 𝛾 = 0, 1
in NG and GR, respectively [19]. The effective potential takes the form of a 1/𝑟 power series, which
makes different terms being more or less relevant at different scales. In particular, at large distances,
the Newtonian and GR descriptions align, while for small values of 𝑟, the relativistic contribution
induced by angular momentum becomes more relevant.

Summarizing, the effective potential provided by Eq. (51) allows us to study the orbits of
both massive particles (𝜖 = −1) and massless particles (𝜖 = 0) moving in the gravitational field
produced by a mass 𝑀 located at the origin of the coordinates, in both GR (𝛾 = 1) and NG (𝛾 = 0).
Our analysis uses Schwarzschild coordinates, which makes problematic to describe geodesics at
𝑅𝑆 = 2𝑀 , and requires the introduction of non-singular coordinates, which we discuss in Sec. 4.
We will now focus in details on the features of the geodesics for the two values of 𝜖 we considered.

1Although this is not the case for massless particles, it is always possible to find an affine parameter such that the
geodesic equation for massless particles is given by Eq. (36).
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3.2 Orbits of massive particles

For massive particles, 𝜖 = −1, the effective potential (51) is given by

𝑉𝑒𝑓 𝑓 (𝑟) =
1
2
− 𝑀

𝑟
+ 𝐿2

2𝑟2 − 𝛾
𝑀𝐿2

𝑟3 . (52)

Our goal is to study the behavior of this function within GR and NG. As 𝑟 approaches +∞, the
potential tends to the same limit𝑉𝑒𝑓 𝑓 (𝑟) → 1

2 . On the other side of the domain, for 𝑟 → 0, the form
of the potential depends on 𝛾:

lim
𝑟→0

𝑉𝑒𝑓 𝑓 (𝑟) =
{
+∞ , 𝛾 = 0 , (NG) ,
−∞ , 𝛾 = 1 , (GR) .

(53)

By searching for extrema of the effective potential, we find two roots

𝑟± =
𝐿2 ±

√︁
𝐿4 − 12𝛾(𝑀𝐿)2

2𝑀
, (54)

which are particularly useful for distinguishing between the GR and NG scenarios.

Massive particles in Newtonian gravity. For 𝛾 = 0 the two roots of Eq. (54) collapse into a single
value, 𝑟∗ = 𝐿2/𝑀 . The behavior of the effective potential in this case is shown in Figs. 2-3 as a
function of 𝑟 , for different choices of 𝐿. We recognise three regimes. If the test particle approaches
the source with an energy E equal to 𝑉𝑒𝑓 𝑓 (𝑟∗), it will remain bound in a stable circular orbit with
radius 𝑟∗. When 𝑉𝑒𝑓 𝑓 (𝑟∗) < E < 1

2 , the orbit becomes elliptic, swinging around the radius of the
stable circular orbit. The third scenario occurs when E ≥ 1

2 , and the particle follows an open orbit.

5 10 15 20

0.0

0.2

0.4

0.6

0.8

Figure 2: Shape of the effective potential 𝑉𝑒𝑓 𝑓 as a function of the coordinate radius,
for massive particles in Newtonian gravity. Colored curves refer to different values of
𝐿 (we scale lengths such that 𝑀 = 1). As the angular momentum increases, the radius
𝑟∗ corresponding to the the minimum of the potential also increases, and so does the
value of the potential 𝑉𝑒𝑓 𝑓 (𝑟∗). Note that the potential tends to 1/2 as 𝐿 → +∞.
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Figure 3: Effective potential 𝑉𝑒𝑓 𝑓 (blue curve) as a function of the radial coordinate
𝑟 for massive particles in Newtonian gravity, assuming 𝐿 = 1.07 (𝑀 = 1). For large
values of 𝑟 , the effective potential approaches the asymptotic limit 𝑉𝑒 𝑓 𝑓 → 1

2 (gray
horizontal line). We show as black lines three possible cases for the energy E: (i) if the
energy matches the minimum of the potential, the particle remains in a stable circular
orbit with radius 𝑟∗; (ii) if E falls between the asymptotic limit and the minimum, the
orbit becomes elliptical, with the radius oscillating between 𝑟1 and 𝑟2; (iii) for energies
higher than the asymptotic value, the particle approaches the source up to a minimum
radius 𝑟𝑐 and then moves on an open orbit.

Massive particles in General Relativity. The effective potential for massive particles in GR
involves all four terms in Eq. (51). For 𝛾 = 1, the behavior depends on the choice of the angular
momentum, as shown in Fig. 4. For 𝐿2 < 12𝑀2, the potential only has imaginary roots, i.e.,
no extreme points, and the orbits is forced to move towards the source. When 𝐿2 > 12𝑀2, the
two roots in Eq. (54) become real, corresponding to a maximum and a minimum. The former
identifies unstable circular orbits, with a radius 3𝑀 ≤ 𝑟− < 6𝑀 . Stable circular orbits are possible
in correspondence of the minimum, with a radius 𝑟+ ≥ 6𝑀 . In GR, massive particles can exist on
stable circular orbits up to 6𝑀 , while inner circular orbits, up to 3𝑀 , are inherently unstable. The
critical radius marking the onset of stable trajectories, 𝑟ISCO = 6𝑀 , is known as the Innermost Stable
Circular Orbit. In Figs. 5-7 we show different possible configurations for the effective potential,
and for different types of orbits. Depending on the value of the particle energy, the body can follow
circular elliptical, radially bound or unbounded trajectories [20].
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Figure 4: Effective potential for massive particles in General Relativity, 𝑉𝑒𝑓 𝑓 (𝑟), for
different values of the angular momentum 𝐿 (𝑀 = 1). When 𝐿2 < 12𝑀2 there are
no extreme points. At 𝐿2 = 12𝑀2, a single extremum (a saddle point) emerges. As
𝐿 increases, two extrema appear, a minimum 𝑟+ and a maximum 𝑟− , which gets more
separated when 𝐿 grows. For 12𝑀2 < 𝐿2 ≤ 16𝑀2, the effective potential at the
maximum 𝑉𝑒𝑓 𝑓 (𝑟−) remains smaller or equal to the asymptotic limit, while it exceeds
the latter for 𝐿2 > 16𝑀2.

Figure 5: Effective potential for massive particles in General Relativity as a function of
the coordinate radius 𝑟 , for 𝐿 = 1.07 (with 𝑀 = 1). In this case, there are no extrema.
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Figure 6: Same as Fig. 5 but for 𝐿 = 3.7. Horizontal lines identify massive particles
with different energy states. Here, the potential shows both a minimum 𝑟+ and a
maximum 𝑟− , which correspond to a stable and unstable circular orbit, respectively.
Elliptical orbits take place between 𝑟1 and 𝑟2.

Figure 7: Same as Fig. 6 but assuming for the angular momentum of the massive
particle 𝐿 = 4.5. Note that, unlike the configuration shown in Fig. 6, the maximum of
the potential is above the the asymptotic value, allowing for open orbits.

16



P
o
S
(
Q
G
-
M
M
S
c
h
o
o
l
s
)
0
1
1

Astrophysical black holes Andrea Maselli

3.3 Orbits of massless particles

For massive particles, i.e., 𝜖 = 0, the effective potential (51) reads

𝑉𝑒𝑓 𝑓 (𝑟) =
𝐿2

2𝑟2 − 𝛾
𝑀𝐿2

𝑟3 . (55)

The asymptotic value of the potential for 𝑟 → +∞ is the same in the relativistic and in the Newtonian
model, and tends to zero. When 𝑟 → 0+, the behaviour is the same as described in Eq. (53).

