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Quantum decoherence of neutrino states is an effect that is proposed in various theories of quantum
gravity. It is envisaged to emerge from interactions of the neutrino as a quantum system with
the environment and may destroy the superposition of neutrino mass states, which leads to a
modification of neutrino oscillation probabilities.
KM3NeT/ORCA, a neutrino telescope designed to detect various neutrino flavours across a broad
spectrum of energies, can probe this phenomenon. ORCA is a water Cherenkov detector that is
currently under construction in the Mediterranean Sea. It was designed to detect atmospheric
neutrinos in the GeV energy range. The main objective of ORCA is the precise measurement of
neutrino oscillations. Therefore, the detector provides the possibility to investigate various beyond
Standard Model scenarios that may alter the oscillation pattern.
This contribution reports on first constraints on the strength of decoherence effects with KM3NeT.
We provide upper limits on the decoherence parameters 𝛾21 and 𝛾31. The high-purity neutrino
sample used for this analysis was collected with a six Detection Units configuration of ORCA with
an exposure of 433 kton-years.
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1. The KM3NeT detectors

The KM3NeT research infrastructure comprises two water Cherenkov detectors which are
currently under construction in the Mediterranean sea. These detectors, known as KM3NeT/ARCA
and KM3NeT/ORCA are composed of 3D arrays of Digital Optical Modules arranged in vertical
Detection Units. Each of the modules hosts 31 Photomultiplier tubes which collect Cherenkov light
emitted by the charged particles produced in neutrino interactions. ORCA is optimized to detect
atmospheric neutrinos in the GeV energy range and to precisely measure the neutrino oscillation
parameters. In the final configuration the ORCA detector will encompass 115 Detection Units
yielding a total instrumented volume of 7 Mton of sea water. The data analyzed for this proceeding
was recorded between February 2020 and November 2021 with a configuration of 6 Detection Units,
which we refer to as ORCA6 in the following. The total lifetime is 510 days which results in an
exposure of 433 kton-years.

2. Theory of decoherence in neutrino oscillations

Neutrino oscillations are considered coherent because the different mass eigenstates maintain
their relative phase relationships as they propagate. However, neutrino eigenstates may loose their
quantum superposition in a phenomenon known as neutrino decoherence. In this analysis, we
consider non-standard decoherence, induced by the coupling of the neutrino as a quantum system
with the environment. The time evolution of the neutrino system including decoherence effects is
described by adding a non-unitary term to the Liouville–von Neumann equation [1]

𝑑

𝑑𝑡
𝜌 = −𝑖[𝐻, 𝜌] − D[𝜌] , (1)

where 𝜌 is the density matrix of the neutrino and 𝐻 is the full Hamiltonian in matter. With the
condition of complete positivity of the time evolution and trace conservation, the decoherence term
can be written in the so-called Lindblad form [2]

D[𝜌] =
∑︁
𝑚

({𝜌, 𝐷𝑚𝐷
†
𝑚} − 2𝐷𝑚𝜌𝐷

†
𝑚) , (2)

where the 𝐷𝑚 are complex matrices, with the index 𝑚 ∈ [1, 𝑁2 − 1] where 𝑁 is the dimension
of the 𝑆𝑈 (𝑁) Hilbert space of the neutrino system. The 𝐷𝑚 are required to be Hermitian which
implies increasing entropy. The condition of complete positivity ensures that the eigenvalues
of 𝜌 remain positive which is crucial for their interpretation as probabilities. Assuming energy
conservation in the effective mass basis, the 𝐷𝑚 and 𝐻 can be diagonalized simultaneously with
�̃� = diag (�̃�1, �̃�2, �̃�3) describing the energy in the effective mass basis. The solution of Equation 1
for three neutrino families in uniform matter is given by

�̃�𝑖 𝑗 = �̃�𝑖 𝑗 (0) 𝑒−𝑖Δ�̃�𝑖 𝑗 𝑡−𝛾𝑖 𝑗 𝑡 , 𝑖, 𝑗 = 1, 2, 3 (3)

where �̃� is the density matrix in the effective mass basis, �̃�𝑖 𝑗 (0) is determined by the initial
conditions and Δ�̃�𝑖 𝑗 = �̃�𝑖 − �̃� 𝑗 describes the difference in the total neutrino energies. Additionally,
we introduced the decoherence parameter defined by

