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Rapporteur’s summary of CRI in ICRC2023

1. Receiving a baton as “rapporteur in Japan”

In the sweltering heat of Japan’s hottest season, the 38th International Cosmic Ray Conference
(ICRC2023) was held in Nagoya at Nagoya University. With more than one thousand enthusiastic
on-site participants, [ICRC2023 was the first in person ICRC held since the beginning of the COVID-
19 pandemic. To enable maximum participation the conference was streamed online, making it
the first hybrid (both onsite and online) ICRC. A glimpse of the conference activities is shown in
Figure 1.

In this proceedings, I summarize contributions from the “cosmic ray indirect” (CRI) sessions,
constituting 128 oral presentations, 211 posters, and 6 related plenary talks. Although challenging
(and exhausting), it was a great opportunity to discover not just the latest scientific results, but also
the next-generation of cosmic ray scientists. The detailed and intriguing discussions I had with
students and younger members in the field left me feeling confident in the future of cosmic ray
research. I sincerely thank the contributors to the CRI sessions for your productive and fruitful
discussions. I would also like to express my deepest appreciation to the local organizing committee
(LOC) of ICRC2023 for their hard work and allowing me to focus on my role as rapporteur.

In April 2023, I received an email informing me that I had been nominated as the rapporteur
of the ICRC2023 CRI session. I was flabbergasted to learn that I would have to summarize >340
contributions, in addition to assisting the LOC. At the opening reception I met Prof. Angela Olinto,
who was the CRI rapporteur of ICRC2003 in Tsukuba, Japan. She told me that “it is a great honor”
and “it is up to you how you do it”. With her encouragement, I received a baton as “rapporteur in
Japan” (Figure 2A). At ICRC2023, there were nearly twice as many contributions as ICRC2003 [1],
indicating a significant extension of the research field and increase in the number of active scientists.

In this proceedings, I would like to describe a selection of results including my personal thoughts
and future perspectives for “passing the baton” to the next generation of scientists. Furthermore,
just as the Japanese people were told during the pandemic to consider the “Three Cs” (Closed

Figure 1: Photos at ICRC2023. These photos are from the opening session, photo session, poster session,
coffee break, the Chicago dinner and Global Cosmic ray Observatory (GCOS) dinner. In-person events such
as these, which were impossible during the pandemic, are important and allow for productive discussion and
networking.
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(A) With Prof. Angela Olinto (B) Schematic view of UHECR astronomy

Figure 2: Receiving a baton as rapporteur in Japan and schematic view of UHECR astronomy. (A)
Memorial photo with Prof. Angela Olinto, rapporteur of ICRC2003. (B) Conceptual image to indicate
UHECR astronomy. The background image shows possible UHECR source candidates, such as active
galactic nuclei, starburst galaxies and neutron stars.

spaces, Crowded places and Close-contact settings!), I would like to emphasize the importance
of a different set of “Three Cs” in relation to cosmic ray research: Calibration, Cross check and
Collaboration. The proceedings starts by briefly looking back at the pioneering work in cosmic ray
observation performed in Nagoya, before introducing current CRI experiments across the world.
The latest energy spectrum, mass composition and anisotropy results, as well as hadronic interaction
models, geophysics, interdisciplinary research, theory and future projects are discussed.

As background to my own research, my interests are observations of ultra-high energy cosmic

thttps://www.kantei.go.jp/jp/content/000061935.pdf

Figure 3: Pioneering work performed by Prof. Yataro Sekido in the development of cosmic ray
telescopes. Motivated by an excess detection in the direction of Orion, Prof. Yataro Sekido and his colleagues
developed a total of six cosmic ray telescopes. Photos taken at Nagoya University Museum.
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rays (UHECRs) with energies above 10'° eV (= 10 EeV) and detector developments. This is because
UHECRSs are less deflected by Galactic and extragalactic magnetic fields, so their arrival directions
are more likely to point back to their sources as shown in Figure 2B. I will address the future
prospects of “UHECR astronomy” and discuss the requirements to clarify the nature and sources
of UHECRs.

2. Pioneering work of CRI telescope developments in Nagoya

It is worth mentioning the pioneering work performed by Prof. Yataro Sekido in CRI telescopes.
In the 1950s, he identified an enhancement of cosmic rays in the direction of Orion [2]. Motivated
by the result, he and his colleagues constructed a total of six cosmic-ray telescopes as shown in
Figure 3. There was a special exhibition at Nagoya University Museum to recognize their efforts
named “The voice from the universe — cosmic ray telescopes of Nagoya University —2.