Massless particles in Newtonian gravity. When 𝛾 = 0, the effective potential reduces to
𝑉𝑒𝑓 𝑓 (𝑟) = 𝐿2

2𝑟2 , which has no roots. Hence, for non-zero values of the angular momentum 𝐿

massless particles hit the potential at some distance from the source, moving away from it. In NG
massless particles cannot stay on bound orbits around the source, and only unbounded trajectories
are allowed (see Figs. 8 and 9).

5 10 15 20

0.0

0.2

0.4

0.6

0.8

Figure 8: Effective potential for massless particles in Newtonian gravity as a function
of 𝑟. In this case there are no extrema.

Figure 9: Same as Fig. 8 for a particular choice of the angular momentum 𝐿 = 1.07.
In this configuration only open orbits are possible, featuring a minimum distance 𝑟𝑐.
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Massless particles in General Relativity. In this case, the effective potential (55) yields a single
root, 𝑟 = 3𝑀 , which corresponds to a maximum. This result holds for every non-zero value of 𝐿, as
shown in Fig. 10 and Fig. 11. At variance with the NG case, the relativistic description highlights
three possible scenarios depending on the energy E. Particles can indeed follow open orbits when
E < 𝑉𝑒𝑓 𝑓 (𝑟). If E = 𝑉𝑒𝑓 𝑓 (𝑟), the particle remains on a circular orbit, although unstable. For
E > 𝑉𝑒𝑓 𝑓 (𝑟) the particle falls into the source.

5 10 15 20

0.0

0.2

0.4

0.6

0.8

Figure 10: Effective potential for massless particles in General Relativity as a function
of the radial distance 𝑟 and of the angular momentum 𝐿 (with 𝑀 = 1). The maximum
of 𝑉𝑒𝑓 𝑓 decreases for smaller values of 𝐿.

Figure 11: Same as Fig. 10, but assuming 𝐿 = 6.

4. Schwarzschild black holes

In Sec. 2, we concluded our discussion on the nature of the singularities for the Schwarzschild
metric, finding that 𝑅𝑆 = 2𝑀 is a coordinate singularity, while 𝑟 = 0 remains a true, physical one.
In this section, we want to study more in detail the spacetime region around 𝑅𝑆 , adopting a suitable
choice of coordinates.
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Let us consider lightlike geodesics that are radial (𝜃 and 𝜙 both constant) within the Schwarzschild
metric (23):

𝑑𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
𝑑𝑡2 +

(
1 − 𝑅𝑆

𝑟

)−1
𝑑𝑟2 = 0 , (56)

hence the slope of the light cones in a 𝑡-𝑟 diagram is

𝑑𝑡

𝑑𝑟
= ±

(
1 − 𝑅𝑆

𝑟

)−1
. (57)

At large distances from the source, 𝑟 → +∞, the slope tends to ±1, as expected for a flat metric,
since the Schwarzschild solution is asymptotically flat. On the other side of the domain, as we reach
the Schwarzschild radius, 𝑟 → 𝑅𝑆 , the slope diverges, 𝑑𝑡

𝑑𝑟
→ ±∞. This implies that as we move

towards 𝑅𝑆 the slope of the light cone increases such that it becomes progressively narrower (see
the sketch in Fig. 12). Hence, an infalling particle will appear to slow down as it approaches 𝑅𝑆

from the perspective of external observers using Schwarzschild coordinates. In other words, we will
perceive a particle taking an infinite amount of time to reach the Schwarzschild radius. However
such problematic description is rooted in our choice of coordinates, and an alternative system is
needed.

Figure 12: Graphical representation in the 𝑡-𝑟 plane of light cones in the Schwarzschild
metric, shrinking as 𝑟 = 𝑅𝑆 is approached.

4.1 The tortoise coordinate

A common choice involves shifting the Schwarzschild surface to −∞ by adopting a different
coordinate time that varies more slowly as we approach 𝑅𝑆 . To achieve this, we introduce the
so-called tortoise coordinate:

𝑟∗ = 𝑟 + 2𝑀 log
( 𝑟

2𝑀
− 1

)
, (58)

which allows to rewrite the Schwarzschild metric such that the line element (23) reads

𝑑𝑠2 =

(
1 − 2𝑀

𝑟

) (
−𝑑𝑡2 + 𝑑𝑟∗2

)
+ 𝑟2𝑑Ω2 , (59)

19



P
o
S
(
Q
G
-
M
M
S
c
h
o
o
l
s
)
0
1
1

Astrophysical black holes Andrea Maselli

where 𝑟 = 𝑟 (𝑟∗). The metric in these coordinates remains well-behaved at 𝑅𝑆 = 2𝑀 . Solving
Eq. (57), we find 𝑡 = ±𝑟∗ + 𝑐, where 𝑐 is an integration constant. The plus and minus signs
correspond to outgoing and ingoing massless geodesics, respectively. The behavior of light cones
in the 𝑡-𝑟 and 𝑡-𝑟∗ diagrams is illustrated in Fig. 13, showing the difference in the choice of radial
coordinate 𝑟 and the tortoise coordinate 𝑟∗.

Figure 13: Massless ingoing (green) and outgoing (orange) geodesics of the
Schwarzschild metric. (Left) Light cones (in gray) deform as 𝑟 = 𝑅𝑆 is approached
when using the Schwarzschild radial coordinate 𝑟 . (Right) When using the tortoise
radial coordinate 𝑟∗, the Schwarzschild radius is pushed to minus infinity, and the light
cones remain undeformed.

4.2 Eddington–Finkelstein coordinates

We can use coordinates adapted to ingoing or outgoing massless particles, obtained as follows:

𝑣 = 𝑡 + 𝑟∗ , 𝑢 = 𝑡 − 𝑟∗ . (60)

An ingoing lightlike particle is indeed characterized by 𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, while an outgoing particle by
𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Using the Schwarzschild radial coordinate 𝑟 , with either 𝑣 or 𝑢 as the coordinate time,
we have the ingoing Eddington–Finkelstein (EF) coordinates or the outgoing Eddington–Finkelstein
coordinates, respectively. In these coordinate systems, the Schwarzschild metric is given by

ingoing EF 𝑑𝑠2 = −
(
1 − 2𝑀

𝑟

)
𝑑𝑣2 + 2𝑑𝑣𝑑𝑟 + 𝑟2𝑑Ω2 ,

outgoing EF 𝑑𝑠2 = −
(
1 − 2𝑀

𝑟

)
𝑑𝑢2 − 2𝑑𝑢𝑑𝑟 + 𝑟2𝑑Ω2 .

(61)

The metric shown in (61) is explicitly nonsingular, invertible, and its inverse does not have any
divergent component.