𝛾𝑖 𝑗 =
∑︁
𝑚

(𝑑 𝑖
𝑚 − 𝑑

𝑗
𝑚)2 , (4)
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where the 𝑑 𝑖
𝑚 are the entries of the diagonalized matrices 𝐷𝑚. We assume that the 𝑑 𝑖

𝑚 are constant
and independent of matter effects, following the approach in [2]. It is important to note that this
does not imply that decoherence effects themselves are independent of matter effects. For this
analysis we use atmospheric neutrinos that traverse the Earth before being detected. In order to
apply Equation 3 the Earth is modeled by 15 layers of constant density. In presence of decoherence
effects the oscillation probabilities are calculated via

𝑃(𝜈𝛼 → 𝜈𝛽) =
∑︁
𝑖, 𝑗

�̃�𝛼𝑖�̃�
∗
𝛽𝑖�̃�

∗
𝛼 𝑗�̃�𝛽 𝑗𝑒

−𝑖Δ�̃�𝑖 𝑗 𝑡−𝛾𝑖 𝑗 𝑡 , (5)

where �̃� is the diagonalized Pontecorvo-Maki-Nakagawa-Sakata matrix. The only difference to
standard neutrino oscillations is the presence of a damping term 𝑒−𝛾𝑖 𝑗 𝑡 . The common approach
in decoherence studies is to assume that the decoherence parameter may depend on the neutrino
energy as

𝛾𝑖 𝑗 = 𝛾0
𝑖 𝑗

(
𝐸

GeV

)𝑛
. (6)

In this work we consider 𝑛 = −2,−1 since these cases affect lower energies that ORCA is most
sensitive to. As can be seen from Equation 4 the decoherence parameters are not independent of
each other. Consequently, we provide upper limits on 𝛾21 and 𝛾31 as, under the most conservative
assumptions for our experiment, the third parameters is fixed by [3]

𝛾32 = 𝛾31 + 𝛾21 − 2
√
𝛾21𝛾31 . (7)

3. Analysis methods

This analysis employs a binned log-likelihood minimization technique to compare the data to
the Monte Carlo expectation. The nominal values of the oscillation parameters as given in Table 1
are provided by Nu-Fit 5.0 [5]. The data is reconstructed in 2D event histograms of the energy and
zenith angle with a binning scheme that ensures an expectation of at least two events per bin. The
negative likelihood function is minimized for 𝜃23, Δ𝑚2

31, and a set of nuisance parameters described
in detail in [6]. The nuisance parameters along with their corresponding prior uncertainties are
summarized in Table 2. The prior uncertainties are assumed to be Gaussian distributed.

Parameter Nominal value NO Nominal value IO Treatment
Δ𝑚2

31 [eV
2] 2.517 · 10−3 −2.424 · 10−3 free

Δ𝑚2
21 [eV

2] 7.42 · 10−5 7.42 · 10−5 fixed
𝜃12 [◦] 33.44 33.45 fixed
𝜃13 [◦] 8.57 8.60 fixed
𝜃23 [◦] 49.2 49.3 free
𝛿CP [◦] 197 282 fixed

Table 1: Oscillation parameters for normal ordering (NO) and inverted ordering (IO) with their treatment in
the minimization.

Only data from periods characterized by high stability in environmental conditions as well as
data acquisition were used in this analysis, which results in an exposure of 433 kton-years.
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Parameter Prior
Spectral index ±0.3
Energy scale ±9 %
𝜈hor/𝜈ver ratio ±2 %
𝜈𝑒/�̄�𝑒 ratio ±7 %
𝜈𝜇/�̄�𝜇 ratio ±5 %

(𝜈𝜇+�̄�𝜇 )/(𝜈𝑒+�̄�𝑒 ) ratio ±2 %
High-energy light

simulation
±50 %

NC normalization ±20 %
𝜏-CC normalization ±20 %
Muon normalization free
Track normalization free

Shower normalization free
Overall normalization free

Table 2: Nuisance parameters along
with their prior uncertainties.

Cuts based on the trigger rate and the reconstruction quality
efficiently reject background events from pure noise. The anal-
ysis is restricted to up-going events which significantly reduces
the atmospheric muon background. Two Boosted Decision
Trees (BDT) are employed to effectively discriminate against
atmospheric muons and to differentiate between track-like and
shower-like events. Additional cuts on the atmospheric muon
BDT score further reduce the atmospheric muon contamination
to below 5 %. This result in a total of 5828 observed events.
These events are divided into three classes in order to optimize
the sensitivity: a high purity tracks class with negligible muon
contamination, a low purity tracks class and a showers class.
The tracks classes contain events with reconstructed energies
between 2 GeV and 100 GeV, whereas the showers class ranges
from 2 GeV to 1 TeV.
More information on the selected data set can be found in
the proceedings for measuring atmospheric neutrino oscillation
with KM3NeT/ORCA6 [7].

