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1. Instrumentation

In the last couple of years there have been several instruments that kept producing scientific
results and new ones that recently started operation and are opening new windows in the electro-
magnetic (EM) spectrum with unprecedented sensitivity. There are also projected instruments that
have been approved or are proposed to either cover a given energy range with better sensitivity or to
improve the capabilities of the detections with respect to previous instruments. This section covers
all these instruments and it is divided into five different subsections with increasing energy. The
techniques used to detect gamma rays in these different energy ranges are also diverse, the sub-
GeV energy range being covered by balloons and satellites, the GeV to TeV accessible to Imaging
Atmospheric Cherenkov Telescopes and finally the TeV to PeV dominated by Particle Detectors.

1.1 The keV energy range

This energy range (also sub-MeV) is where phenomena like the Cosmic X-ray Background
(CXB) or Gamma Ray Bursts (GRBs) are monitored. There were presentation of balloons like
CXBe, the flexible X-ray detector focused on the CXB studies [1], POLAR-2, the next generation
of GRB polarization detector that will be located in the Chinese Space Station (CSS) after the
successful results of POLAR [2], the MoonBEAM cislunar SmallSat design [3] or XL-Calibur, a
proposal for a balloon-borne X-ray polarimeter [4].

1.2 The MeV energy range

In this energy range, phenomena like positron annihilation, nuclear lines and polarization are
studied. The MeV gap is the region of the EM spectrum that has not been covered by any instrument
with an improved sensitivity since the launch of COMPTEL several decades ago (see Fig. 1). To
cover this gap, there are several proposals like the the COSI Compton small explorer satellite to be
launched in 2027 [5]. There are also balloon prototypes of more ambitious projects like ComPair
[6], that will be carrying some of the load proposed for AMEGO-X, the medium satellite explorer
improving about two orders of magnitude the sensitivity in the MeV energy range [7] as it can be
seen in Fig. 1.

This energy range will not only be covered by instruments focused on improving the sensitivity,
but also on proposals to improve the angular reconstruction of the received photons, like GECCO,
the Compton satellite with Coded Aperture Mask [8]. Other instruments proposed in this energy
range are balloons like SMILE-2 [9], GRAMS [10], miniSGD [11], HEPD-02, a payload of CSES
[12] and the XRPix detector [13].

1.3 The GeV energy range

This energy range was traditionally dominated by instruments that had been studying point-like
sources as well as large scale emission for several years. We had reports from the CALET satellite
at the ISS [14] and DAMPE [15] that have both been working for around 8 years. We also had
studies of performance of polarimetry with Fermi-LAT [16] and the latest results from the GRAINE
balloon whose last flight took place in 2023 [17]. Future proposals of satellites like HERD for the
CSS [18], VLAST [19] or ADAPT, a balloon with a final goal of a super-Fermi satellite [20].
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Figure 1: MeV gap and instruments proposed for the future AMEGO-X [7].

1.4 The TeV energy range

This energy range has usually been covered by imaging atmospheric Cherenkov telescopes
(IACTs), instruments with excellent resolution that allows to study point sources, morphology
and achieve a good spectral precision, systems like MAGIC [21] that have been operating during
20 years, presented their updates. We also had updates from instruments in construction like
the ASTRI Mini-Array project [22]. The next generation of instruments working in this energy
range, that will improve the sensitivity and resolution is the CTAO Observatory. CTAO will be
composed of telescopes of different sizes, the Large-Sized Telescope will be the largest of the array
and the prototype is already ready and is showing its first results [23], confirming an excellent
performance [24] (see Fig. 2). The other telescopes of the array like the Medium-Sized Telescope
[25], Schwarzschild-Couder Telescope [26] and Small-Sized Telescope [27] also showed their
updates, as well as the extension of the observatory with the CTA+ project [28].

New developments in this energy range like the HADAR refracting atmospheric Cherenkov
telescope [29], the MAGIC + LST-1 joint usage [30] and a proposal to connect them with a
hardware trigger with the HaST system [31], the study of divergent pointing to increase IACTs
field of view [32], LACT, an array of imaging atmospheric Cherenkov Telescopes for LHAASO
[33] or the development of Silicon Photomultiplier cameras for LSTs [34]. Finally, the usage of
VERITAS [35] and MAGIC [36] to perform stellar intensity interferometry measurements with
very competitive performance was also shown at the conference.
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Figure 2: Differential sensitivity of the Large-Sized Telescope of CTAO [23].