If we consider a lightlike radial geodesic in these coordinates, we can compute the slope of the
light cones in a 𝑣-𝑟 or 𝑢-𝑟 diagram:

𝑑𝑣

𝑑𝑟
=


0 ,

2
(
1 − 2𝑀

𝑟

)−1
,

𝑑𝑢

𝑑𝑟
=


−2

(
1 − 2𝑀

𝑟

)−1
, ingoing ,

0 . outgoing .
(62)
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In the ingoing EF coordinates, ingoing geodesics are straight lines, while outgoing geodesics are
divided into two separate families, depending on whether 𝑟 < 𝑅𝑆 or 𝑟 > 𝑅𝑆 , as shown in Fig. 14.
As we move towards the Schwarzschild radius, the light cones tilt more and more, until the future
light cone is completely inside 𝑅𝑆 . This reflects an important feature of the surface at 𝑟 = 𝑅𝑆 = 2𝑀 ,

Figure 14: Massless ingoing (green) and outgoing (orange) geodesics of the
Schwarzschild metric in the ingoing EF coordinates. Light cones (in gray) tilt more
and more as the Schwarzschild radius is approached.

the event horizon, which is a no-return region. A particle in the direction of the singularity 𝑟 = 0,
which crosses 𝑅𝑆 , cannot escape and is destined to fall into the source. The event horizon divides
the spacetime into two causally disconnected domains: an outside observer can send signals both
inward and outward, but can not know what happens inside the horizon.

5. Perturbations of Schwarzschild black holes

Before entering into the details of relativistic perturbations of the Schwarzschild spacetime, it
is instructive to discuss a scattering toy model2, that encodes many properties common to the more
intricate scenario we treat afterwards.

5.1 A scattering toy problem

Let us consider a scattering problem defined by the following second-order differential equation:[
𝑑2

𝑑𝑥2 + 𝜔2 − 2𝑉0𝛿(𝑥)
]
𝜓(𝜔, 𝑥) = 𝑖𝜔 𝜓0(𝑥) , (63)

where 𝑥 ∈ (−∞,∞). Equation (63) features a localized effective potential and a source term
related to the initial configuration3. For simplicity, we also assume that the latter is localized,

2This example was suggested to the authors by Prof. Vitor Cardoso.
3We are working in the frequency-domain space, where 𝜓(𝜔, 𝑥) is the Fourier transform of the time-domain function

𝜓(𝑡, 𝑥).
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namely, 𝜓0(𝑥) = 𝜓(𝑡 = 0, 𝑥) = 𝛿(𝑥 − 𝑥0). A general solution to the family of problems in Eq. (63)
involves first solving the associated homogeneous equation and then constructing the full solution
considering the source term [21]. The homogeneous problem yields two solutions, identifying
growing and decaying modes on both sides of the delta function. In particular, by requiring a purely
ingoing wave as 𝑥 → −∞, the solution propagating as 𝑥 → ∞ is the sum of outgoing and ingoing
modes:

𝜓L =

{
𝑒−𝑖𝜔𝑥 , 𝑥 → −∞ ,

𝐴in𝑒
−𝑖𝜔𝑥 + 𝐴out𝑒

𝑖𝜔𝑥 , 𝑥 → +∞ .
(64)

Requiring continuity of the solution at 𝑥 = 0 leads to 𝐴in + 𝐴out = 1. Using the field equation to
compute the jump of the first derivative, we integrate the master equation (63) within [−𝜖, 𝜖] as
𝜖 → 0: ˆ +𝜖

−𝜖

𝑑𝑥
𝑑2

𝑑𝑥2𝜓L +
ˆ +𝜖

−𝜖

𝑑𝑥 𝜔2𝜓L =

ˆ +𝜖

−𝜖

𝑑𝑥 2𝑉0 𝛿(𝑥) 𝜓L . (65)

The second integral of the left-hand side vanishes assuming that 𝜓L(𝑥) is continuous. Hence, we
have

𝑑𝜓L

𝑑𝑥

����+𝜖
−𝜖

= 2𝑉0 𝜓L(𝑥 = 0) . (66)

Combining the former with the condition on the wave amplitude we obtain{
𝐴in + 𝐴out = 1 ,

−𝑖𝜔𝐴in + 𝑖𝜔𝐴out + 𝑖𝜔 = 2𝑉0 ,
(67)

hence
𝐴in = 1 + 𝑖𝑉0

𝜔
, 𝐴out = − 𝑖𝑉0

𝜔
. (68)

Let us now compute the Wronskian between 𝜓L(𝑥) and a second solution, labelled 𝜓R(𝑥),
which behaves as purely outgoing at infinity, i.e., 𝜓R(𝑥) = 𝑒𝑖𝜔𝑥 as 𝑥 → ∞:

𝑊 =
𝑑𝜓R

𝑑𝑥
𝜓L − 𝑑𝜓L

𝑑𝑥
𝜓R

= 𝑖𝜔𝑒𝑖𝜔𝑥 (𝐴out𝑒
𝑖𝜔𝑥 + 𝐴in𝑒

−𝑖𝜔𝑥) − 𝑒𝑖𝜔𝑥 (𝑖𝜔𝐴out𝑒
𝑖𝜔𝑥 − 𝑖𝜔𝐴in𝑒

−𝑖𝜔𝑥)
= 𝑖𝜔𝐴out𝑒

2𝑖𝜔𝑥 + 𝑖𝜔𝐴in − 𝑖𝜔𝐴out𝑒
2𝑖𝜔𝑥 + 𝑖𝜔𝐴in = 2𝑖𝜔𝐴in .

(69)

Replacing the value of 𝐴in found before (see Eq. (68)), we obtain an analytic expression of the
Wronskian:

𝑊 = 2𝑖𝜔𝐴in = 2𝑖𝜔 + 2𝑖2𝑉0 = 2𝑖𝜔 − 2𝑉0 . (70)

The two solutions 𝜓L,R(𝑥) are linearly dependent if the values of 𝜔 solve the eigenvalue problem
given by the second order equation (63), i.e., if they correspond to the QNMs of the system. In this
case 𝑊 = 0, or equivalently 𝜔 = −𝑖𝑉0.

We can now focus on the inhomogeneous problem. We first find the general solution in Fourier
space using a Green-function approach:

𝜓(𝜔, 𝑥) = 𝜓R

ˆ 𝑥

−∞
𝑑𝑥

𝐼 𝜓L

𝑊
+ 𝜓L

ˆ ∞

𝑥

𝑑𝑥
𝐼 𝜓R

𝑊
, (71)
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where 𝐼 = 𝑖𝜔 𝜓0(𝑥). For 𝑥 ≫ 1, we can write the previous solution as

𝜓(𝜔, 𝑥) = 𝜓R

ˆ ∞

−∞
𝑑𝑥

𝐼 𝜓L

𝑊

= 𝜓R

ˆ ∞

−∞
𝑑𝑥 𝑖𝜔

𝜓L

𝑊
𝛿(𝑥 − 𝑥0)

≃ 𝑖𝜔

𝑊
𝑒𝑖𝜔𝑥

[
𝐴in𝑒

−𝑖𝜔𝑥0 + 𝐴out𝑒
𝑖𝜔𝑥0

]
, 𝑥0 > 0 .

