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The analysis of the waveforms of photo-multiplier tube (PMT) is essential for high precision
measurement of position and energy of particles’ interaction in liquid scintillator (LS) detectors.
JUNO is a next-generation large volume liquid scintillator neutrino experiment with a designed
energy resolution of 3% @1 MeV. The accuracy of the reconstruction of the number of photo-
electron (nPE) is one important key of achieving the best energy resolution. This work introduces
the machine learning-based nPE estimation methods, including supervised learning depended on
electronic simulation and data-driven weakly supervised learning. The calibration parameters of
LS and PMT responses are used to generate training waveforms for supervised learning. The
photon counting performances of different methods will be presented.
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1. The JUNO experiment

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose observatory
for determining the neutrino mass ordering, precisely measuring sin22𝜃12,Δ𝑚

2
21,Δ𝑚

2
31, studying

the solar neutrinos, supernova neutrinos, diffuse supernova neutrino background, etc [1]. It is
constructed 650 meters underground in Jiangmen, China, and is located about 53 kilometers away
from both Yangjiang and Taishan nuclear power plant, which is a perfect place to measure the
Neutrino Mass Ordering (NMO) via the analysis of reactor neutrino oscillation. The detector
consists of a Central Detector (CD) which acts as the main target, a Top Tracker (TT) for tagging
muons, and a Water Cherenkov Detector (WCD) for tagging muons and shielding radioactivity. The
CD is equipped with 20 kton LS, 17612 20-inch PMTs and 25600 3-inch PMTs, respectively. The
WCD is equipped with 35 kton ultra-pure water and 2400 20-inch PMTs. The JUNO CD aims to
achieve an unprecedented energy resolution of 3% or better at 1 MeV. So far, more than 6000 large
PMTs and 6000 small PMTs were installed.

2. Motivation

Each photon induced by physical events in the LS has a probability of hitting the PMT and
generating photoelectrons (PEs), then electronics reads the PMT current signal and converts it to a
voltage signal and digitizes it into a waveform. The waveform reconstruction needs to restore the
photoelectron information. The energy resolution of a LS detector is mainly determined by the total
number of PEs, and secondarily determined by the accuracy of the estimation of total nPE, which
depends on the channel-wise estimation of nPE. The basic method is to integrate the waveform to
get the charge of nPE. However, charge has dispersion. Compared to using the true nPE for energy
reconstruction, the energy resolution using charge-based energy reconstruction decreases by 0.6%
at 1 MeV, as shown in Fig. 1. This study aims to optimize the accuracy of nPE estimation using
machine learning (ML), which can improve the charge-based energy reconstruction [2].

Figure 1: Energy resolution as a function of the deposited energy. The different curves indicate the single
contributions to the global energy resolution. Charge smearing contributes about 0.6%@ 1 MeV to the
energy resolution, which is one of the main factors currently limiting energy resolution.
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3. Supervised method

The distribution of PMT waveforms are determined by the waveform template, the probability
density function (PDF) of hit time, the PDF of hit charge and the noise spectrum of single PE. These
detector responses can be extracted from calibration data and used to establish electronic simulation
procedure. Supervised methods use simulation waveforms with known nPE to train neural network
by minimizing the categorical crossing-entropy (CCE) between predicted nPE and true nPE. The
classes are chosen as 0, 1, 2, ..., 𝐾 p.e., where 𝐾 = 9 in this study. Training waveforms are labeled
with 𝑛𝑚 p.e.: 0, 1, ..., 9 p.e.. The statistic of each set 𝐼𝑚 is ∼ 1000000. The number of training data
set is written as 𝑀 .

For 𝐼𝑚 calibration waveforms of 𝑛𝑚 p.e., the output of neutral network is a 𝐼𝑚 × (𝐾 + 1) matrix
𝑦𝑚
𝑖𝑘

, the CCE is given by 𝐶𝐶𝐸𝑚 = −∑𝐼𝑚
𝑖=1 log(𝑦𝑚

𝑖𝑘
). The loss function of training data is defined as

𝐿𝐶𝐶𝐸 =

𝑀∑︁
𝑚=1

𝐶𝐶𝐸𝑚. (1)

4. Weakly supervised method

There have been studies on binary classification methods based on weakly supervised learning
in the field of particle physics [3]. This work develops a multi-class classification method based on
weakly supervised learning.

The nPE of waveform is unknown, but the mean nPE (𝜇) of calibration data is known. This
study uses 𝜇 labeled data to conduct weakly supervised training by minimizing the Kullback-
Leibler (KL) divergence between predicted nPE distribution and true nPE distribution (Poisson
distribution). The classes are chosen as 1, 2, ..., 𝐾 + 1 p.e., where 𝐾 = 10 in this study. Waveforms
with nPE > 𝐾 p.e. are categorized as 𝐾 + 1 p.e.. Training waveforms are labeled with 𝜇𝑚 p.e.: 0.5,
1,..., 9.5 p.e.. The statistic of each set 𝐼𝑚 is ∼ 1000000. Noise waveforms are excluded here.

For 𝐼𝑚 calibration waveforms with known “𝜇𝑚”, the output of neutral network is a 𝐼𝑚× (𝐾 +1)
matrix 𝑦𝑚

𝑖𝑘
. The probability of reconstructed 𝑘 p.e is calculated by 𝑄𝑚(𝑘) = 1

𝐼𝑚

∑𝐼𝑚
𝑖=1(𝑦

𝑚
𝑖𝑘
). The

probability of detected 𝑘 p.e. is

𝑃𝑚(𝑘) =
𝑒−𝜇𝑚𝜇𝑘𝑚

𝑘!(1 − 𝑒−𝜇𝑚) (𝑘 ≤ 𝐾), 𝑃𝑚(𝐾 + 1) = 1 −
𝐾∑︁
𝑘=1

𝑃𝑚(𝑘). (2)

The loss function of training data is defined as

𝐿𝐾𝐿 =

𝑀∑︁
𝑚=1

𝐾+1∑︁
𝑘=1

𝑃𝑚(𝑘)log
𝑃𝑚(𝑘)
𝑄𝑚(𝑘)

. (3)

5. Reconstruction performances

The neural network used by both the supervised method and the weakly supervised method
consists of 5 convolutional layers and one dense layer. The testing data are labeled with 𝑛𝑚 p.e.:
0, 1,..., 9 p.e.. The statistic of each set 𝑁𝑚 is ∼200000. The 0 p.e. waveforms are excluded
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for weakly supervised method. The training and testing results of the supervised method and
weakly supervised method are shown in Fig. 2. Clearly, the CCE loss and KL loss of weakly
supervised method both decrease as the number of training iterations increases, where CCE is
merely a performance indicator, not a minimization target. The final distribution of the predicted
nPE is close to the target Poisson distribution. Weakly supervised method achieves 100%, 99%,
96%, 94%, 98% efficiency of the supervised method in the case of 1, 2, 3, 4, 5 p.e., respectively.
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Figure 2: The training and testing results of the supervised method and weakly supervised method.

6. Conclusion

The nPE information is essential for the energy reconstruction. Machine learning has potential
to extract accurate nPE information. Supervised method depends on electronic simulation. Weakly
supervised method is data-driven. The weakly supervised method and supervised method has
similar nPE accuracy in the case of small pe. Optimizations are on going.
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