1.5 The PeV energy range

This energy range, even though it was within reach since several years, it was only accessible
to study several sources since less than a decade. It is worth highlighting the role that HAWC [37],
working for more than eight years and LHAASO [38] have done extending the energy coverage. One
cannot forget the role that other instruments working in the same energy range have been performing
since several years ago like Tibet AS-𝛾 [39], GRAPES-3 [40] and the TAIGA-IACT telescopes
for Multi-Messenger observations [41]. It is worth mentioning that all the above instruments are
working in the Northern hemisphere, and therefore a similar coverage in the Southern Hemisphere
comes as a must, thus, the future is also very promising for instruments covering this energy range.
In the Southern Hemisphere, there are arrays planned or being constructed with detectors based
on scintillators like ALPACA [42] or its upgrade Mega-ALPACA [43]. The Southern Wide Field
Gamma-ray Observatory (SWGO) [44], whose technology and location are still under study, has
ambitious sensitivity and resolution goals to be able to investigate multi-TeV emitting sources.
There are also proposals like PANOSETI, the Pulsed optical signal detector that can also be used
for PeV Gamma-ray Astronomy [45].

2. Galactic science

One of the most important unanswered questions in astroparticle physics as of now is that of the
sources accelerating hadronic CRs up to PeV energies, the so-called PeVatrons. It is widely agreed
that these sources need to have Galactic origin, but there are a zoo of different sources modeled to
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Figure 3: Boomerang spectrum including data from different experiments [50].

accelerate particles up to PeV [46], we will discuss some of the most important candidates as well
as sources of leptonic CRs known to have the capabilities to produce PeV particles.

2.1 Supernova Remnants

The usual suspects are Supernova Remnants (SNRs) due to the fact that they provide in the
Galaxy enough power to account for all galactic cosmic rays with only a fraction of their total
energy budget. Some already known sources for which we had some updates are W51C, measured
by LHAASO up to 300 TeV [47] for which still hadronic models (with an energy cut-off at 400
TeV) are favored to explain the emission. Updates on the measurement of another claimed PeVatron
SNR G106.3+2.7 (Boomerang) were shown by HAWC [48], MAGIC [49] and also VERITAS [50],
showing a spectrum that extends up to 500 TeV (see Fig. 3). The VHE observations of 𝛾 Cygni
[49, 51] favor a hadronic origin for the emission although also reaching lower than PeV energies.
New sources like LHAASO J2002+3238 is spatially associated with SNR G69.7+1.0 [52] but the
origin of the VHE 𝛾-ray emission is unclear whether it is leptonic or hadronic. SNR G150.3+4.5
observed by LHAASO [53] is a SNR with a pulsar at the center for which both leptonic and hadronic
scenarios work. Unfortunately the TeV Morphology of the source is still under study and whenever
settled, it may help distinguishing scenarios.

Other SNRs accelerating protons to lower energies are, for example, the HB9 delayed emission
due to protons illuminating a nearby molecular cloud by Fermi-LAT [54] (see Fig. 4) or HB3 [55]
and Puppis A [56, 57] detections by the same satellite. Finally, modeling of these sources is very
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Figure 4: HB9 Skymap above 1 GeV (left panel) and 10 GeV (right panel). Radio continuum 1420 MHz
are shown in green and 12CO (J=1-0) in cyan [54].

important in order to reproduce their morphology and spectra as it wass shown for W28 [58] and
RXJ1713.7-3946 [59]

2.2 Stellar Clusters

Since PeV proton acceleration is difficult to be achieved for SNRs, people started to look for
other source types being able to reach PeV energies and with enough energy budget to be able to
explain the energetics observed for the local CR spectrum. Stellar Clusters, with their strong winds
due to the abundance of OB stars, were other obvious candidates. Since several years there has
been an increase interest to investigate the origin of their VHE 𝛾-ray emission through spectral
and morphological studies. There are several models manage to get particles up to PeV energies
[60, 61] and prospects to search for their signatures [62] not only in gamma rays, but also in
neutrinos. For sources like the Cygnus Cocoon [63] it was shown that synchrotron emission limits
the lepton contribution at the highest energies to be less than 25% emission beyond PeV in LHAASO
data [64]. Westerlund 2, on the other hand, shows several components aligning with molecular
structures [65]. For W43, the 𝛾-ray emission is likely generated by massive stars accelerating CRs
and interacting with gas [66].