(72)

Replacing the value of 𝑊 in terms of 𝐴in, the we finally obtain

𝜓(𝜔, 𝑥) = 1
2
𝑒𝑖𝜔 (𝑥−𝑥0 ) + 1

2
𝑒𝑖𝜔 (𝑥+𝑥0 ) 𝐴out

𝐴in
. (73)

We can invert the solution to find the its expression in the time domain:

𝜓(𝑡, 𝑥) = 1
2𝜋

ˆ ∞

−∞
𝑑𝑥 𝑒−𝑖𝜔𝑡𝜓(𝜔, 𝑥)

=
1

4𝜋

ˆ ∞

−∞
𝑑𝜔 𝑒𝑖𝜔 [ (𝑥−𝑥0 )−𝑡 ] + 1

4𝜋

ˆ ∞

−∞
𝑑𝜔

𝐴out

𝐴in
𝑒𝑖𝜔 [ (𝑥+𝑥0 )−𝑡 ] ,

(74)

and, using the definition of the delta function,

𝜓(𝑡, 𝑥) = 1
2
𝛿(𝑥 − 𝑥0 − 𝑡) + 1

2𝜋

ˆ ∞

−∞
𝑑𝜔

−𝑖𝑉0

𝜔 + 𝑖𝑉0
𝑒𝑖𝜔 [ (𝑥+𝑥0 )−𝑡 ] . (75)

The second integral has a pole at 𝜔 = −𝑉0, corresponding to the QNM frequencies. This integral
can be solved using contour integrals by extending the domain into the complex plane and applying
the residue theorem. There are two cases to consider. For 𝑥 + 𝑥0 − 𝑡 > 0 (𝑡 < 𝑥 + 𝑥0), we close the

CR

-iV0

-R R

Re ω

Im ω

0

CR

Figure 15: Contour path used to perform the integral in Eq. (75). The pole corre-
sponding to the QNM, −𝑖𝑉0, is located in the negative imaginary panel.

path in the upper panel. The integral vanishes as there are no poles inside the contour. Conversely,
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for 𝑥 + 𝑥0 − 𝑡 < 0 (𝑡 > 𝑥 + 𝑥0), we close the path in the bottom panel. In this case, the integral over
the path shown in Fig. 15 reads4:

ȷ
𝛾

𝑑𝜔 𝑓 (𝜔)𝑒𝑖𝜔 [𝑥+𝑥0−𝑡 ] =

ˆ
𝐶𝑅

𝑑𝜔 𝑓 (𝜔)𝑒𝑖𝜔 [𝑥+𝑥0−𝑡 ] +
ˆ 𝑅

−𝑅
𝑑𝜔 𝑓 (𝜔)𝑒𝑖𝜔 [𝑥+𝑥0−𝑡 ]

= 2𝜋𝑖 lim
𝜔→−𝑖𝑉0

[
(𝜔 + 𝑖𝑉0) 𝑓 (𝜔)𝑒𝑖𝜔 [𝑥+𝑥0−𝑡 ]

]
=
𝑉0

2
𝑒𝑉0 (𝑥+𝑥0−𝑡 ) ,

(76)

where 2𝜋 𝑓 (𝜔) = −𝑖𝑉0/(𝜔 + 𝑖𝑉0). In summary, we obtain the following full solution:{
𝜓(𝑡, 𝑥) = 1

2𝛿(𝑥 − 𝑥0 − 𝑡) , 𝑡 < 𝑥 + 𝑥0 ,

𝜓(𝑡, 𝑥) = 1
2𝛿(𝑥 − 𝑥0 − 𝑡) + 𝑉0

2 𝑒𝑉0 (𝑥+𝑥0−𝑡 ) , 𝑡 > 𝑥 + 𝑥0 .
(77)

These equations provide a clear picture of the response of the system under a given perturbation,
which can classified into two regimes. At early times (𝑡 < 𝑥 + 𝑥0), we have a prompt response or
a direct signal: the radiation propagates towards the observer without having the time to interact
with the potential barrier and return. Later, for 𝑡 > 𝑥 + 𝑥0, we also appreciate the effect due to the
QNM. The radiation interacts with the potential barrier, and within a time 𝑥 − 𝑥0 + 2𝑥0 = 𝑥 + 𝑥0, the
observer see the trains of modes.

observer

x0 x

0

V0 prompt

Figure 16: Schematic representation of the barrier-observer setup for the scattering
problem defined by equation (63).

The picture describing the black hole response to an external perturbation remains qualitatively
the same. Instead of the delta function, the scattering will be characterized by an effective potential.
The time-domain response will exhibit a prompt effect originating from the initial data, while the
other contribution will be absorbed by the black hole and excite its modes. After a certain interval of
time, this excitation leads to the ringdown signal. Notably, the excitation of the QNMs is localized
at a very special place: the light ring.

4The integral on the half-circle vanishes due to the Jordan lemma.
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5.2 Scalar field perturbations

Instead of going through all the steps to compute gravitational perturbations of the Schwarzschild
metric, let us focus on the perturbations induced by a massive scalar field on the background space-
time. As we will discuss at the end of this section, the results obtained for this probe field are
generic enough to be straightforwardly generalized to vector and tensor perturbations, without the
need for a more complicated mathematical formalism.

We consider a scalar field 𝜙 that is minimally coupled with gravity, described by the following
action:

𝑆 = 𝑆EH + 𝑆𝜙 =

ˆ
𝑑4𝑥

√−𝑔 𝛾 𝑅 +
ˆ

𝑑4𝑥
√−𝑔

(
𝜅 𝜕𝜇𝜙 𝜕𝜇𝜙 + 𝛽 𝜙2

)
. (78)

Here, 𝑆EH and 𝑆𝜙 identify the Einstein–Hilbert and the scalar field actions, respectively, with 𝛾,
𝜅, and 𝛽 being three coupling constants. The equations of motion can be derived from the action
using the Euler–Lagrange equations [22]

𝜕L
𝜕𝜓

− ∇𝜇

(
𝜕L
𝜕𝜕𝜇𝜓

)
= 0 , (79)

where∇𝜇 represents the covariant derivative, (also denoted hereafter by a semicolon), andL(𝜓,∇𝜓)
is the Lagrangian density of the system, a function of the fields 𝜓 and their derivatives. The Euler–
Lagrange equations for the scalar field yield

𝜕L𝜙

𝜕𝜙
= 2

√−𝑔 𝛽 𝜙 ,
𝜕L
𝜕𝜕𝜇𝜙

= 2
√−𝑔 𝜅 𝜕𝜇𝜙 , (80)

which leads to
2
√−𝑔

(
𝛽 𝜙 − 𝜅 ∇𝜇𝜕

𝜇𝜙
)
= 2

√−𝑔 (𝛽 𝜙 − 𝜅□𝜙) = 0 . (81)

Choosing 𝜅 = 1 and 𝛽 = 𝜇2 leads to the well-known Klein–Gordon equation for a scalar field with
mass 𝜇

(□ − 𝜇2)𝜙 =
1

√−𝑔 𝜕𝜇
(√−𝑔 𝜕𝜇𝜙

)
− 𝜇2𝜙 = 0 . (82)

The second equality can be derived from the following identity:

𝑉
𝜇
;𝜇 =

1
√−𝑔

(√−𝑔𝑉 𝜇
)
,𝜇

, (83)

when applied to the d’Alambert operator □ = ∇𝜇∇𝜇 acting on a scalar field. Variation of the
𝑆EH with respect to the metric yields the canonical Einstein Tensor, while from the scalar field
Lagrangian

𝜕L𝜙

𝜕𝑔𝜇𝜈
= −1

2
𝑔𝜇𝜈L𝜙 + √−𝑔𝜅∇𝜇𝜙∇𝜈𝜙 ,

𝜕L𝜙

𝜕𝜕𝜎𝑔
𝜇𝜈

= 0 , (84)

leading to

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 = 𝛾−1 𝑇𝜇𝜈 , 𝑇𝜇𝜈 =

1
2
𝑔𝜇𝜈

(
𝜅 𝜕𝛼𝜙𝜕

𝛼𝜙 + 𝛽 𝜙2
)
− 𝜅𝜕𝜇𝜙𝜕𝜈𝜙 , (85)

where 𝑇𝜇𝜈 is the effective stress-energy tensor introduced by scalar field. We have obtained,
therefore, a set of coupled equations of motion for the scalar field (81) and the gravitational field
(85).
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Here, we assume that 𝜙 provides a small perturbation of the background spacetime and consider
only linear-order terms in the scalar field. We can neglect quadratic contributions coming from
𝑇𝜇𝜈 , such that the metric and the scalar sector decouple. In this framework, the scalar field does
not backreact on the metric, evolving on a fixed background given as a solution of the Einstein
equations in vacuum.