3. CRI observatories across the world

In the last 20 years, scientists have built large cosmic ray observatories all over the world.
Figure 4 shows a CRI world map indicating locations of the observatories reported in the CRI

2https://www.num.nagoya-u.ac. jp/english/exhibitions/spot/20230726.html
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Figure 4: CRI World Map. The filled circles show the locations of CRI experiments around the world. The
balloon and space experiments are listed in the bottom box. Contributions which were not directly related to
any of the listed experiments, such as those focusing on theory, simulations, new detectors and techniques,
are listed in the boxes at the top of the figure. The number next to each experiment/topic name indicates
the number of contributions from that experiment/topic reported in the CRI sessions, categorized by the
rapporteur.
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sessions and their respective number of contributions. The top-five experiments with the greatest
number of contributions were from the Pierre Auger [3], LHAASO [4], Telescope Array [5],
JEM-EUSO [6], and IceCube [7] collaborations.

The Pierre Auger Observatory (Auger) is the world’s largest cosmic ray observatory with an
effective area of 3000 km?. It is located in Malargiie, Argentina and observes the highest energy
cosmic rays [3]. The observatory’s ongoing upgrade, “AugerPrime", is in its final commissioning
phase and will soon start data-taking with the plastic scintillators and radio detectors which have
been installed on the top of the original water Cherenkov detectors. The upgrade also includes new
electronics, higher dynamic range PMTs and underground muon detectors [8, 9]. The Telescope
Array experiment (TA) is the largest cosmic-ray detector in northern hemisphere with an effective
area of 700 km?, located in Utah, USA [5]. It is also currently undergoing an upgrade, called TAx4,
to increase the effective area of the array four-fold by installing additional surface detectors [10,
11]. Auger and TA use a hybrid technique to detect extensive air showers, combining a surface
detector array (SD) on the ground, overlooked by a fluorescence detector (FD). The importance of
atmospheric monitoring in CRI experiments was summarized in the review talk [12].

The Joint Exploratory Missions of Extreme Universe Space Observatory (JEM-EUSO) is a
mission to observe extensive air showers by placing fluorescence detectors in space [6]. The Mini-
EUSO telescope has been installed onboard the International Space Station, providing measurements
of geophysical lightning phenomena [13]. The EUSO-SPB2 balloon was launched in May 13, 2023,
providing a demonstration of the detector’s performance and verification of its design [14, 15].

The Large High Altitude Air Shower Observatory (LHAASO) is an observatory located on
Mt. Haizi in China and detects TeV-PeV gamma rays and charged particles [4]. LHAASO consists of
a variety of detectors; a detector array combining scintillation counters and underground muon de-
tectors with 1.3 km? coverage (KM2A), a water-Cherenkov detector array with 78,000 m? coverage
(WCDA), an electron neutron detector array with 1000 m? coverage, and a total of 18 wide-field-of-
view air Cherenkov telescopes (WFCTA) [16]. The IceCube observatory is a neutrino observatory
with a target volume of 1 km? located near the Amundsen-Scott South Pole Station. IceCube pos-
sesses a cosmic ray detector which combines an ice-Cherenkov detector array called “IceTop" and a
deep underground muon detector [17]. IceTop is now being upgraded to include plastic scintillators
which will allow it to be more sensitive to the mass composition of cosmic rays [18].

I would also like to highlight the idea of installing cosmic ray detectors in schools across
Europe, dubbed the “Extreme Energy Events” (EEE) experiment [19]. Although thus far there have
been no “Extreme Energy Events” observed in 4-years of operation, the rapporteur thinks it is a
great concept and hopes for successful detection in the near future.

The highlight and review talks related to CRI measurements are shown in Figure 5. The review
talks from the Forward Physics Facility, which detailed the latest results from hadronic interaction
model studies [20], and from the recent progress of cosmic ray applications to non-destructively
investigate archaeological ruins (such as Egyptian pyramids) [21] are also shown.

