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In the following, the first measurement of CNO solar neutrinos obtained by Borexino by exploiting
the directional information retained by solar neutrino is summarized [1]. The Correlated Integrated
Directionality (CID) method makes use of the sub-dominant Cherenkov light emitted by the
Borexino liquid scintillator to correlate between the first few detected photons in each event and
the known position of the Sun for each event and, therefore, to discriminate between the signal
and the radioactive background on a statistical basis. By applying this technique to the complete
2007-2021 Borexino dataset, the hypothesis of no CNO neutrinos is rejected with >5𝜎 posterior
probability, without making use of any information on the background levels in the scintillator.
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1. Introduction

The Sun is continuously powered by thermonuclear reactions taking place in its innermost
layers, who emit solar neutrinos as a by-product. For our star, the pp chain reactions make up
approximately 99% of solar luminosity and are the main sources of solar neutrinos. The sub-
dominant CNO cycle reactions use Carbon, Nitrogen and Oxygen nuclei as catalysts and make up
only about 1% of the solar luminosity, while they are expected to play the main role in stars more
massive and older than the Sun. Solar neutrinos represent a unique probe to expand our particle
and astroparticle physics knowledge, since their precise measurements of their fluxes can be used
both to investigate the MSW-LMA paradigm and to study the innermost part of the Sun [2].

2. Borexino detector

Borexino [3] has been a large-volume liquid scintillator detector, located in the Hall C of the
Laboratori Nazionali del Gran Sasso (Italy). The mountain shielding (3800 m.w.e.) guarantees a
suppression of the atmospheric muon flux by a factor of 10−6 with respect to the Earth surface. The
primary scientific goal of the experiment consisted in the real-time measurement of solar neutrino
fluxes. The detector design is based by the graded shielding principle, as shown in Fig. 1. The core
of the detector is given by an inner scintillator region, which is located at the center of concentric
spherical layers. This setup aims to minimize the background events rate coming from external
sources, like the surrounding rocks and cosmic muons. The detector is equipped with 2112 PMTs
installed on the inside of the Stainless Steel Sphere, that is a mechanical support sphere. The PMTs
collect the photons emitted by the scintillator, also measuring the signal intensity and their arrival
time. The precise determinations of these two quantities stand at the basis of the reconstruction of
the energy and position of the events respectively.

Figure 1: Schematic view of the Borexino detector.

For what concerns the solar neutrino spectroscopy, Borexino has been able to extend its
original scientific scope thanks to its excellent and unprecedented radiopurity levels. This has
been achieved by employing extremely radiopure materials, by shielding the central part of the
detector and by performing dedicated purification campaigns. Indeed, by analyzing the Phase-I
(2007-2011) and Phase-II (2011-2016) data taking periods, Borexino has been able to perform a
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complete spectroscopy of the solar neutrinos from the pp chain reactions [4–8]. By considering
the most radiopure Phase-III dataset (2016-2020), Borexino also achieved the first experimental
detection of the CNO neutrinos [9, 10]. This measurement plays a striking importance towards the
solution of the long-standing solar metallicity problem.

3. Correlated and Integrated Directionality method

The novel "Correlated and Integrated Directionality" (CID) [11, 12] has been developed by
the Borexino experiment to exploit the directional information carried by the scarce Cherenkov
light induced by the scintillator electrons recoiling. Indeed, those Cherenkov photons which are
emitted by electrons scattering after a neutrino interaction retain information on the direction of
the incoming neutrino. We have exploited the CID technique to determine the CNO flux [1] with
high significance, as an alternative method to the multivariate fit which had been extensively used
in Borexino [9, 10].

An event-by-event directional reconstruction of events is not possible, as the scintillation
photons are largely dominant in liquid scintillator detectors. For each PMT hit in an event, the
CID analysis considers the cos𝛼 quantity, where 𝛼 is defined as the angle between the known
solar neutrino direction and the photon direction of the hit given by the reconstructed position and
the hit PMT position (as shown in Fig. 3 in [12]). The cos𝛼 distribution can be exploited to
statistically separate solar neutrino signal events from the background events. It follows that, to
better discriminate the solar neutrino signal from the background ones, one should consider a large
number of Cherenkov photons. Unfortunately, the Cherenkov light for a 1 MeV deposited energy
is sub-dominant, being expected to amount about 1% of the total number emitted photons. The
Cherenkov photons are emitted almost istantaneously, while the scintillation light is emitted with
a slower time scale of ns or tens of ns: as a consequence the directional information is mainly
included in the first hits of an event, after we correct the arrival time to the PMTs for the time
of flight of each photon. In the current analysis we extend the number of early hits used for the
CID analysis (up to 15th or 17th hit for Phase-I and Phase-II+III respectively) with respect to the
previous Borexino works [11, 12], where only the first and the second hit have been used. In such
a way, the directional information is exploited at best.

For Cherenkov photon hits from a solar neutrino interaction, the cos𝛼 distribution is expected
to show a characteristic peak at cos𝛼 ∼ 0.7, while the cos𝛼 distribution of scintillation photons will
lack such a signature peak and is in the first order rather flat. For the background events, the cos𝛼
distribution of all hits is expected to be practically the same as the distribution of the scintillation
photons for solar neutrino events, i.e., rather featureless and without a peak. This is because the
direction of Cherenkov photons from the background events is uncorrelated with the solar direction.

