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Electromagnetic properties of neutrinos

Sudip Jana𝑎,∗

𝑎Max-Planck-Institut für Kernphysik,
Saupfercheckweg 1, 69117 Heidelberg, Germany

E-mail: sudip.jana@mpi-hd.mpg.de

Within the Standard Model, neutrinos exhibit no direct coupling to photons. Nonetheless, quan-
tum loop corrections can give rise to electromagnetic properties in neutrinos, such as magnetic
moments, electric dipole moments, electric charge, and charge-radius. This proceeding systemat-
ically addresses three pivotal components: firstly, the neutrino magnetic moment, an unequivocal
consequence of neutrino masses, and establishing a one-to-one correlation. This connection
yields definite predictions for neutrino magnetic moments when constructing models for neutrino
masses. Subsequently, exploration extends to new leptonic symmetries that uncouple mass from
the magnetic moment of neutrinos, elucidating both theoretical foundations and phenomenologi-
cal implications. Secondly, an examination ensues into the anomalous electromagnetic properties
shared between charged leptons and neutrinos, revealing potential correlations. Finally, the pro-
ceeding concludes with an examination of the astrophysical ramifications stemming from the
electromagnetic properties of neutrinos. This proceeding is based on results obtained in Refs.
[1–7].

XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP2023)
28.08 - 01.09.2023
University of Vienna

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:sudip.jana@mpi-hd.mpg.de
https://pos.sissa.it/


P
o
S
(
T
A
U
P
2
0
2
3
)
1
8
4

Electromagnetic properties of neutrinos Sudip Jana

1. Introduction

Observations of sunspot activity in the late 1980s and early 1990s [8] sparked interest in
neutrino magnetic moments, which had been studied for seven decades [9], prior to the discovery of
the neutrino. Later, several studies investigated neutrino magnetic moments in more detail. There is
a growing interest in studying neutrino magnetic moments because they have the potential to solve
many unsolved mysteries, such as the excess of electron recoil events at XENON1T [10], the ANITA
anomalous events [11, 12], the long-standing MiniBooNE [13] and muon 𝑔 − 2 anomalies [2, 14].
Strong bounds on neutrino magnetic moment can arise from astrophysical setups as well [6, 15–
17]. The presence of a non-zero neutrino magnetic moment allows for direct coupling between
neutrinos and photons, thereby allowing for neutrino radiative decays, as well as plasmon decays to
neutrino-antineutrino pairs. The strongest bounds usually arise from globular cluster stars, where
plasmon decay can delay helium ignition, leading to anomalous cooling of stars. Absence of any
such observational evidence leads to 𝜇𝜈 ≤ 3× 10−12𝜇𝐵 [18]. However, it has been recently pointed
out that this astrophysical limit can be relaxed by considering “neutrino trapping mechanism" [1, 2].
From a theoretical standpoint, the anticipated magnetic moments of neutrinos are imperceptibly
tiny in many neutrino mass models that generate the known neutrino masses and mixings. However,
it is conceivable to construct theories consistent with neutrino mass generation that have quite large
neutrino magnetic moments [1]. Thus, understanding the neutrino magnetic moment may give
valuable insight into the process by which neutrinos acquire mass and other characteristics.
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Figure 1: Theoretical predictions of the neutrino magnetic moments in different neutrino mass models. For
details, see Ref. [1].

2. Model

Here, I present a simplified model [1] for large transition magnetic moment 𝜇𝜈𝑒𝜈𝜇 based on
an approximate 𝑆𝑈 (2)𝐻 horizontal symmetry acting on the electron and the muon families. The
simplification is that the symmetry is only approximate, broken explicitly by electron and muon
masses. Fewer new particles would then suffice to complete the model. The explicit breaking of
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𝑆𝑈 (2)𝐻 by the lepton masses is analogous to chiral symmetry breaking in the strong interaction
sector by masses of the light quarks. Such breaking will have to be included in the neutrino sector
as well. The one-loop corrections to the neutrino mass from these explicit breaking terms have been
computed, and it has been found that they are small enough so as not to upset the large magnetic
moment solution.
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Figure 2: Theoretical predictions and experimental measurements of the muon anomalous magnetic moment
and the neutrino transition magnetic moment. For details, see [2].

The Lagrangian of the model does not respect the lepton number. The 𝑆𝑈 (2)𝐻 limit of the
model, however, respects 𝐿𝑒 − 𝐿𝜇 symmetry. This allows a nonzero transition magnetic moment
𝜇𝜈𝑒𝜈𝜇 , while neutrino mass terms are forbidden – except for a loop-induced 𝜏 neutrino mass. Owing
to the 𝑆𝑈 (2)𝐻 symmetry of the model, the two diagrams add in their contributions to the magnetic
moment, while they subtract in their contributions to neutrino mass when the photon line is removed
from these diagrams (for details, see Ref. [1]). The resulting neutrino magnetic moment is given
by [1]

𝜇𝜈𝜇𝜈𝑒 =
𝑓 𝑓 ′

8𝜋2 𝑚𝜏 sin 2𝛼
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Predictions of neutrino magnetic moments (maximum achievable) for different neutrino mass
models are summarized in Fig 1.

3. Correlation with charged-lepton magnetic moments

I have also shown that the models that induce neutrino magnetic moments while maintaining
their small masses naturally also predict observable shifts in the muon anomalous magnetic moment
[2, 3]. This shift is of the right magnitude to be consistent with the Brookhaven measurement as
well as the recent Fermilab measurement of the muon 𝑔 − 2. This points out the direct correlation
between the magnetic moment of SM-charged lepton and neutral lepton (neutrino) by showing that
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the measurement of muon 𝑔−2 by the Fermilab experiment can be an in-direct and novel test of the
neutrino magnetic-moment hypothesis, which can be as sensitive as other ongoing-neutrino/dark
matter experiments. Such a correlation between muon 𝑔 − 2 and the neutrino magnetic moment
is generic in models employing leptonic family symmetry to explain a naturally large neutrino
magnetic moment. In Fig. 2, there is a direct correlation between the muon anomalous magnetic
moment and neutrino magnetic moment.

4. Astrophysical implications

The neutronization burst phase of a core-collapse supernova, which lasts for a few tens of
milliseconds post-bounce, is dominated by electron neutrinos and can offer exceptional discovery
potential for neutrino transition magnetic moments. The neutrino spectra from the burst phase have
been computed in forthcoming neutrino experiments like the Deep Underground Neutrino Exper-
iment and the Hyper-Kamiokande, by taking into account spin-flavour conversions of supernova
neutrinos caused by interactions with ambient magnetic fields. The sensitivities to neutrino transi-
tion magnetic moments are an order to several orders of magnitude better than the current terrestrial
and astrophysical limits. This realization might shed light on the nature of Dirac/Majorana and the
neutrino mass-generation mechanism. Investigations into electromagnetic interactions involving
neutrinos can also be explored through collider experiments and forthcoming neutrino telescopes,
see Refs. [19–23].

5. Final renarks

The theoretical and experimental investigation of neutrino electromagnetic interactions can
serve as a powerful tool in the search for the fundamental theory behind the neutrino mass generation
mechanism.
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