4. Detector calibrations and machine learning techniques

Focusing on the Calibration of my “Three Cs”, there were 33 proceedings written detailing
calibration methods, instruments and long-term performances. These studies are essential for
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Figure 5: Highlight and review talks related to CRI measurements [3, 5, 12, 13, 20, 21]

obtaining accurate final results. As a new topic, there were 19 contributions regarding machine
learning. These studies were primarily for the purpose of Cross checking current results and/or
for the improvement of current analyses. They collectively show that utilizing machine learning
techniques can provide us new insights into our data. A subset of these contributions, selected by
the rapporteur, is highlighted in Figure 6. Due to the page limitation, not all contributions can be
shown. The full list of contributions can be found at https://pos.sissa.it/444/.

5. Energy spectrum — How frequently do cosmic rays arrive at Earth?

5.1 Electron energy spectrum above TeV

As an intersection between direct and indirect measurements, the cosmic-ray electron spec-
trum was measured by imaging atmospheric Cherenkov telescopes, such as MAGIC [22] and
H.E.S.S. [23]. The observed spectra indicate a broken power-law structure at 1 TeV, indicating a
softer spectrum above this energy. Upper limits reported from LHAASO are closer to the extrap-
olated spectrum of H.E.S.S. at higher energies [24]. A discrepancy in the spectrum index above
1 TeV between MAGIC and H.E.S.S. may be disentangled by future measurements from LHAASO.
The rapporteur encourages the organization of an indirect electron working group consisting of the
MAGIC, H.E.S.S. and LHAASO Collaborations.

5.2 Cosmic ray spectrum around the PeV (‘“knee”) region

All particle spectra were reported from HAWC [25, 26], TAIGA-HISCORE [27], GRAPES-
3 128, 29] and Tibet ASy [30, 31] collaborations. The individual spectra of proton (= hydrogen),
helium and heavier nuclei (atomic number Z > 3) were measured by the HAWC experiment [25],
indicating a break feature around 100 TeV. The maximum energies of each species are proportional
to the atomic number Z [26]. The spectrum observed by the GRAPES-3 experiment shows a
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(B) Machine learning related contributions

Figure 6: Rapporteur’s selection of contributions related to (A) Calibration and to (B) machine
learning. Due to the page limitation, the author and proceedings IDs are indicated as reference.

hardening around 100 TeV [29]. TAIGA-HiSCORE report the spectrum break at 3 PeV [27]. The
Tibet ASy experiment estimates a proton-like event abundance in their data, based on simulations
using post-LHC interaction models [31].

The energy spectra in the PeV range were also measured by the LHAASO-KM2A [32, 33],
IceCube [34], KASCADE-Grande [35] and TALE [36] experiments. LHAASO-KM2A reported
the knee feature with high statistics with a break around 3 PeV [32]. Additionally, they constrained
the flux of iron nuclei around PeV energies using large zenith angle showers [33]. IceCube reported
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Figure 7: Energy spectrum of cosmic rays at the highest energies. The top figures show the energy
spectrum around 100 PeV measured with the Auger 433 m array (top-left) [39] and the Auger combined
spectrum (top-right) [3]. The bottom figures show the TA and TAx4 combined spectrum [11] and the TA
spectra using different reconstruction methods and physics models for studies of systematic uncertainties [40].

the spectrum between PeV and EeV energies. In calculating the energy spectrum, a calibration of the
energy scale based on a modulation caused by snow accumulation was essential [34]. KASCADE-
Grande reported a two component spectrum divided into light (hydrogen + helium + CNO) and
heavy (silicon + iron) components [35]. TALE measured a spectrum between PeV to EeV with
Cherenkov-dominated showers above 2 PeV [36], hybrid measurements above 30 PeV [37] and by
only SD measurements above 100 PeV [38].

5.3 Cosmic ray spectrum above EeV (“ankle” to “cutoff”’) region

Together with a precise measurement of the energy spectrum around 100 PeV using the Auger
433 m array [39], Auger reported the energy spectrum over a broad energy range from 5PeV to
beyond 100 EeV as shown in Figure 7. The observed spectrum has a clear softening at 14 EeV before
the cutoff, a feature now being referred to as the “instep”. TA reported an energy spectrum based
on measurements from both TA and TAx4 [11]. TA also investigated the change in their energy
spectrum results when using the same fluorescence yield model and invisible energy evaluation
method used in Auger. Additionally, they investigated changes to the energy spectrum when the
estimated signal at a different distance from shower axis was used as the energy estimator [40].
The hardening of the TA spectrum above 30 EeV remains even if the same models are assumed as
shown in Figure 7. Detailed studies on systematic uncertainties and the energy spectrum in the
common declination band are discussed in the report from the joint working group of the Auger
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Figure 8: The average logarithmic mass numbers. The figures indicate the mass composition at energies
above 3 PeV measured by LHAASO (left) [32] and TALE (middle) [36], and above 300 PeV measured by
Auger (right) [45].

and TA Collaborations [41].