4. Results on CNO neutrino flux

The considered dataset for this analysis is the complete Borexino data taking one, extending
from May 2007 to October 2021. The basic data quality cuts, to partially remove several backgrounds
(muons and muon-induced events, noise events, radioactive decays from delayed coincidences), as
well as the Three-Fold-Coincidence algorithm (TFC), have been applied to the dataset following [9,
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Figure 2: Illustration of the CID data (black) and the best fit results (red) summed for the Phase-I + Phase-
II+III in the RoICNO. The background-only Monte Carlo predictions (blue) scaled to the same total number
of events is shown. (a) The sum of the first to fourth Nth-hits cos𝛼 histograms shows the Cherenkov peak.
(b) The sum of the fifth to the Nth-hit(max) cos𝛼 histograms shows the effect the Δ𝑟dir parameter on these
later hits.

10]. The fiducial volume (FV) cut selects events in a central scintillator region within a sphere of
radius 𝑅FV, highly reducing the external background rate. The optimized cuts for Phase-I dataset
are 𝑅FV < 3.05 m and 0.85 MeV < 𝑇𝑒 < 1.3 MeV, while for Phase-II+III the optimized cuts are
𝑅FV < 2.95 m and 0.85 MeV < 𝑇𝑒 < 1.29 MeV. An illustration of the CID data and the best fit
results summed for the Phase-I + Phase-II+III is shown in Fig. 2a and Fig. 2b, with a total of 8964
events in the RoICNO (where RoI stands for Region of Interest). The expected cos𝛼 distributions
for signal and background are obtained from Monte Carlo simulations.

The fitting strategy follows the procedure developed in previous CID analysis [12]. The fit
returns the total number of solar neutrinos 𝑁a detected in the RoI, and the number of background
events in the RoI. Additionally, two nuisance parameters are present. The first one is an effective
Cherenkov group velocity correction (gvch) which takes into account slight differences in the relative
hit time distribution between scintillation and Cherenkov hits in data relative to the Monte Carlo
simulations. In the previous CID analysis [11, 12], which focused only on Phase-I, this parameter
was tuned by analyzing calibration 𝛾 sources data from the 2009 calibration campaign. Instead, in
this analysis we want to exploit the complete Borexino dataset, for this reason we changed strategy
to independently obtain this parameter: we have performed the same CID analysis in a lower energy
region (0.5 MeV ≤ 𝑇𝑒 ≤ 0.8 MeV), which contains mainly 7Be neutrinos events contribution and
backgrounds. The 7Be neutrino number of events is constrained based on the SSM predictions,
and we have tuned gvch to maximize the data-Monte Carlo agreement; the resulting gvch value has
been is constrained in the main analysis cos𝛼 fit. The second nuisance parameter, which in the
cos𝛼 fit is left free to vary, is the event position mis-reconstruction in the initial electron direction
Δ𝑟dir. This effect is an indirect consequence of the Cherenkov hits, since the reconstructed position
is slightly biased towards early hit PMTs of the corresponding event.

The best fit values for the number of solar neutrinos in RoICNO are 𝑁a = (6.9 + 2.4 − 2.2) ×
102 (stat) for Phase-I and 𝑁a = (28.2 + 5.2 − 4.9) × 103 (stat) for Phase-II+III without inclusion
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Figure 3: Left panel: the combined CID CNO-a rate posterior distribution is shown in red. The blue,
violet and grey bands show the 68% CI, for the low metallicity SSM B16-AGSS09met, the high metallicity
SSM B16-GS98 predictions and the combined CID result, respectively. Right panel: multivariate fit results,
projected over the energy dimension for the TFC-subtracted dataset. The sum of the individual contributions
resulting from the fit (magenta line) is superimposed on the data (grey points). CNO neutrinos, 210Bi and
𝑝𝑒𝑝 neutrinos contributions are displayed in solid red, dashed blue and dotted green lines, respectively, while
the other spectral components (7Be and 8B neutrinos, other backgrounds) are shown in grey.

of any systematic uncertainties or corrections, with a good compatibility between the data and the
Monte Carlo underlying model. The final result of the CID analysis for the number of solar neutrinos
is given by the Bayesian posterior distribution of 𝑁a , marginalized over the nuisance parameters
and convoluted with the systematic uncertainties, which are reported in Table II of [1]. Then, the
𝑁a posterior distribution can be deconvoluted with the expected posterior distribution for the sum
of 𝑝𝑒𝑝 and 8B neutrino events, to isolate the resulting 𝑃(𝑁CNO) posterior distributions, shown in
Fig. 3a. Considering the complete Borexino dataset, the probability that no CNO-a events populate
the RoI is associated to a one sided exclusion 5.3𝜎 credible interval.

As an additional step, the CID analysis can be combined with the standard multivariate fit of
Phase-III dataset, to improve the significance of the previous Borexino results on CNO neutrinos [9,
10]. To this purpose, the posterior distribution of 𝑁a previously shown can be included in the
multivariate analysis likelihood as a multiplicative pull term. The TFC-subtracted energy part of
the multivariate fit for the Phase-III dataset with the CID constraint applied is shown in Fig. 3b. The
final CNO interaction rate is 6.7+1.2

−0.8 cpd/100 tonnes, which is associated to a significance against
the absence of a CNO signal, of about 8𝜎. According to this result the CNO neutrino flux at
Earth, considering the neutrino flavor conversion, is ΦCNO = 6.7+1.2

−0.8 × 108 cm−2s−1; this value is
in agreement with the SSM B16-GS98 high metallicity Standard Solar Model. By combining this
latter result with the previous 8B and 7Be neutrinos measurements by Borexino, the low metallicity
SSM B16-AGSS09met model is disfavored at 3.2𝜎 C.L, if the SSM B16-GS98 high metallicity
model is assumed to be true.
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