4. Results

Fitting the data, no significant deviation was found with respect to the standard oscillation
analysis. The fitted values of 𝛾21 and 𝛾31 are consistent with zero. Figure 1 shows the difference in
the log-likelihood ratios of decoherence and standard oscillations in dependence of the reconstructed
energy and zenith angle at the best fit values 𝛾𝑖 𝑗 ,BF for the high purity tracks class. For 𝛾 ∝ 𝐸−2

(left) the red bins give a better fit for decoherence while the blue bins are in better agreement
with standard oscillations. For 𝛾 ∝ 𝐸−1 (right) there is no difference with respect to the standard
oscillations best fit.
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Figure 1: Difference in the log-likelihood ratios of decoherence and standard oscillations at the best fit for
the high purity tracks class for 𝛾 ∝ 𝐸−2 (left) and 𝛾 ∝ 𝐸−1 (right).
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The upper limits on 𝛾 are determined by computing the log-likelihood ratio with respect to
the global best fit as a function of one decoherence parameter while leaving the other parameter
free in the minimization. By exploring the full parameter space and allowing for non-zero values
of all three decoherence parameters, the most conservative limits are obtained. Furthermore, the
minimization is performed for both octants of 𝜃23 and for both neutrino mass orderings.

The solid curves in Figure 2 show the log-likelihood ratio as a function of 𝛾21 and 𝛾31 for each
of the energy dependencies 𝛾 ∝ 𝐸−2 (left) and 𝛾 ∝ 𝐸−1 (right). Additionally, the blue dashed
line shows the log-likelihood ratio for 𝛾21 assuming normal ordering (NO). For small values of
𝛾21 normal ordering is preferred whereas for large values of 𝛾21 inverted ordering (IO) gives the
minimal log-likelihood ratio. The upper limits at the 95% CL are presented in Figure 3 for both,
NO and IO. This figure illustrates how the limits strongly depend on the considered mass ordering
which emphasizes the importance of performing the minimization for both cases.
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Figure 2: Log-likelihood ratio with respect to the global best fit for 𝛾 ∝ 𝐸−2 (left) and 𝛾 ∝ 𝐸−1 (right) as a
function of the decoherence parameters 𝛾21 and 𝛾31. The solid lines were obtained fitting both, normal and
inverted ordering, as well as both octants of 𝜃23 and keeping the overall best fit. The blue dashed line was
obtained assuming normal ordering.
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Figure 3: Upper limits on 𝛾21 and 𝛾31 at the 95% CL assuming NO (dots) and IO (crosses).
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Figure 4 shows CL contours which serve to constrain both decoherence parameters 𝛾21 and 𝛾31

at the same time. The log-likelihood ratio is small along the diagonal since for 𝛾21 = 𝛾31 ⇒ 𝛾32 = 0.
The irregular shape of the curves is caused by a flip in the best fit mass ordering. This is evident
from Figure 5 which depicts the 95 % confidence level contour assuming either NO or IO as well as
considering both mass orderings. As already seen in the one-dimensional profiles, the upper limits
differ greatly depending on the mass ordering.
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Figure 4: Confidence level contours of 𝛾31 and 𝛾21 for 𝛾 ∝ 𝐸−2 (left) and 𝛾 ∝ 𝐸−1 (right). The upper right
part of the plane is excluded for each model at the corresponding CL.
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Figure 5: 95% CL contours of 𝛾31 and 𝛾21 assuming NO (brown dashed), assuming IO (purple dotted) and
fitting both mass orderings (black solid).
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Figure 6 shows the difference in the log-likelihood ratio of decoherence and standard oscillations
for 𝛾 ∝ 𝐸−2 (left) and 𝛾 ∝ 𝐸−1 (right) with the decoherence parameters at the respective 95% CL
upper limit for each model, and with 𝛾21 = 𝛾31. The blue bins correspond to a better fit of standard
oscillations than decoherence at the given values of 𝛾 and therefore serve to exclude decoherence
effects. It can be seen that the most relevant bins are centered around 10 GeV for both models but
extend towards slightly higher energies for the 𝛾 ∝ 𝐸−1 model.
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Figure 6: Difference in the log-likelihood ratios of decoherence and standard oscillations for 𝛾 ∝ 𝐸−2

(left) and 𝛾 ∝ 𝐸−1 (right) with the decoherence parameters fixed at the respective 95% CL upper limit with
𝛾21 = 𝛾31. The blue bins serve to exclude decoherence since they correspond to a better fit of standard
oscillations than decoherence.