5.3 The master equation

To keep our discussion as general as possible, we consider here a static and spherically
symmetric spacetime defined by Eq. (10), in which we have relabeled 𝑒2𝛼 and 𝑒2𝛽 as 𝐴 and 𝐵−1,
respectively, such that the line element reads

𝑑𝑠2 = −𝐴(𝑟)𝑑𝑡2 + 𝐵−1(𝑟)𝑑𝑟2 + 𝑟2𝑑Ω2 . (86)

We can exploit the symmetries of the background and assume that the evolution of 𝜙(𝑡, 𝑟, 𝜃, 𝜑) is
independent of rotation, decoupling the angular variables 𝜃, 𝜑 from 𝑡, 𝑟 . Hence, we decompose the
scalar field into spherical harmonics 𝑌ℓ𝑚(𝜃, 𝜑):

𝜙(𝑡, 𝑟, 𝜃, 𝜑) =
∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝜓ℓ𝑚(𝑟)
𝑟

𝑒−𝑖𝜔𝑡𝑌ℓ𝑚(𝜃, 𝜑) , 𝑌ℓ𝑚(𝜃, 𝜑) = 𝑁 𝑒𝑖𝑚𝜑𝑃ℓ𝑚(𝜃) , (87)

where 𝑃ℓ𝑚(𝜃) are the Legendre polynomials of the second kind, 𝑁 is a normalization factor, and
we have factored out the time dependence of the perturbation, leaving the radial function 𝜓ℓ𝑚(𝑟).
We replace Eqs. (86) and (87) into the Klein–Gordon equation (82), to find a master equation for
𝜓ℓ𝑚(𝑟). First, the term within round brackets in the right-hand side of Eq. (82) becomes

√−𝑔 𝜕𝜇𝜙 =
√−𝑔 𝑔𝜇𝜈𝜕𝜈𝜙

=

√︂
𝐴

𝐵
𝑟2 sin 𝜃

(
−𝐴−1𝛿

𝜇
𝑡 𝜕𝑡 + 𝐵𝛿

𝜇
𝑟 𝜕𝑟 + 𝑟−2𝛿

𝜇

𝜃
𝜕𝜃 + 𝑟−2 sin−2 𝜃 𝛿

𝜇
𝜑𝜕𝜑

)
𝜙 ,

(88)

where 𝑔𝜇𝜈 = diag(−𝐴−1, 𝐵, 𝑟−2, 𝑟−2 sin−2 𝜃), and √−𝑔 =
√︁
𝐴/𝐵𝑟2 sin 𝜃. The partial derivatives of

the scalar field expanded in spherical harmonics read

𝜕𝑡𝜙 = −𝑖𝜔 𝜙 , 𝜕𝑟𝜙 =
∑︁
ℓ𝑚

𝑒−𝑖𝜔𝑡𝑌ℓ𝑚

𝑟2 (𝑟𝜓′
ℓ𝑚 − 𝜓ℓ𝑚) , (89)

𝜕𝜃𝜙 =
∑︁
ℓ𝑚

𝑒−𝑖𝜔𝑡𝜓ℓ𝑚

𝑟
𝜕𝜃𝑌ℓ𝑚 , 𝜕𝜑𝜙 =

∑︁
ℓ𝑚

𝑒−𝑖𝜔𝑡𝜓ℓ𝑚

𝑟
𝜕𝜑𝑌ℓ𝑚 , (90)

where a prime denotes the derivative with respect to the radial coordinate 𝑟 . Next, we compute the
full expression for 𝜕𝜇

(√−𝑔 𝜕𝜇𝜙
)
:

𝜕𝜇
(√−𝑔 𝜕𝜇𝜙

)
=
√−𝑔 𝑒−𝑖𝜔𝑡

∑︁
ℓ𝑚

[
𝜔2

𝐴

𝜓ℓ𝑚

𝑟
+ 𝐵

(
− 𝐴′

2𝐴
𝜓ℓ𝑚

𝑟2 + 𝐴′

2𝐴
𝜓′
ℓ𝑚

𝑟
+ 𝜓′′

ℓ𝑚

𝑟

)
+ 𝐵′

(
− 𝜓ℓ𝑚

2𝑟2 + 𝜓′
ℓ𝑚

2𝑟

)
+ 𝜓ℓ𝑚

𝑟3

(
csc2 𝜃 𝜕2

𝜑 + cot 𝜃 𝜕𝜃 + 𝜕2
𝜃

)]
𝑌ℓ𝑚 .

(91)
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Note that the previous equation can be greatly simplified by exploiting the properties of the spherical
harmonics and their derivatives:

𝜕2
𝜙𝑌ℓ𝑚(𝜃, 𝜑) = −𝑚2𝑁 𝑒𝑖𝑚𝜑𝑃ℓ𝑚(𝜃) = −𝑚2𝑌ℓ𝑚(𝜃, 𝜑) ,
𝜕𝜃𝑌ℓ𝑚(𝜃, 𝜑) = 𝑁 𝑒𝑖𝑚𝜑𝜕𝜃𝑃ℓ𝑚(𝜃) ,

(92)

and the same for the second derivative with respect to 𝜃. We can now use the following identity of
the Legendre polynomials:

csc 𝜃 𝜕𝜃 (sin 𝜃 𝜕𝜃𝑃ℓ𝑚) − 𝑚2 csc2 𝜃𝑃ℓ𝑚 = −ℓ(ℓ + 1)𝑃ℓ𝑚 , (93)

hence (
cot 𝜃 𝜕𝜃 + 𝜕2

𝜃

)
𝑃ℓ𝑚 =

(
−ℓ(ℓ + 1) + 𝑚2 csc2 𝜃

)
𝑃ℓ𝑚 . (94)

Therefore, the terms between parentheses in the second line of Eq. (91) can be recast simply as(
csc2 𝜃 𝜕2

𝜑 + cot 𝜃 𝜕𝜃 + 𝜕2
𝜃

)
𝑌ℓ𝑚 = −ℓ(ℓ + 1)𝑌ℓ𝑚 . (95)

We can therefore rewrite the Klein–Gordon equation (82) as

𝑒−𝑖𝜔𝑡
∑︁
ℓ𝑚

[
𝜔2

𝐴

𝜓ℓ𝑚

𝑟
+ 𝐵

(
− 𝐴′

2𝐴
𝜓ℓ𝑚

𝑟2 + 𝐴′

2𝐴
𝜓′
ℓ𝑚

𝑟
+ 𝜓′′

ℓ𝑚

𝑟

)
+ 𝐵′

(
− 𝜓ℓ𝑚

2𝑟2 + 𝜓′
ℓ𝑚

2𝑟

)
− 𝜓ℓ𝑚

𝑟3 ℓ(ℓ + 1)
]
𝑌ℓ𝑚 = 0 ,

(96)
and, after further simplifications,

𝐴𝐵
𝑑2𝜓ℓ𝑚

𝑑𝑟2 + (𝐴𝐵)′
2

𝑑𝜓ℓ𝑚

𝑑𝑟
+
(
𝜔2 − 𝜇2𝐴 − ℓ(ℓ + 1)