Concerning systematic uncertainties, effects of saturated SDs, optimized distance and lateral
density parameterization were investigated to understand possible reasons for differing spectra at
the highest energies [42]. Furthermore, thanks to the data provided by KASCADE and IceTop,
the data-driven invisible energy estimation was extended to energies below 100PeV [43]. The
installation of an Auger water-Cherenkov detector at TA (Auger@TA) has been completed. The
detector is currently being prepared for data-taking [44]. Continued Collaboration between Auger
and TA is essential to clarify whether differences observed in the northern and southern hemispheres
are astrophysical in nature or a result of detector systematics/differences in analysis methods.

6. Mass composition — What kind of particles are cosmic rays?

The mass composition of cosmic rays can be estimated from the atmospheric slant depth
where an extensive air shower deposits most of its energy, Xmax- Xmax 15 typically measured with
fluorescence detectors. The average value of the X, distribution at different energies are compared
to expectations from Monte Carlo simulations to determine mass fractions. For surface detector
arrays, measurements of the muon component of extensive air showers are needed to estimate
the mass composition. This can be achieved through analysis techniques or the installation of
underground muon detectors.

The average logarithmic mass numbers above PeV energies were reported from LHAASO-
KM2A [32] and TAIGA-HISCORE [27], indicating a dominant helium composition around 3 PeV,
while TALE results indicated a proton composition at 5 PeV [36] as shown in Figure 8. The mass
composition measurements using muon components from 10 PeV to beyond 100 PeV were reported
by IceCube [17] and KASCADE-Grande [46], indicating intermediate composition between proton
and iron primaries. Beyond 100 PeV, TALE hybrid analysis is capable of measuring three mass
groups; namely proton, nitrogen and iron. The results indicate a charge-proportional maximum
energy for cosmic rays at these energies [47]. The LOFAR radio detector reported intermediate
composition around 300 PeV based on measurements of Xy« [48].

At the highest energies, the latest X;,x measurements reported by Auger, for both the FD and
SD, indicate a light composition at 3 EeV followed by a gradual increase in mass number as a function
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of energy [3]. Using machine learning techniques, Auger has precisely estimated Xj,,x using only
SD measurements. This revealed additional breaks above 3 EeV , which are in coincidence with
the changes in the spectral index in the energy spectrum [49]. The conventional method of Xpqax
determination and the new machine learning technique were compared as a Cross check to validate
the machine learning model’s performance [45] as shown in Figure 8. Auger reported a “tension”
between the latest model of QGSJet-1I-04 and their observed X,,x distributions, and studied how
changing the proton-proton cross section and attenuation length affected their reconstructed Xpax
results [50]. Using the latest Auger data-set, a mass composition anisotropy at the Galactic plane
was reported with a significance of 2.50 [45].

6.1 Studies for systematic uncertainties of mass composition measurements

A function to describe the profile of an air shower called the “Greisen function” was revisited
and compared to the “Gaisser-Hillas” function which is conventionally used [51]. Auger modified
the form of the Gaisser-Hillas function used in their reconstruction to remove the correlation
between parameters of the shower profile [52]. Atmospheric transparency is one of the most
important calibration measurements for fluorescence detectors. Detailed and precise measurements
of the daily modulations in atmospheric transparency were studied by Auger, finding systematic
uncertainties of <4% in energy and <4 g/cm? in Xpax [53]. The mass composition reported by the
Auger and TA working group focused on Xy distributions above 3 EeV. At the current level of
statistics and understanding of systematic uncertainties the distributions appear compatible [54].

6.2 Neutral particle search

Neutral particles (photons/neutrons) have the advantage of avoiding deflections by the Galactic
and extragalactic magnetic fields, and may prove to be the “smoking gun” for cosmic ray sources.
A pioneering result was reported from the Auger collaboration using their 433 m array to constrain
the photon flux above 50 PeV, which in turn gave a constraint on the expected flux of proton-proton
interactions in the Galactic halo [55]. Machine learning techniques for photon searches were
adopted by TA, resulting in a constraint on the photon flux above 10 EeV [56]. TA reconstruction
method for inclined air showers was studied to increase sensitivities for neutral particles [57].