Upper limits in GeV 𝛾 ∝ 𝐸−2 𝛾 ∝ 𝐸−1

ORCA6 (this work) NO IO NO IO
𝛾21 3.0 · 10−21 5.2 · 10−21 1.3 · 10−22 1.8 · 10−22

𝛾31 10.3 · 10−21 2.9 · 10−21 3.5 · 10−22 1.0 · 10−22

𝛾21 = 𝛾31 4.5 · 10−21 3.2 · 10−21 2.1 · 10−22 1.2 · 10−22

Reported in [4] NO IO NO IO
𝛾21 = 𝛾32 7.9 · 10−27 (KL) - 1.8 · 10−24 (KL) -
𝛾31 = 𝛾32 6.9 · 10−25 (R) - 2.1 · 10−23 (T2K) -
𝛾21 = 𝛾31 7.9 · 10−27 (KL) - 1.8 · 10−24 (KL) -

Table 3: Upper limits at the 90 % CL for ORCA6 in comparison with the most constraining upper limits
reported in [4] using data from KamLAND (KL), RENO (R) and T2K. Note that in [4] one of the decoherence
parameters is set to zero whereas in this work for the limit on 𝛾21 (𝛾31) the other parameter 𝛾31 (𝛾21) is left
free in the fit in order to obtain the most conservative limits.

In general, comparing to results from other analyses is not straightforward since the assumptions
on the model and the procedure used to obtain upper limits differ. Nevertheless, Table 3 summarizes
recent upper limits reported in [4] using data from KamLAND, RENO and T2K along with the
values obtained in this analysis for ORCA6. It is important to note that in our analysis, when setting
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a limit on 𝛾21 (𝛾31) the other parameter 𝛾31 (𝛾21) is left free in the fit whereas [4] considers limiting
cases of decoherence where one of the parameters is set to zero, so the other two are equal. The
same applies for the upper limits reported in [2] using three years of DeepCore data. Still, our limit
on 𝛾21 (𝛾31) is approximately comparable to the case 𝛾21 = 𝛾32 (𝛾31 = 𝛾32) since the decoherence
parameters that is left free in the fit tends to be at least one order of magnitude smaller.

Upper limits in GeV 𝛾 ∝ 𝐸−2 𝛾 ∝ 𝐸−1

ORCA6 (this work) NO IO NO IO
𝛾21 4.0 · 10−21 8.0 · 10−21 1.9 · 10−22 3.3 · 10−22

𝛾31 14.6 · 10−21 3.9 · 10−21 5.2 · 10−22 1.6 · 10−22

𝛾21 = 𝛾31 5.7 · 10−21 3.9 · 10−21 2.6 · 10−22 1.6 · 10−22

DeepCore NO IO NO IO
𝛾21 = 𝛾32 7.5 · 10−21 5.0 · 10−20 3.5 · 10−22 2.3 · 10−21

𝛾31 = 𝛾32 4.3 · 10−20 1.4 · 10−20 2.0 · 10−21 5.8 · 10−22

𝛾21 = 𝛾31 1.2 · 10−20 8.3 · 10−21 5.4 · 10−22 3.6 · 10−22

Table 4: Upper limits on the decoherence parameters at the 95 % CL for ORCA6 in comparison with results
reported in [2] using DeepCore data.

5. Conclusions

We provided first constraints on neutrino decoherence effects using data from the KM3NeT/ORCA
detector. Both octants of 𝜃23 and both neutrino mass orderings were taken into account to derive
the most conservative upper limits on the decoherence parameters. Also, we allowed all three de-
coherence parameters to take non-zero values and explored the full parameter space by computing
confidence level contours of 𝛾21 and 𝛾31. Our results have demonstrated that even with only six
Detection Units, the ORCA detector is capable of providing limits on decoherence effects that are
comparable to those of other analyses. This allows to anticipate the potential of the full ORCA
detector which will consist of 115 Detection Units and will be able to give more stringent limits.
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