𝑟2 𝐴 − (𝐴𝐵)′
2𝑟

)
𝜓ℓ𝑚 = 0 , (97)

where we have made the sum over the multipolar indices (ℓ, 𝑚) implicit. We introduce now the
generalized tortoise coordinate 𝑟∗, defined by

𝑑𝑟∗2 = (𝐴𝐵)−1𝑑𝑟2 , (98)

which reproduces the well-known Schwarzschild tortoise coordinate (58) for 𝐴 = 𝐵 = 1 − 𝑅𝑆/𝑟 .
By this change, the master equation (97) takes the particularly simple form

𝑑2𝜓ℓ𝑚(𝑟)
𝑑𝑟∗2 +

[
𝜔2 −𝑉 (𝑟)

]
𝜓ℓ𝑚(𝑟) = 0 , 𝑉 (𝑟) = 𝜇2𝐴 + ℓ(ℓ + 1)

𝑟2 𝐴 + (𝐴𝐵)′
2𝑟

. (99)

The calculations carried out so far show that the scalar field perturbations in a fixed, spherically-
symmetric background are controlled by a single master equation (99), which involves only the
radial component of the perturbation, 𝜓ℓ𝑚(𝑟), and resembles the Schrödinger equation with a
scattering potential 𝑉 (𝑟). This analogy allows for quick physical insights into the general features
of the scattering process and enables the utilization of various resolution techniques developed in
the context of quantum mechanics [23].
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5.4 Properties of the master equation

We can now proceed by assuming the Schwarzschild metric, such that the scattering potential
in Eq. (99) reads

𝑉 (𝑟) =
(
1 − 2𝑀

𝑟

) (
𝜇2 + ℓ(ℓ + 1)

𝑟2 + 2𝑀
𝑟3

)
. (100)

For a given scalar field mass 𝜇 and multipole ℓ, the potential is function of the radial coordinate
and: (i) it vanishes at spatial infinity, 𝑟 → ∞, (ii) it tends to 𝜇2 as 𝑟 → 2𝑀 (or 𝑟∗ → −∞). Figure
17 shows the behavior of 𝑉 (𝑟) for various values of 𝜇 and ℓ. Hereafter we will analyze different
properties of 𝑉 (𝑟) and the master equation to introduce the QNMs frequencies of a Schwarzschild
BH. For now on we will focus on the massless case 𝜇 = 0.
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Figure 17: Scattering potential of the master equation (99) for a Schwarzschild back-
ground, with ℓ = 2 (left) and ℓ = 3 (right). Colored curves correspond to different values
of the scalar mass 𝜇. The top and bottom axes represent values of the Schwarzschild
coordinate radius 𝑟 and the tortoise coordinate 𝑟∗, respectively.

The peak of the scattering potential. Examining the two panels in Fig. 17, we observe that the
peak of the scattering potential is located suspiciously close to 𝑟 = 3𝑀 , regardless of the values of
ℓ. To further investigate this feature, we study the extrema of the scattering potential

𝑉 (𝑟) =
(
1 − 2𝑀

𝑟

) (
ℓ(ℓ + 1)

𝑟2 + 2𝑀
𝑟3

)
. (101)

The critical points of 𝜔2 −𝑉 (𝑟) are given by the roots of

𝑉 ′(𝑟) = −
4𝑅2

𝑆

𝑟5 − 3𝑅𝑆 [ℓ(ℓ + 1) − 1]
𝑟4 + 2ℓ(ℓ + 1)

𝑟3 , (102)

which can be found analytically, and read

𝑟± =
𝑀

2ℓ(ℓ + 1)

[
3(ℓ(ℓ + 1) − 1) ±

√︁
9 + ℓ(ℓ + 1) (14 + 9ℓ(ℓ + 1))

]
. (103)

The physical solutions, which provide positive radii, are given by 𝑟+. Interestingly, as ℓ → +∞,
in the so called eikonal limit, 𝑟+ tends to 3𝑀 , as shown in Fig. 18. In Sec. 3.3, we have seen that
𝑟 = 3𝑀 has a special meaning for the Schwarzschild spacetime, as it corresponds to the location
of the unstable circular orbit for massless particles. This analysis demonstrates the remarkable
correspondence between the maximum of the scattering potential and the photon ring [23].
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Figure 18: Location of the peak of the scattering potential (101) as a function of ℓ, for
scalar and tensor perturbations.

General master equation. Thus far, we have focused on the perturbations of a test scalar field on a
fixed Schwarzschild BH, finding that they reduce to the single equation (99). We could follow similar
steps to compute vector and tensor perturbations, studying the metric response. Surprisingly, while
the calculations would become more complicated and require different mathematical techniques,
they would lead to results extremely close to Eq. (99). We can introduce a generalized master
equation:

𝑑2𝜓ℓ𝑚(𝑟)
𝑑𝑟∗2 +

[
𝜔2 −𝑉𝑠 (𝑟)

]
𝜓ℓ𝑚(𝑟) = 0 , 𝑉𝑠 (𝑟) =

(
1 − 2𝑀

𝑟

) [
ℓ(ℓ + 1)

𝑟2 + 2𝑀 (1 − 𝑠2)
𝑟3

]
, (104)

where the parameter 𝑠 identifies the type of perturbation, taking values 𝑠 = 0, 1, 2 for scalar, vector,
and tensor modes, respectively. For 𝑠 = 0, we indeed recover the scattering potential for massless
scalar perturbations in the Schwarzschild background, as given in Eq. (101).

Boundary conditions. A crucial aspect to investigate in Eq. (104) is the asymptotic behavior of
the perturbations at infinity and at the horizon, i.e., the boundaries of our domain. At the event
horizon, the potential vanishes and the solutions of the master equations take the form of plane
waves:

𝑑2𝜓ℓ𝑚

𝑑𝑟∗2 + 𝜔2𝜓ℓ𝑚 = 0 , ⇒ 𝜓ℓ𝑚 ∼ 𝑒±𝑖𝜔𝑟∗ . (105)

If we assume that the radiation is completely absorbed at the horizon and nothing comes out from
it, the full physical solution corresponds to the purely ingoing wave 𝜓 ∼ 𝑒−𝑖𝜔 (𝑡+𝑟∗ ) . It is important
to note, especially in light of the discussion in the previous section, that the horizon does not play
any special role in the perturbations, apart from serving as a boundary condition for our solution.
This aspect will be further elaborated in the following section.