Although the lifetime of a neutron is only ~900 seconds, ultra-high energy neutrons can travel a
distance of 10 X (E/(EeV)) kpc, where E is the energy of neutrons. Auger reported no observation
of excess flux towards the directions of reported Galactic gamma-ray sources, thus providing a
constraint on the neutron flux above EeV energies [58].

7. Anisotropy — Where do cosmic rays come from?

Anisotropy of cosmic-ray arrival directions is a long-standing and intriguing mystery for cosmic
ray researchers. Since charged particles are deflected by the Galactic and extragalactic magnetic
fields, anisotropy searches are sensitive to the strength and structure of these magnetic fields. If
the origins of UHECRs are identified, it would be an important breakthrough in astrophysics and
astronomy. Anisotropy searches are conventionally categorized by small, intermediate and large
scales, corresponding to < 10 degrees, 10 — 35 degrees and > 45 degrees respectively.

10
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Figure 9: Amplitude and phase in large-scale dipole anisotropies of cosmic rays. The figures show the
dipole result reported by LHAASO (top figures) [59, 60] and by IceCube (bottom figures) [61].

7.1 Large-scale dipole anisotropy

The GRAPES-3 experiment studied the small scale anisotropy around 16 TeV using an angular
scale of 10 degrees. They reported two significant hotspots, region A and B, with significances of
6.80 and 4.70 respectively [28, 62]. The large-scale anisotropies around PeV energies indicated a
transition of phase toward 100 TeV with an increase in the amplitude at energies above 100 TeV. This
feature was measured by LHAASO-WCDA and KM2A from 1 TeV to 10 PeV [59, 60] and measured
by IceCube from 10TeV to 1PeV [61] as shown in Figure 9. The feature of a phase transition
and amplitude enhancement could be explained by a nearby source model [63]. The rapporteur
encourages the formation of a working group between the LHAASO and IceCube Collaborations to
disentangle the mystery of the largest cosmic ray accelerators in our galaxy. The large-scale dipole
anisotropy above 8 EeV was measured by Auger with a significance of 6.90" [3, 64]. The evolution
of the dipole amplitude and its direction as a function of energy are consistent with the expectation

of a transition from Galactic to extragalactic origins.

11
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anisotropy working group [65]. The bottom figure indicates the arrival directions of UHECRs above
100 EeV measured by Auger and TA, together with nearby astronomical source candidates.

7.2 UHECR *“astronomy”

The most significant anisotropy at the highest energies was reported by Auger in the direction
of Centaurus A with a significance of 4.00- above 38 EeV using 27 degrees oversamplings [64].
A flux pattern analysis of the southern sky using a catalog of nearby starburst galaxies resulted
in a significance of 3.80- under a 9% anisotropic fraction and 25 degree angular-scale [64]. TA
shows two hotspots, one of 2.80 above 57 EeV in the direction of Ursa Major, and of 3.30- above
25EeV in the direction of the Perseus-Pisces Supercluster [5]. The TA hotspots were tested by
Auger using a compatible exposure. No excesses were found in these directions [64]. Further
Cross checks and independent measurements are crucial to increase the currently limited statistics
and hence reliability of these results. The Collaboration between Auger and TA for anisotropy
studies was tasked with measuring the all sky-map at the highest energies [65] and making possible
interpretations [66] as shown in Figure 10. Surprisingly, no excess has been found from the Virgo
cluster which is the most promising source candidate for UHECRs. This has been dubbed the
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“Virgo scandal”.

Figure 10 shows an equatorial sky-map of arrival directions of UHECRs with energies above
100 EeV observed by Auger in 17-years data set operation [67] and TA in 15-years data set.
Although there are intriguing hot/warm spots correlated with nearby possible source candidates
around “cutoff” energies, there is no apparent correlations/clustering with nearby source candidates
above 100 EeV. This isotropic distribution was not foreseen 20 years ago and is likely due to a
heavier composition at the highest energies and uncertainties in the Galactic/extragalactic magnetic
fields and source density. Further data-taking by Auger and TA in both hemispheres and their
upgrades are essential to clarify the origins of UHECRs and to establish “UHECR astronomy”.