2.3 The Galactic Center

The Galactic Center is a very complex region with several sources possibly contributing to the
VHE 𝛾-ray emission in the region. PeVatron acceleration was claimed in the past [67] by H.E.S.S.
and in this conference we had a revisiting of the region with the usage of LST-1 and MAGIC [68].
The correlation of the gamma rays with gas tracers is very complicated in the region and actually
any modelling needs to include 3D components to be able to properly reproduce the 𝛾-ray emission
[69]. Due to the mass quantity in the region, there is also the possibility of a non-negligible quantity

6
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of dark matter as it was searched for by VERITAS [70] or DAMPE [71]. Finally, structures like
the Fermi Bubbles that have not been seen at higher energies up to now were also searched for by
instruments like LHAASO [72].

2.4 Diffuse emission and Cosmic Rays

LHAASO recently reported the study of diffuse emission in the inner galactic plane using both
the KM2A and the WCDA detectors [73, 74]. It was also also claimed that it was difficult to explain
this emission using only standard CR propagation. Several works were presented in this respect in
which they claimed that depending on the parameters of the propagation, the emission from the CR
sea or with the contribution from sources may be the answer to explain this new data [75–81].

2.5 Pulsar Wind Nebulae

Even though most likely accelerating leptons, Pulsar Wind Nebulae (PWNe) like the Crab
Nebula need to be accelerating electrons and positrons up to PeV energies to produce the broadband
emission observed and polarized X-rays as seen by IXPE [82]. This acceleration can be explained
by models like the one presented in [83], but there is also the possibility of a hadronic contribution
to the VHE gamma-ray spectra [84]. Moreover, the Crab Nebula also shows flares at GeV energies
as seen by Fermi-LAT and AGILE, and a very extensive study whose conclusion is that GeV flares
mary not be driven by a single mechanism was also shown [85].

Another interesting PWN is HESS J1825-137 viewed by LHAASO [86] and HAWC [87].
They measured spectra ranging from a few TeV up to above 200 TeV showing an energy-dependent
extended morphology that points towards the presence of electrons injected by the central source
and being cooled down. For HAWC J2031+415, the HAWC morphological studies do not show
any energy-dependence [88], but more data are needed to support the PWN scenario. Additionally,
the magnetar wind nebula around Swift J1834.9-0846 [89] claimed to be the first magnetar wind
nebula powered by the internal magnetar energy of the central source.

2.6 Halos

Halos are regions of slow propagation glowing in gamma rays powered by pulsars [90] in
general dominated by diffusion [91] (although there are models that claim that the mechanism is in
dispute [92]). Geminga and Monogem were the first confirmed sources of this type [93] and there
were updates by HAWC [94] and H.E.S.S. [95] presented at the conference. Most importantly, there
was a new measurement of the emission around Geminga, this time using LHAASO-KM2A [96] in
which there are claims of asymmetric diffusion as it is shown in Fig. 5. This could be related to the
alignment of the magnetic field in the region or that that the propagation is happening inside/outside
of the SNR in different regions.

The extended emission surrounding PSR J1813-1749 (see Fig. 6) , despite the young age
of the pulsar at the center, shows characteristics of a halo [97]. There are also other studies like
the LHAASO measurement of the PWN tail of PSR J1740+1000 [98] that might point towards
a halo origin, but pulsar offset and small extension may make the scenario not suitable. HAWC
J0359+5414 was put forward as a halo candidate [99] with two powerful pulsars in the region may
power it. Additionally, HAWC searches for halos around pulsars [100], millisecond pulsars [101]

7
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Figure 5: Geminga VHE 𝛾-ray emission observed by LHAASO-KM2A [96].

and M31 [102] were also shown. Finally, we also had prospects for CTAO [103] and eROSITA
[104].

2.7 Pulsars

There are three pulsars that have been detected in the VHE 𝛾-ray band. Two of those (Geminga
and Crab) have already been detected with the LST-1 [105]. Both peaks observed in the Crab and
Geminga detected with a high significance as it can be seen in the phaseogram shown in Fig. 7.
LHAASO observed gamma rays from the location of the millisecond pulsar J0218+4232 [106], but
even though spatially coincident, it is difficult to associate it with the millisecond pulsar and MAGIC
did not find any emission coming from the region [49]. Finally, a study of the X-ray and 𝛾-ray
emission of the variable 𝛾-ray pulsar PSR J2021+4026 [107] observed in different wavelengths
shows a gamma-to-X shift of 0.21 in phase related to mode change.

