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Multi-flavour neutrino searches from the Milky Way Galaxy

1. Introduction

Situated at the geographic South Pole, the IceCube Neutrino Observatory stands as a cubic-
kilometer neutrino detector, at a depth ranging from 1450 m to 2450m [1]. IceCube provided
evidence for the existence of various neutrino sources, including the flaring blazar TXS 0506+056
and the active galaxy NGC 1068 [2—4]. The identification of these sources relied on the analysis
of data derived from charged-current muon-neutrino interactions, whose signature in the detector
is a track-like event. Both TXS 0506+056 and NGC 1068 are located in the Northern Sky, in an
optimal region for the search of point sources employing through-going tracks [5] from the Northern
Hemisphere. However, the presence of a large atmospheric muon background greatly diminishes
the discovery potential for sources within the Southern Sky. To address the challenge of enhancing
sensitivity in the Southern Sky, two event selections have been introduced: cascade-like events and
starting tracks, described in [6-9] and [10].

The study of neutrinos offers invaluable insights into both astrophysical phenomena and the
fundamental realm of particle physics. Beyond hypothetical sources within our own Galaxy, the
interaction of cosmic rays during their acceleration and propagation through the interstellar medium
can generate high-energy neutrinos. Consequently, the Galactic plane has long been postulated as
a possible source of neutrino emissions.

Recently, this postulated emission from the Milky Way has been observed at a 4.50 level
of significance by using cascade-like events collected by IceCube [11]. While this observation
identifies the Galactic plane as a source of neutrinos, the utilization of cascade-like events alone
complicates further interpretation of the signal. Both starting tracks and the through-going tracks
from the Northern Hemisphere are characterized by higher resolution. For this reason, a combination
of these three datasets can lead to a better interpretation of the emission description from the galactic
plane.

In this work, we present a combined dataset that merges the different event selections, in-
cluding through-going tracks from Northern Hemisphere, cascades, and starting tracks, to achieve
comprehensive sky coverage and sensitivity to all three neutrino flavors. By exploiting the unique
characteristics of each event selection, we aim to enhance our ability to identify and study astro-
physical neutrino sources.

Here, we provide a description of the dataset, discuss its characterization in terms of effec-
tive area and angular resolution in section 2, and present the sensitivity of the combined dataset
compared to individual event selections in section 3. Furthermore, in section 4 we explore the
dataset’s potential for Galactic Plane searches, where neutrinos produced from cosmic-ray interac-
tions in the Galactic medium are expected to be present. The combined dataset offers improved
sensitivity in probing the Galactic Plane emission, providing new opportunities for understanding
the astrophysical processes involved.

2. Dataset Description

In this work, different event selections are combined to achieve full sky coverage and sensitivity
to all three neutrino flavors. The event selections include through-going tracks from Northern
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Figure 1: Simulated event topologies considered in this joint analysis: (a) contained cascades, (b) partially
contained cascades, (c) through-going tracks, (d) starting tracks. Color, from red to blue, shows the photons
arrival time at the optical module, while the arrow shows the reconstructed arrival direction of the event.

Hemisphere, cascades, and starting tracks. A visualization of the characteristic events included in

this analysis is shown in Fig. 1, which are:

1. Contained (fig. 1a) and partially contained (fig. 1b) cascades-like events. Cascades are pro-

duced from neutral-current interactions of all neutrino flavors and charge current interactions

of flavors other than muon neutrinos. These events have a lower angular resolution com-
pared to track-like events but can be easily distinguished from the dominant background of
downward-going muons from atmospheric interactions in the Southern Sky.

2. Through-going muon tracks (Fig. 1¢) from Northern Emisphere. These events are induced by

charged current muon neutrino events where the interaction vertex can be outside the detector

volume. Allowing neutrinos to interact outside the instrumented volume achieves a large
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effective area. However, the analysis needs to be limited to the Northern Hemisphere where
the Earth efficiently filters atmospheric muons.

3. Starting muon tracks (Fig. 1c) are events induced by charged-current muonic neutrino in-
teractions where the interaction vertex is contained in the detector. By identifying neutrino
events that start in the detector, the atmospheric muon component is reduced while retaining
a high rate of starting neutrino events.

Each of these event selections is differentiated not only by event topology but also by directional
and energy reconstruction. To ensure independence among the different datasets and simplify their
combination, an analysis of the overlapping events between them was performed using simulations.
Our goal is to maximize the sensitivity of the combined dataset by establishing a rule for assigning
overlapping events to a single dataset.

The overlap between cascades and tracks is minimal. The events belonging to the overlap
exhibit a topology resembling cascades. As a consequence, the reconstruction of cascades offers
a better angular and energy resolution compared to other selections. Therefore overlapping events
are considered in the cascade event selection and removed by the other selections.
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Figure 2: (2a) Effective Area of the Combined Dataset (black solid line) compared to Through-going Tracks
(green dashed-dotted line) [5], Cascades (solid blue line) [10], and Starting Events (red dashed line) [6].
(2b) Comparison between the angular resolution of the Through-going Tracks (blue), Cascades (green), and
Starting Events (red).