7.3 Source constraints using spectrum, composition, and anisotropy

The spectrum, composition, and anisotropy of cosmic rays should be linked to their nature
and origin. LHAASO reported these three observables around the knee region (3 PeV) showing a
spectral break, transition to a heavier composition and increase in amplitude of dipole anisotropies,
indicating a maximum energy to which cosmic rays are accelerated by Galactic sources [32, 60].
Auger reported these three observable at the highest energies [3]. The spectral features of the ankle,
instep and suppression are in coincidence with the “breaks” of the elongation rate of Xpax [49].
The dipole amplitude was also observed to increase above 3 EeV, with a shift in phase towards a
direction away from the Galactic center, supporting an extragalactic origin [64]. Combining results
of the spectrum, composition and anisotropy by Auger, a source model of the gamma-ray emitted
active galactic nuclei was disfavored assuming the cosmic ray flux is proportional to the gamma-ray
flux of sources [68, 69]. The rapporteur expects future analyses combining all three observables to
shed light on the origin and nature of UHECRs.

8. Hadronic interaction models — How do high-energy particles interact?

8.1 “Muon puzzle”: Discrepancy in muon number between data and simulations

The muon number is a key piece of information in determining the accuracy of hadronic inter-
action models. IceCube and IceTop reported a discrepancy between the muon numbers estimated
from the number of high energy muons detected above 500 GeV and the muon densities measured
at 600 m and 800 m in the latest interaction models [17]. The Tibet ASy experiment studied the
muon numbers with a tension of Sibyll models for large shower size [70]. Surprisingly there was a
re-analysis of the Haverah Park experiment’s data. The analysis found no significant discrepancy
in muon numbers estimated from data and simulations [71]. The neutrino experiment KM3Net,
located in the Mediterranean sea, also showed a muon number of 1.4 — 1.8 times larger than MC
expectations [72]. KASCADE-Grande re-analyzed their data using the latest models and found
an intermediate composition between proton and iron primaries, intriguingly showing “no muon
puzzle” [46]. Overall, these results indicate a softer muon spectrum than models in simulations;
fewer high energy muons and more low energy muons.

Auger observes a muon deficiency in comparison to simulations from both their main array and
underground muon detectors [3]. They also provide an independent measurement of “composition
mixture” using muon number and Xpax [73]. The results show the composition is not pure around
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Figure 11: Muon densities of extensive air showers measured by a variety of experiments above 1 PeV
The Z parameter (y-axis) indicates the relative difference in muon number between data and a pure proton
composition compared to that between pure iron and pure proton (as estimated by simulations). Estimates
of Z using a variety of hadronic interaction models are shown [74].

10 EeV and above 20 EeV, consistent with the observed FD Xy values. Figure 11 shows muon
densities above 1 PeV reported by the working group on hadronic interactions and shower physics
(WHISP) [74].

8.2 Zero-degree measurements at collider experiments

Forward neutral particles are measured by LHCf, with the results being jointly analyzed in
Collaboration with ATLAS [75]. The LHCf measures neutrons, the  meson production rate and
the 17/7° ratio to tune the interaction models [76]. The collision of protons and oxygen nuclei is
scheduled for 2024 [75]. There have also been successful and promising results from FASER. The
Forward Physics Facility plans to measure forward going high energy TeV neutrinos to constrain
hadronic interaction models [77].

There are plans to upgrade the Sibyll and EPOS-LHC interaction models to Sibyll* [78]
and EPOS-LHC-R [79] respectively. The “MOCHI” parameterization will allow for the study of
effects of ad-hoc modifications to the cross-section, multiplicity, and elasticity parameters [80].
Currently, no model can reproduce muon observables in all energy ranges, thus Cross checks
between theoretical and experimental results as well as further Collaboration is required for fine-
tuning the models.

8.3 Simulations for extensive air showers

The extensive air shower simulation software CORSIKA is now being upgraded to CORSIKA
8 and will be written in C++ [81, 82]. Radio emission has been implemented in CORSIKA 8 and
is ready to use [83, 84]. COSMOS X is an independently developed piece of software which also
simulates extensive air showers and will be important for Cross checks [85]. A user friendly package
named “Chromo" is being prepared and will require the user to only write a few lines of code to
simulate particle interactions. Cherenkov light emission packages are being developed which utilize
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GPUs [86] and python (CHASM) [87]. For the purpose of understanding inclined, high energy
neutrino induced air showers, simulation studies involving 100 PeV extensive air showers in the
upper atmosphere [88], atmospheric skimming showers [89], and radio emission from inclined
showers [90] were reported. A study of the neutron component of extensive air showers was also
performed [91].