2.8 Binaries

The microquasar SS 433 was first detected by HAWC and deeply studied by H.E.S.S., that
favors a leptonic origin of the emission [108]. The electrons propagate from the central source
and cool down faster for higher energies as it is depicted in Fig. 8. HAWC also updated its
original results with a well-measured spectrum [109] in contrast with the original report of only
one flux point. Other results on the study of binary systems were the observation of the periastron
passage of PSR B1259-63 [110], composed by a pulsar and a O9.5Ve-type star binary system with
equatorial disk that the pulsar crosses twice. It showed X-ray-to-TeV correlation more strongly
after second disc crossing, but no GeV-to-TeV correlation. The 𝛾-ray binary LMC P3 showed the
peak of emission after inferior conjunction as seen by H.E.S.S. [111]. We could also see the VHE

8
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Figure 6: PSR J1813-1749 extended emission above 0.4 TeV seen by H.E.S.S..

Figure 7: Geminga pulsar phaseogram.

gamma-ray observations [112] and modeling [113] of Eta Carina, the MAGIC observation of HESS
J0632+057 and MAXI J1820+070 [49], the LS 5039 modulation and source coincident with V4641
Sgr detected by HAWC [114] and the observation of the Be/X-ray binary LS V +44 17 by VERITAS
during outburst [115].

2.9 Novae

Although novae had been established as gamma-ray emitters several years ago, they had never
been detected in the VHE 𝛾-ray band until RS Ophiuchi, a symbiotic nova that erupted August
8th 2021 was detected by H.E.S.S., MAGIC and the LST-1 for several days after the eruption (see

9
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Figure 8: SS 433 Energy dependent morphology [108].

Fig. 9 for the evolution). Proton acceleration is strongly favored [116, 117] to explain the 𝛾-ray
emission and these accelerated protons will eventually escape nova shock and contribute to the
sea of CRs. Although the previous works using simple modeling assume that the same particle
population produce the GeV-to-TeV emission, there are other models that disfavor the single-shock
scenario to explain it [118].

2.10 Galactic Transients

There are a plethora of source types that might produce transient 𝛾-ray emission [119]. There
are other candidates for PeV cosmic-ray acceleration like for example core-collapse supernovae
in dense environments. Transitional millisecond pulsars whose origin of the gamma-ray emission
during the intermediate accretion stage is unclear or magnetars and Fast Radio Bursts searches with
VERITAS [120], H.E.S.S. [121], HAWC [122], Swift and Fermi-LAT [123].

10
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Figure 9: Daily RS Oph spectra [117].

2.11 Unidentified sources

There are still sources for which the nature of their emission is still unclear and they are
therefore classified as unidentified. Below we can find a list of them with a few notes that may help
to identify them in the future or understand the origin of their current classification.

• MGRO J1908+06. Leptonic model favor to explain the VHE gamma-ray emission observed
by VERITAS [124].

• LHAASO J0341+525. Emission confirmed by HAWC [125]

• LHAASO J1959+2850. Powerful pulsars in the surroundings, therefore it is likely a PWN
[126].

• LHAASO J1929+1745 region [127]. It shows a similar morphology than that in HAWC [37]

• LHAASO J2108+5157. Observed by LST-1 [128] and VERITAS+HAWC [129]. Molecular
clouds in the surroundings [130] may point towards a hadronic origin of the emission,
although modeling shows a compatibility between the origin being leptonic as well.

11
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Figure 10: BL Lac Fermi-LAT long-term lightcurve evidencing the 2020, 2021 and 2022 flares together
with other episodes[149].

• HAWC counterpart of LHAASO J1849-0003 [131]. There is a high spin-down power pulsar
in the region, and therefore the origin is expected to be of a PWN.

• HESS J1809-193. Observed by HAWC [132], the lepto-hadronic scenario is favored by the
modelling, but a halo could also be the origin as indicated by X-rays from Chandra [133].

3. Extragalactic science

3.1 Starburst Galaxies

Starburst Galaxies are factories of cosmic rays that glow in gamma rays. The origin of their
emission is thought to be due to the strong winds from the stars contained in the galaxy. In this
conference, we had an update on the M82 detection by VERITAS[134] and also the proposal of
PWNe as the origin of the 𝛾-ray emission and their non-negligible contribution to the Extragalactic
Gamma-Ray Background [135]

3.2 Blazars

Active Galactic Nuclei (AGNs) present different features depending on the angle their ultrarel-
ativistic jets form with the line of sight from the Earth. Blazar jets point directly towards the Earth.
We had several presentations about the theory and prospects, like those studying the nature of TeV
𝛾-ray variability in blazars [136, 137], SED modeling [138] and second-order effects [139].