On the other side of the domain, as 𝑟∗ → +∞, the metric approaches Minkowski spacetime,
and the master equation takes again the form (105), admitting two plane wave solutions. In this
case, we assume the condition of purely outgoing wave, i.e., that there is no incoming radiation,
and consequently 𝜓 ∼ 𝑒−𝑖𝜔 (𝑡−𝑟∗ ) . In summary, the wave solution behaves as

𝜓ℓ𝑚(𝑟∗ → −∞) = 𝜓ℓ𝑚(𝑟∗ → −∞) ∼ 𝑒−𝑖𝜔 (𝑡+𝑟∗ ) , 𝜓ℓ𝑚(𝑟∗ → +∞) ∼ 𝑒−𝑖𝜔 (𝑡−𝑟∗ ) . (106)
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Quasi normal modes. The discussion so far highlights that black holes are inherently dissipative
systems, leaking energy at the horizon and at infinity in the form of gravitational radiation. Conse-
quently, the system is not time-symmetric, and the eigenvalue problem associated with Eq. (104) is
non-Hermitian. This non-Hermiticity leads to complex eigenvalues, known as quasi-normal mode
(QNM) frequencies

𝜔 = 𝜔R − 𝑖𝜔I , (107)

where 𝜔R,I > 0. These QNMs characterize (part of) the gravitational wave response of the BH due
to a perturbation. In a realistic physical setup (analogous to the toy model studied in Sec. 5.1), the
signal would feature an initial transient, whose amplitude is dictated by the type of perturbation,
followed by a phase dominated by damped oscillations, with frequencies given by the real part of
the QNMs, 𝑓 = 𝜔R/(2𝜋). The inverse of the imaginary part, 𝜏 = 1/𝜔I, corresponds to the damping
time of each mode.

The left panel of Fig. 19 shows the real and imaginary part of the QNMs for ℓ = 2 gravitational
perturbations of a Schwarzschild BH. Each dot corresponds to a different overtone 𝑛. From the
image, it is evident that 𝜔I grows monotonically with 𝑛 and diverges. The real part has a different
behavior: it decreases until a certain overtone and then grows, approaching a finite constant
value. Notably, the least damped mode, i.e., with the smallest imaginary part, corresponds to
𝑛 = 0. For this reason, we expect the latter to be measured with the best accuracy. There is
also a special mode with almost-vanishing real frequency, which can be analytically computed as
𝜔 = ±𝑖ℓ(ℓ − 1) (ℓ + 1) (ℓ + 2)/6 [24].
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Figure 19: (Left panel) Real and imaginary part of the QNM for the first 100 overtones
of the ℓ = 2 gravitational perturbations. (Right panel) Same as the left panel but for
ℓ = (2, 3, 4, 5) and considering the first 8 overtones. Data from tabulated values in [14].

Due to the complex nature of the frequencies, the modes diverge at both ends of the domain:

at horizon ∼ 𝑒−𝑖𝜔𝑟∗ = 𝑒−𝑖𝜔R𝑟
∗
𝑒−𝜔I𝑟

∗ 𝑟∗→−∞−−−−−−→ ∞ (108)

at infinity ∼ 𝑒+𝑖𝜔𝑟∗ = 𝑒+𝑖𝜔R𝑟
∗
𝑒+𝜔I𝑟

∗ 𝑟∗→+∞−−−−−−→ ∞ . (109)

Hence, QNMs carry infinite energy and do not represent a physical state across the entire space.
Instead, they are a localized phenomenon that, for a fixed 𝑟∗, evolves on a given time 𝑡. The
larger the value of 𝑟∗, the larger 𝑡 must be to compensate for it. Consequently, the corresponding
eigenfunctions generally do not form a complete system.
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5.5 Solving the master equation

There are various semi-analytical and numerical techniques that can be utilized to solve the
master equation (99), provided appropriate boundary conditions, in order to search for the QNM
frequencies (see [25] for a detailed review).

Direct integration. One of the most common and efficient approaches is the direct integration
method, which has a broader applicability beyond our specific case. This fully numerical framework
is accurate for any value of ℓ (and overtones) and can be extended to different physical setups,
including theories of gravity beyond General Relativity and systems involving multiple coupled
fields.

As discussed in the previous section, the master equation (99) yields two solutions5 𝜓1,2,
where 𝜓1 and 𝜓2 satisfy ingoing and outgoing boundary condition at the horizon and at infinity,
respectively. The overall procedure can be summarized with the following steps:

1. Numerical Integration (Forward): Numerically integrate the master equation (99) forward
from the horizon 𝑟ℎ to infinity 𝑟∞, assuming as the initial condition a purely ingoing solution
at 𝑟ℎ, namely 𝜓1 ∼ 𝑒−𝑖𝜔𝑟∗ . In general, to improve the accuracy of our calculations, it is
useful to compute corrections to the purely ingoing solution by expanding 𝜓1 around 𝑟ℎ as

𝜓1 =

𝑛ℎ∑︁
𝑛=0

𝑎𝑛 (𝑟 − 𝑟ℎ)𝑛𝑒−𝑖𝜔𝑟∗ , (110)

where the order 𝑛ℎ depends on the desired level of accuracy. The coefficients 𝑎𝑛 can be
found by replacing Eq. (110) into Eq. (99) and performing a Taylor expansion around 𝑟ℎ.
This procedure provides, order by order in 𝑟 − 𝑟ℎ, a set of equations that can be solved for
the coefficients 𝑎𝑛. Generally, the series of coefficients depends on the leading amplitude 𝑎0,
which can be rescaled to 𝑎0 = 1 for our master equation.

2. Numerical Integration (Backward): integrate the master equation (99) backward, from infinity
to the horizon. In this case, we start the integration with an initial condition6 that is purely
outgoing at 𝑟∞, i.e., 𝜓2 ∼ 𝑒𝑖𝜔𝑟∗ . Similarly to the forward integration, we can boost the
accuracy of our procedure by finding the sub-leading corrections to 𝜓2 and choosing

𝜓2 =

𝑛∞∑︁
𝑛=0

𝑏𝑛

𝑟𝑛
𝑒𝑖𝜔𝑟∗ . (111)

The coefficients 𝑏𝑛 can be found with the same procedure used for Eq. (110), but expanding
the master equation around 𝑟∞. Even in this case, in general, 𝑏𝑛 will depend only on the
leading term 𝑏0, which we fix to 𝑏0 = 1.

3. Given the two solutions above, we can build the Wronskian

𝑊 (𝜔) = 𝜓′
1𝜓2 − 𝜓′

2𝜓1 , (112)

where primes denote derivatives with respect to the tortoise coordinate.

5The dependence on multipolar indices is implicit here.
6The form of the solution may slightly differ from the one presented here, at both ends, when working with a different

physical problem, i.e., master equation, as in the case of a massive field.
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4. The QNMs of the systems are those for which the two solutions𝜓1,2 are no longer independent,
corresponding to roots of the Wronskian. The overall approach translates into a findroot
procedure to solve the equation 𝑊 (𝜔) = 0.

WKB. As a second technique to compute QNM frequencies, we consider the WKB approach,
a semi-analytic method that builds around the analogy between the master equation (104) and the
Schrodinger equation for a particle of mass 𝑚 and energy 𝐸 , and a one-dimensional barrier 𝑉 (𝑟∗).
Here, we follow and discuss the calculations developed in the seminal work by Schulz and Will
[26]. We first consider a problem specified by the following differential equation:

𝑑2𝜓(𝑟∗)
(𝑑𝑟∗)2 +𝑄(𝑟∗)𝜓(𝑟∗) = 0 , (113)

which resembles our master equation with 𝑄 = 𝜔2 − 𝑉𝑠. As seen for the scalar case, the function
𝜓(𝑟∗) identifies the radial component of the full solution, which depends on time (∼ 𝑒−𝑖𝜔𝑡 ) and on
the angular variables.
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Figure 20: Representation of the function −𝑄(𝑥). Adapted from [26].

