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Constraining models of hadronic showers using
proton-Oxygen collisions at the LHC involving
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The study of hadronic showers, which are produced by cosmic rays penetrating the Earth’s
atmosphere, is essential for shedding light on the origins and characteristics of high-energy
particles originating from space and reaching our planet. At the Large Hadron Collider at CERN,
there are plans to conduct a short run of proton–oxygen collisions in 2025 to refine the modeling
of hadronic showers. This work explores the potential impact on constraining models of hadronic
showers by measuring interactions facilitated by color-neutral objects such as photons, pomerons,
and pions. These interactions are often characterized by high-energy protons or neutrons produced
at forward rapidities and can be tagged using dedicated forward proton and neutron detectors.
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1. Introduction

A vital component in studying the nature of Cosmic Rays (CRs) is the determination of the
mass and energy spectra by measuring profiles of the air showers produced by the CRs and matching
them to profiles predicted by hadronic Monte Carlo (MC) simulations, which are often tuned using
data from the Large Hadron Collider (LHC) [1–4]. Nonetheless, discrepancies between different
model predictions persist, even at LHC energies, leading to large uncertainties in understanding
the composition of CRs [5]. A short run of proton–oxygen (𝑝𝑂) collisions is scheduled during
LHC Run 3 [6], aiming to improve the modeling of hadronic interactions. The primary focus of the
standard research program at the LHC will be on non-diffractive interactions [7]; however, diffractive
interactions, or in general any interaction involving color-neutral objects, can also be explored by
tagging forward protons in 𝑝𝑂 → 𝑝𝑋 interactions or forward neutrons in 𝑝𝑂 → 𝑛𝑋 interactions
(where X represent the dissociation products for the oxygen ion), providing a unique opportunity to
study those components with better precision. Figure 1 illustrates schematic diagrams of processes
of interest.

p
p

16OX

n
p

16OX

Figure 1: Schematic diagrams of 𝑝𝑂 collisions with an intact proton (left) or a neutron (right) produced at
very forward rapidities.

The color-neutral interactions are weakly constrained at the LHC, resulting in substantial
discrepancies between the experimental data and the predictions of MC simulations (e.g., in proton-
lead collisions [8]), suggesting there are missing interactions not included in these event generators,
which can be further probed using forward neutron and proton detectors.

2. Forward proton and neutron detectors at the LHC

The ATLAS forward proton (AFP) detector [14] and the CMS-TOTEM Precision Proton
Spectrometer (CT-PPS) [15], deployed during LHC Run 2 (2015–2018) by the ATLAS and the
CMS collaborations, are specialized near-beam detectors located approximately 200 meters from
the interaction point (IP). These detectors were operational throughout the standard high-luminosity
runs at the LHC and delivered a broad range of physics results primarily dedicated to studying the
central exclusive production processes in proton–proton collisions [9, 10].

The kinematic acceptance for forward protons is contingent upon the arrangement of the LHC
magnetic field. During standard LHC runs, protons that lose 1.5%–15% of their momentum are
consequently deflected from their trajectories into the proton detectors. A similar arrangement
is expected to apply to the upcoming 𝑝𝑂 run, providing the capability to measure the diffractive
component of the total 𝑝𝑂 cross-section by tagging the intact protons.

The zero-degree calorimeter (ZDC) is a specialized detector positioned at a zero-degree an-
gle relative to the beamline, substantially contributing to the heavy-ion physics program at the
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LHC [11, 12]. Its primary function is to detect the forward neutral particles produced in the
collisions, primarily spectators from ion disintegration. The ZDC detectors for both ATLAS and
CMS experiments are hosted in a dedicated slot inside the neutral beam absorbers (TAN) at a
distance of 140 meters from the IP, which shields the LHC machine components against neutral
particles emerging from the IP. The ZDC is capable of detecting forward neutrons and photons with
pseudorapidities greater than 8.5, and it consists of an electromagnetic section, approximately 30
radiation lengths long, and three hadronic modules, each about 1.15 interaction lengths long [11].

3. New constrains on MC hadronic models

Colorless interactions (including elastic, diffractive, and pion exchange processes), accounting
for approximately 20% of the total 𝑝𝑂 cross-section, were simulated using different MC event
generators at

√
𝑆NN = 9.9 TeV assuming an integrated luminosity of 𝐿int = 1𝑛𝑏−1 as it is expected

during the 𝑝𝑂 run in 2025. The typical spectra of forward protons and neutrons are depicted in
Figure 2, suggesting a high event rate within the kinematic range where the discrepancy between
the models is observed.
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Figure 2: Differential cross-section as a function of nucleon energy (left) and transverse momentum (right) for
protons (top) and neutrons (bottom), obtained using the EPOS-LHC (magenta), Pythia8 Angantyr (yellow),
Sibyll 2.3d (green), and QGSJETII-04 (blue) MC event generators.
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Interactions involving color-neutral mediators are also characterized by large gaps in the rapidity
distribution of the final-state particles, denoted as Δ𝜂𝐹 . In contrast to non-diffractive inelastic
events, where the probability of finding a continuous rapidity region Δ𝜂𝐹 that is free of particles
is exponentially suppressed, color-neutral interactions such as those involving pomeron or pion
exchange are distinctive for their apparent rapidity gaps, and discriminating between these topologies
(pomeron or pion exchange) is only achievable through proton and neutron tagging. Figure 3
illustrates the contribution from processes, with a proton or a neutron in the acceptance, as a
function of Δ𝜂F.
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Figure 3: Contribution from 𝑝𝑂 → 𝑝𝑋 and 𝑝𝑂 → 𝑛𝑋 interactions with a proton or neutron within the
detector acceptance. The peak in the Δ𝜂F distribution corresponds to zero-bias events (i.e., no particles with
an energy above 1 GeV are detected within the pseudorapidity range of |Δ𝜂 | < 4.5). Figure adopted from
ref. [13].

4. Conclusions

Forward neutron and proton detectors are expected to become increasingly vital during up-
coming oxygen collisions, augmenting the scope of the existing physics research program. These
detectors will extend the measured phase space range, which is essential for refining our under-
standing of color-neutral interactions. They are poised to provide precise constraints on diffractive
and elastic interactions in proton–ion collisions, including the first measurement of the elastic
component of proton–oxygen interactions.
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