The theory for the emission of low-luminosity AGNs is advancing with studies like the spine-
sheath jet model [140] or that of the emission from their jets [141]. For the future we also had a
novel method to identify blazar emission states using clustering algorithms [142] and prospects for
CTAO with the study of bright flares [143], variability predictions [144] and redshift determination
[145].

BL Lac is the prototypical blazar and it shows very frequent flares (see Fig. 10) as those
observed by MAGIC in 2020 [146], LST-1 in 2021 [147] and VERITAS in 2022 [148], every one
of them evidencing a different aspect of the emission.

Mrk 421 and 501 are some of the most monitored blazars in the VHE 𝛾-ray sky. We had updates
on the observations by HAWC [150] and LST-1 [149], added to the X-ray and TeV correlation study

12
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Figure 11: PG 1553+113 2.2 (right panel) and 21.8 year period (left panel) derived using optical data in the
V-band [154].

from Mrk 421 by VERITAS [151] that favors leptonic models and the Lorentz Invariance Violation
constraints using Mrk 421 as well [152]. Kinks may be present in the spectra of these sources, as it
hinted in the past, which may point to structured jets [153].

PG 1553+113 has been claimed to contain a binary black hole at the center [154] because
of the evidence for a 2.2 yr periodicity that can be seen in Fermi-LAT data. In this contribution,
the hypothesis that was put forward was that the 2.2 yr periodicity of the 𝛾-ray data can be part
of a longer trend with a long-term period of ∼22 yr that has a 3𝜎 statistical significance when
considering long-term optical data in the V-band (see Fig. 11). A lump scenario was put forward
as the explanation for this additional periodicity.

Finally, there are monitoring programs of several AGNs, like that shown in the VERITAS
AGN Highlights [155]: RBS 1366 [156] and S3 1227+25 [157], flaring Blazar ToOs with H.E.S.S.
[158], HAWC detection of Mark 421, 501, M87 and 1ES 1215+303 [159], the Flat Spectrum Radio
Quasars monitoring with MAGIC [160] or the MAGIC detection of GB6 J1058+2817 and B2
1811+31 [161].

3.3 Radio Galaxies

Radio Galaxies are AGNs whose jet subtends a larger angle than blazars with respect to the
line of sight from the Earth. M87 is one of these long-known radio galaxies for which a long term
monitoring by MAGIC, VERITAS and HAWC was shown [162]. There were additional studies
of the VHE 𝛾-ray Propagation [163] and morphology [164], for which the extension upper limits
exclude the radio lobes as the origin of the VHE emission in the low state. Centaurus A is another of
these sources for which the GeV gamma rays support a jet scenario, but hard X-rays are consistent
with jet and corona models [165]. In general, for this type of sources, the comparison of the X-ray
spectra of GeV-loud/quiet ones show that GeV-loud ones have a steeper spectrum and jets are less
inclined [166].
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Figure 12: GRB 221009A count rate (left panel) and LHAASO spectra for different integration times after
the burst (right panel).

3.4 Gamma Ray Bursts

The merging of two compact objects or a hypernova are the origin of the so-called Gamma Ray
Bursts (GRBs). In this conference, we had the luck of being less than one year away from GRB
221009A, the brightest of all time (B.O.A.T.).

Several GRBs have been detected in the last few years at TeV energies while we were searching
for them since many years ago. The possibility that this distribution has only a chance origin
is discussed in [167]. The reality is that at the moment, five GRBs have been detected at VHE
gamma rays: GRB 180720B (H.E.S.S.), GRB 190114C (MAGIC), GRB 190829A (H.E.S.S.), GRB
201216C (MAGIC), GRB 221009A (LHAASO), all of them are long duration GRBs (duration T90
> 2 sec) and what it has been detected is the afterglow emission very likely produced by Synchroton
Self Compton (SSC) emission by relativistic electrons in the forward shock.