9. Geophysics and interdisciplinary research — How useful are cosmic rays for us?

Thunderstorms and lightning are trendy topics in the intersection of geophysics and cosmic
ray physics. LHAASO-KM2A measured a correlation between the strength of the electric fields of
thunderstorms and cosmic ray shower rates [92]. TA recorded a lightning strike using both a high-
speed camera and cosmic ray detector [93]. Auger reported sub-millisecond pulses of gamma-rays
measured by their surface detectors [94]. Also the ELVES and halo which are atmospheric transient
emissions related to lightnings were precisely measured by their fluorescence detector [95].

The GROWTH project is a new initiative to deploy portable gamma-ray detectors across
Japan’s Kanagawa prefecture [96]. GROWTH reported a possible connection between a cosmic
ray interaction and a triggering of the lightning flash in thundercloud [97], and measurements
of the gamma-ray glow spectrum [98]. The results were consistent with the expectation from
bremsstrahlung emission [99]. This detector can be used for exploring the water resources at the
Moon [100]. In space, Mini-EUSO showed results measuring multiple ring ELVES [13, 101]. A
seasonal variation in the number of lightning strikes was reported by GRAPES-3 [102]. LOFAR
has constructed a map of lightning strikes [103]. On a geophysics note, the Hunga Tonga-Hunga
Ha’apai volcano eruption was detected by GRAPES-3 [104] and HAWC [105].

There was significant progress in investigating large-scale historical objects using the cosmic
ray imaging technique of “muography”. The void room and north face corridor of the Pyramid of
Khufu were revealed by a nuclear emulsion detector [21]. The north face corridor was confirmed by
a photograph using a fiber-scope [106]. The rapporteur believes a portable detector with directional
sensitivity to muons is important to achieve precise measurements and progress muography.

10. Theory and phenomenology — How to interpret the experimental results?

Coming up with acceleration mechanisms which could accelerate cosmic rays to the highest
energies remains challenging and is a topic under debate. The theory and phenomenology of
the sites of acceleration and the effects of propagation on UHECRSs are crucial for interpreting
experimental results.

Star clusters and shocked stellar winds were proposed as possible cosmic ray sources to explain
both the energy spectrum and the transition in mass composition between PeV to EeV energies [107].
Galaxy clusters [108], ultra-fast outflows [109], stratified jets of active galactic nuclei [110] and jet
back-flows [111] were considered to be the highest energy acceleration mechanisms. Observational
constraints on transient scenarios, such as long gamma-ray bursts with low luminosities and tidal
disruption events were studied [112]. A particle-in-cell (PIC) simulation revealed that heavy ions are
accelerated efficiently because of their larger mass-to-charge ratio [113]. 3-dimensional Magneto-
Hydro-Dynamic (MHD) and test particle simulations were performed to investigate the particle
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acceleration and turbulent field amplification in a highly relativistic shock for the first time [114].
In the non-relativistic system, the efficient ion acceleration at a perpendicular shock, i.e. the angle
between the background magnetic field and the shock normal is 90 degrees, was demonstrated
by 3-dimensional hybrid (kinetic ions—fluid electrons) simulations [115]. Developing numerical
techniques [116, 117] and implementing machine learning techniques [118] in PIC simulations
allowed us to investigate the electron acceleration and the magnetic field amplification in the
non-relativistic shocks.

The difference in energy spectra between Auger and TA at the highest energies was interpreted
as a contribution from a local source [119]. Differences in the mass composition between the
two experiments could also be attributed to such a source [120]. However, it is difficult for these
local source models to explain the isotropic distribution reported at the highest energies. As M82’s
promise as a source for accelerating the highest energy cosmic rays has somewhat diminished, an
alternative explanation for the origin of the TA hotspot being an “echo” of Centaurus A’s active
past was proposed [121]. Possible source models where the origin of the TA hotspot is M82 [122]
and/or M83 [123] were also suggested. Taking into account the maximum rigidity diversity of
sources, it was found that, universally, there is a maximum energy that can be reached by these
accelerators [124].