The function −𝑄(𝑟∗) depends on the tortoise coordinate, has a maximum around 𝑟∗ ≃ 0, and
approaches a constant𝑄(𝑟∗) → 𝛼 with Re(𝛼) > 0 at both ends of the domain, such that the solution
reads

𝑑2𝜓(𝑟∗)
(𝑑𝑟∗)2 + 𝛼𝜓(𝑟∗) = 0 , ⇒ 𝜓(𝑟∗) ∼ 𝑒±𝑖𝛼𝑟

∗
, |𝑟∗ | → ∞ , (114)

with 𝑒−𝑖𝛼𝑟
∗ (𝑒𝑖𝛼𝑟∗) being outgoing (ingoing) modes at +∞ (−∞). The basic idea behind the WKB

approach is to study the behaviour of 𝑄(𝑟∗) in the three zones in which the function is defined,
finding the matching conditions across them. Figure 20 provides a pictorial representation of the
regions I, II, III, and the turning points 𝑟∗1, 𝑟

∗
2, where 𝑄(𝑟∗1) = 𝑄(𝑟∗2) = 0. In the first and third

regions, the solutions for the master equation can be found analytically [27]:

𝑄(𝑟∗) =


𝑄−1/4(𝑟∗) exp

[
±𝑖
´ 𝑟∗
𝑟∗1
𝑑𝑥

√︁
𝑄(𝑥)

]
, region I ,

𝑄−1/4(𝑟∗) exp
[
±𝑖
´ 𝑟∗2
𝑟∗ 𝑑𝑥

√︁
𝑄(𝑥)

]
, region III .

(115)

We want now to match these solutions with region II, which is bounded by the turning points where
𝑄(𝑟∗) = 0 → 𝑉𝑠 (𝑟∗) = 𝜔2. The WKB approach works better when 𝑟∗1 and 𝑟∗2 are close, i.e., when
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|𝑄(±∞)| ≫ [−𝑄(𝑟∗)]peak and 𝑉peak ∼ 𝜔2. Following [26], we approximate 𝑄(𝑟∗) in this central
zone with a parabola:

𝑄(𝑟∗) = 𝑄0 +
1
2
𝑄′′

0 (𝑟
∗ − 𝑟∗0)

2 + O(𝑟∗ − 𝑟∗0)
3 , (116)

with 𝑄0 < 0 and 𝑄′′
0 > 0. We now introduce the new variable 𝑡 = (4𝜅)1/4𝑒𝑖 𝜋/4(𝑟∗ − 𝑟∗0), where

𝜅 = 𝑄′′
0 /2, such that Eq. (113) can be recast in the following form7:

𝑑2𝜓(𝑡)
𝑑𝑡2

(4𝜅)1/2𝑒𝑖 𝜋/2 +
[
𝑄0 +

1
2

2𝜅𝑡2

(4𝜅)1/2𝑒𝑖 𝜋/2

]
𝜓(𝑡) = 0 ,

⇒ 𝑑2𝜓(𝑡)
𝑑𝑡2

+
[
− 𝑖𝑄0

(2𝑄′′
0 )1/2 − 𝑡2

4

]
𝜓(𝑡) = 0 .

(117)

We further introduce the parameter 𝜈 = − 1
2 − 𝑖𝑄0

(2𝑄′′
0 )1/2 , such that

𝑑2𝜓

𝑑𝑡2
+
[
𝜈 + 1

2
− 𝑡2

4

]
𝜓(𝑡) = 0 , (118)

whose solution is given as a combination of parabolic cylinder functions, 𝐷𝜈 (𝑡):

𝜓(𝑡) = 𝐴𝐷𝜈 (𝑡) + 𝐵𝐷−1−𝜈 (𝑖𝑡) . (119)

Exploiting the asymptotic properties of these functions, near the horizon we find:

𝜓 ∼ 𝑐1(1 − 𝑖)𝜈𝑒𝑖 𝜋𝜈/2𝜅𝜈/4(𝑟∗ − 𝑟∗0)
𝜈𝑒−𝑖𝜅

1/2 (𝑟∗−𝑟∗0 )
2/2

+ 𝑒−
3
4 𝑖 𝜋𝜈2−𝜈/2𝜅−(1+𝜈)/4(𝑟∗ − 𝑟∗0)

−1−𝜈

[
𝑐2 − 𝑐1

𝑖𝑒−𝑖 𝜋𝜈/2
√

2𝜋
Γ(−𝜈)

]
𝑒𝑖𝜅

1/2 (𝑟∗−𝑟∗0 )
2/2 ,

(120)

with 𝑐1,2 as constants of integration, and Γ(𝜈) being the Euler Gamma function. The first and
second terms of this expression identify ingoing and outgoing waves. Boundary conditions require
that at the horizon, the outgoing modes are zero, which fixes 𝑐2 = 0 and Γ(−𝜈) = ∞. The latter holds
if 𝜈 is an integer. This requirement automatically translates into a Born–Sommerfield quantization
rule, such that

𝑄0√︁
2𝑄′′

0
= 𝑖

(
𝑛 + 1

2

)
, 𝑛 = 0, 1, 2, . . . . (121)

The function 𝑄 depends on the frequency 𝜔, hence Eq. (121) turns into an algebraic relation which
identifies a discrete set of complex values, the quasi-normal mode frequencies. For gravitational
perturbations of a Schwarzschild BH, 𝑄 is given by Eq. (104) (with 𝑠 = 2), with the peak provided
by Eq. (103), allowing the computation of the values of 𝜔 for different ℓ and 𝑛. The WKB
approximation works well for low overtones, i.e., as we have seen in Fig. 19 for modes with small
imaginary parts (or large damping times), and for large ℓ. The relative difference between the

7In this case, 𝑑𝑡 = (4𝜅)1/4𝑒𝑖 𝜋/4𝑑𝑟∗ and

𝑄(𝑡) = 𝑄0 + 1
2

2𝜅𝑡2

(4𝜅)1/2𝑒𝑖 𝜋/2 .

33



P
o
S
(
Q
G
-
M
M
S
c
h
o
o
l
s
)
0
1
1

Astrophysical black holes Andrea Maselli

Schwarzschild QNM frequencies obtained with the WKB and the exact values of [14] is shown in
Fig. 21 for ℓ = (2, 3, 4, 5) and the first three overtones. The accuracy of the WKB method can be
improved considering different approximations of the function −𝑄(𝑥) though region II and taking
into account, for example, higher-order approximations which go beyond the quadratic expansion
[28, 29].
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Figure 21: (Left panel) Relative difference between the real and imaginary part of the
QNM computed with the WKB approach and the values obtained in [14], as a function
of ℓ for the first three overtones.

6. Conclusions

In this notes, we have explored the key features of non-rotating black holes in General Relativity.
Alongside the properties of the Schwarzschild solution, we examined in detail the motion of massive
and massless test-bodies, along with their fundamental frequencies.

We introduced a general framework for computing relativistic perturbations of spherically-
symmetric and static spacetimes. Instead of elaborating on all the calculations required for tensor
perturbations, we focused on the response induced by a test scalar field propagating on a fixed
geometry. This approach allowed us to control perturbations using a single master equation, which
can be extended to more complicated scenarios involving vector and tensor modes. Consequently,
we introduced the concept of black hole oscillations. We have discussed the main properties of the
Schwarzschild quasi-normal modes and their connection with the dynamics of massless particles
in the background spacetime. Finally, we described two numerical methods, namely, the direct
integration and the WKB approach, commonly used to compute the actual values of quasi-normal
modes.
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