The B.O.A.T. mentioned above (GRB 221009A) showed no polarized emission as measured
by IXPE [168], breaking records (see Fig. 12) in Fermi-GBM [169] and Fermi-LAT [170] being
the one with the highest isotropic energy, the highest fluence, the highest peak flux and the 3rd
highest isotropic intrinsic luminosity. No detection by IACTs [171] and a detection by LHAASO
that puts a lot of constraints [172]. LHAASO detected photons up to 13 TeV from the afterglow
[172] putting the most stringent limits on the prompt TeV emission (emission detected only 230
s after the alert) that could mean that either there is no SSC emission or the absorption is too
high. LHAASO data above 3 TeV also hints to an additional component as it is seen on the right
panel of Fig. 12. Due to the energies reached by this emission, it is difficult to explain ≥ 10 TeV
leptonic emission due to SSC [173]. Thanks to these observations, there were constraints put on the
emission of Ultra High Energy CRs from GRBs [174], limits derived on the Intergalactic Magnetic
Field (IGMF) (> 10−18 G [175] or 4× 10−14 G [176], depending on the assumption) and even dark
matter constraints [177].

We also had theory presentations like that of the study of the origin of afterglow plateaus with
a promising interpretation coming from structured jet [178]. Models for the afterglow emission
of GRBs based on GRB 190114C [179, 180], constraints on the IGMF [181] using GRB190114C
data.
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Finally, further GRB searches were presented like that from LHAASO-WCDA [182] for which
only upper limits were derived so far except for GRB 221009A. There were also contributions about
the monitoring of SDSS 1430+2303, the first candidate host for the merger of a Supermassive Black
Hole Binary with H.E.S.S. [183] with no detection so far, the Fermi-LAT detection of the afterglow
of GRB 211211A [184] or the CTAO prospects comparing different CTAO Medium-size telescopes
array layouts performances for gamma-ray burst observations [185].

3.5 Cosmology

The Extragalactic Background Light (EBL) is the light emitted by galaxies after the re-
ionization era. This EBL has been measured using results from HE and VHE gamma-ray observa-
tions from distant AGNs and computing the 𝛾-ray attenuation of their spectra. In this conference we
had a proposal for a new EBL measurement, this time using a Bayesian mathematical framework
[186] that in general agrees with previous estimations except at low wavelengths. Using this EBL
measurements, one can perform other cosmological estimations, such as for example to put upper
limits on the redshift of galaxies [187] or the measurement of the Hubble constant [188]. Addition-
ally, using the spectra from several AGNs, the first EBL skymap was built to study its anisotropies
[189] for which no significant dipole is observed at the moment, but shows promising results for
the time of the advent of CTAO when more precise measurements will be performed.

4. Surveys, Software and analysis methods

There were several surveys and catalogs covering a wide energy range that were presented
in this conference. We could see the presentation of several results obtained using satellites like
INTEGRAL, COMPTEL and Fermi-LAT [190], DAMPE with almost 250 sources in 7 years of data
[191] or CALET with an improved 𝛾-ray reconstruction [14]. We also saw the preparation for the
second H.E.S.S. Galactic Plane Survey catalogue [192] and the second HAWC high energy catalog
[193] apart from the presentation of LHAASO catalogs below [194] and above 25 TeV [195].

The software development is also essential for the advancement of Science, in particular in
fields in which the analysis of Big Data is a must. There were several presentations about methods,
simulations and analysis software like ctapipe [196], the low-level data processing pipeline software
for CTAO, gammapy [197] the high level one, pyirf [198] the software to build the instrument
response functions in CTAO, astripipe [199] the ASTRI pipeline, NectarChain [200] Nectar one or
cosipy [201], the COSI pipeline or libraries to fit data (Bjet_MCMC) [202] or catalogs (STeVECat
[203]). It is also worth noting the role that deep learning is starting to acquire, not only to improve
the data processing, but also in any task related to population classification or regression of some
quantity, for which we had more than ten contributions in the conference.

5. Final remarks

From the results shown at the conference, my personal take is that we currently are in a
transitional period: we have been having a couple of decades of great data that have been surprising
us and telling us in which direction to move forward with the models, theory and phenomenology,
but we need to take a leap step to be able to disprove all these models that are now at hand. There
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are a some exceptions like a few instruments coming into operation that are already producing great
results, and also transient events that are always surprising us. But we are lucky, the future is very
bright, in the next few years there are projected experiments and observatories that will boost the
covering of the 𝛾-ray sky with an unprecedented sensitivity that will imply an expansion in the
theories explaining all these new observations.
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