On the other hand, the overlap between through-going muons from the Northern Hemisphere
and starting tracks is more significant, with approximately 50 % of starting tracks being contained
in the through-going dataset. The overlapping events are all up-going events with the interaction
vertex contained within the detector. In this case, the reconstruction that maximizes sensitivity is
that of starting tracks.
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Fig. 2 shows the characterization of the combined dataset. The left panel presents the all-flavour
effective area, averaged over the entire sky, of the combined dataset (solid black line) compared to
through-going tracks (green dashed-dotted line), cascades (solid blue line), and starting events (red
dashed line). The right panel illustrates the angular resolution of the different datasets considered.
The combined dataset benefits from the large effective area of cascades/through-going tracks and
the high angular resolution of starting/through-going tracks.

3. Sensitivity

The combined dataset can be used for the search of astrophysical neutrino sources. As
previously shown, the dataset benefits from the advantages of the individual event selections. This
implies that the dataset defined in this work is extremely promising for searches in both the Southern
and Northern Sky.

Fig. 3 presents the per-flavor 90 % sensitivities of the combined dataset (black) compared to
upgoing tracks (green), cascades (blue), and starting events (red). The figure also includes the 50
discovery potential flux as a function of the sin of declination for a source spectrum proportional
to E~2. In the Northern Sky, through-going tracks have a dominant effect, while the contribution
related to starting tracks and cascades is more relevant in the Southern Sky.
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Figure 3: Per-flavor sensitivities of the combined dataset (black) compared to through-going tracks
(green) [5], cascades (blue) [10], and starting events (red) [12]. See text for more details.



Multi-flavour neutrino searches from the Milky Way Galaxy

4. Galactic Plane Searches

In cosmic-ray interactions with the Galactic medium, the production of neutral pions gives rise
to high-energy gamma rays. Similarly, in the case of neutrinos, the production of neutrinos occurs
through the decay of charged pions. By investigating the emission of neutrinos from the Galactic
plane, we can gain insights into the properties of our Galaxy.

IceCube has detected neutrino emission from the Milky Way through the analysis of cascades
applied to a 10-year dataset. By comparing diffuse emission models to a background-only hypothe-
sis, a significant neutrino emission originating from the Galactic plane has been identified at a 4.50
level of significance. The signal observed is consistent with diffuse emission of neutrinos from the
Milky Way but could also arise from a population of unresolved point sources [11] therefore further
investigations are needed.
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Figure 4: Fermi-7® model [13] of diffuse Galactic neutrino emission. The model is convolved with the
IceCube detector acceptance, as shown in panel (a), and then smeared with Gaussian distributions representing
the different dataset uncertainties. The applied smearing values are as follows: (b) 0.3° for upgoing-tracks,
(c) 1.0° for starting tracks, and (d) 7.0° for cascades.

In this work, we explore the potential of the combined dataset for Galactic plane searches.
The improved sensitivity and sky coverage of the combined dataset enable a more comprehensive
investigation of neutrino emission from the Galactic plane. In this work a model based on Fermi-
LAT observations [13] is tested. The model is reported in fig. 4 where the predicted neutrino flux
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from the plane is convolved with the IceCube detector acceptance, as illustrated in panel (a). To
incorporate the uncertainties of the different datasets, Gaussian smearing is applied. It is important
to note that the values used for smearing in panels (b), (c), and (d) (0.3° for through-going tracks,
1.0° for starting tracks, and 7.0° for cascades) are provided here as examples. In the actual analysis,
a per-event uncertainty is utilized, which means that each event in the dataset has its own specific
uncertainty rather than applying a single uncertainty value for the entire dataset.

The results show that the combined dataset provides a significant improvement in sensitivity
compared to individual event selections, particularly in the Galactic plane region.

Dataset Sensitivity Discovery Potential
(107" TeVem™2s7!]  [107" TeVem™2s7!]

Starting Tracks 2.67 4.62
Cascades 0.60 2.46
Combined 0.49 1.71

Table 1: Sensitivity and discovery potential obtained through the combined dataset, to a model based on
the Fermi-LAT observations [13]. The sensitivity and discovery potential are also reported for cascades [10]
and starting tracks [6] for comparison. The combined dataset gives the best sensitivity.

The sensitivity derived for the model is presented in Table 1, compared to the published
sensitivities obtained using starting tracks [6] and cascades [10]. Sensitivities in this work do not
include the effects of systematic uncertainties. Due to their smaller effective area, starting tracks
exhibit lower sensitivity compared to the other datasets. However, starting tracks offer a significant
contribution in the southern sky. On the other hand, cascades have a larger effective area in the
Southern sky, resulting in the highest sensitivity when considered individually. The combined
dataset benefits from the contribution of all individual datasets, as can be observed in Table 1,
resulting in the highest sensitivity overall.

5. Conclusion

In this work, we have presented a new analysis that combines through-going tracks, cascades,
and starting tracks for comprehensive sky coverage and improved sensitivity to astrophysical neu-
trino sources. The dataset’s characterization in terms of effective area and angular resolution
demonstrates its advantages compared to individual event selections.

The combined dataset, as can be observed from the improved sensitivities, is extremely promis-
ing, and can provide the opportunity to probe potential neutrino sources with enhanced observation
power.
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