An advantage of charged particles is that measuring deflections from sources allows the strength
and structure of the Galactic and extragalactic magnetic fields to be inferred. An attempt to reproduce
the observed large-scale dipole anisotropy above 8 EeV using the observed distribution of dark
matter and the Galactic and extragalactic magnetic fields was performed [125]. A new model of
the coherent Galactic magnetic field which includes the final polarized intensity maps from WMAP
and Planck was presented [126]. The expected excess distribution of UHECRs was estimated by
considering the propagation of UHECRSs in a turbulent intergalactic magnetic field [127]. Effects
of the Galactic magnetic field on energy spectrum and mass composition are investigated [128].
Assuming an individual extremely high-energy cosmic ray of a specific primary species, a method
to distinguish between steady and transient or highly variable sources, accounting for deflections
by the Galactic and extragalactic magnetic fields, was reported as a “treasure map” [129].

11. Developments in next-generation CRI observatories

To clarify sources of UHECRs, next generation observatories with extremely large exposures
are required. One method of obtaining such large exposures is by using satellites. The satellite
experiments POEMMA-Balloon and Radio (PBR) [130] and MUSES [131, 132] are planning to
launch in 2026. The uniform exposure in the northern and southern hemispheres is important for
Cross checks to confirm the reported hints of anisotropies at the highest energies.

Although primarily focused on radio observations of celestial objects, Square Kilometer Array
(SKA) will have the ability to measure extensive air showers with high resolution; <8 g/cm2 N Xpax
and 3% in energy [48]. Similarly, LOFAR 2.0 with low (30-80 MHz) and high (120-240 MHz)
band antennas will also allow for studies of the radio emission from extensive air showers [103].
Radio arrays specifically designed to measure extensive air showers from neutrinos and cosmic rays
are also being developed. Formulating a robust internal trigger for such arrays is a challenging
but essential task. RNO-G reported successful measurements of cosmic rays using their internal
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trigger [133]. GRAND has tested and validated their internal trigger in the laboratory and will
progress to testing in the field [134, 135].

The IceCube Surface Array Enhancement (SAE) is an installation of plastic scintillators at
IceTop which, when combined with the current ice-Cherenkov detector, will increase sensitivity
to the mass composition of primary cosmic rays [18]. SAE prototypes have been installed at both
Auger and TA sites for field measurements and Cross checks. IceCube-Gen?2 is a powerful cosmic-
ray detector and covers a broad energy range from 100 TeV to 10 EeV. Combined measurements of
Xmax and the muon component of air showers will provide a high precision measurement of the
mass composition in this energy range [136]. A prototype of ALPACA, ALPAQUITA, combining
plastic scintillators and underground water Cherenkov detectors in Bolivia, has started data-taking
to search for Galactic PeVatrons in the southern hemisphere [137]. The moon shadow was observed
with a significance of 6.90", demonstrating the detector’s performance.

To achieve an unprecedented exposure from ground based methods, cost-effective fluorescence
detectors are being developed. FAST [138] is utilizing a simplified mirror setup/optics, whilst
CRAFFT [139] is using Fresnel lens optics. FAST prototypes have been installed at both Auger
and TA for Cross checks on energy and Xpax scales [138]. The concept of a Global Cosmic Ray
Observatory (GCOS) poses a promising science case for high energy physics, fundamental physics,
particle physics and solar, geo and atmospheric physics [140]. The future objectives of UHECR
science, outlined in the Snowmass paper [141], were reported in the contributions [142, 143]. The
World-one Collaboration is absolutely essential for the timely realization of a future observatory.

12. Summary and future perspectives

The origin and nature of UHECRs are still inconclusive as of ICRC2023. Looking back 20
years, scientists and researchers have been successful in constructing giant ground based observa-
tories and pioneering measurements from space, resulting in a significant improvement in UHECR
detection. Unfortunately the origin and nature of UHECRs have proven to be more complicated
than our original expectations. The isotropic distribution of UHECRs implies a heavier composition
at the highest energies and uncertainties in the Galactic/extragalactic magnetic fields and source
density. Interdisciplinary studies such as combining geophysics and comic-ray applications have
made remarkable progress.

In ICRC2023 the rapporteur was delighted to meet the enthusiastic next-generation of cosmic
ray scientists and discuss thought-provoking ideas and promising future projects. Hopefully the
proceedings of ICRC2043, possibly held in Japan, will be described as follows; “After decades
of attempts to discover the origin of ultra-high energy cosmic rays, we have established a new
astronomy with ultra-high energy charged particles, firmly confirming their origin and nature”.
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