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The detection of astrophysical neutrinos by IceCube in the TeV-PeV energy range motivates
the development of instruments for observing these particles at higher energies. Moreover, the
detection of very-high-energy (VHE) neutrinos could potentially bring constraints on ultra-high
energy cosmic rays (UHECRs) source models. Tau neutrinos skimming the Earth under a shallow
angle can be detected through the decay of a tau resulting in an extensive air shower (EAS) in
the atmosphere. The EAS can be detected by capturing some of the optical Cherenkov signal
originating from the EAS particles. To assess the feasibility of the Earth-skimming technique
from high altitudes, we developed a Cherenkov telescope which will be deployed on the Extreme
Universe Space Observatory Super Pressure Balloon 2 (EUSO-SPB2) flew from Wanaka, NZ,
on May 13𝑡ℎ. It is a precursor for the Probe of Extreme Multi-Messenger Astrophysics. The
1 m diameter Cherenkov telescope for EUSO-SPB2 had a focal plane comprised of 512 silicon
photomultipliers (SiPMs) covering a 6.4 x 12.8 square degree field of view coupled to a 100
MS/s readout based on the GET switch capacitor ring sampler. We discuss the calibration and
commissioning of the telescope and its in-flight performance.
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1. Introduction

The search for ultrahigh-energy (UHE; > 107 GeV) neutrinos is an exciting and timely topic
in astroparticle physics. A lot of the interest can be traced to Icecube’s detection of high-energy
neutrinos [1, 2] and the possible identification of a distant black hole as a neutrino source [3]. These
measurements are strong motivations to extend measurements into the UHE regime. The interest in
extending these measurements into higher energy can be seen in the increasing number of proposed
experiments aiming to obtain detections in the UHE regime. Some of these current projects include
Pierre-Auger, Ice Cube, ANITA, [4–6] and future ones like GRAND, ARIANNA, POEMMA, and
Trinity. [7–10].

EUSO-SPB2 (Extreme Universe Observatory-Super Pressure Balloon 2) is an effort to extend
observations into the UHE regime, by monitoring the Southern Hemisphere sky[11]. The balloon
payload consists of two air-shower imaging telescopes. One of them is a Cherenkov telescope [12],
to observe the beamed optical Cherenkov radiation from billions of charged particles following the
decay of a 𝜏-lepton in the atmosphere [13] a schematic of the technique is shown in Figure 1. The
second telescope is optimized to detect the fluorescence light from an air-shower following an Ultra
High Energy Cosmic Ray (UHECR) interaction in the atmosphere [11].

Figure 1: Illustrative sketch of the Earth-skimming
technique for detecting tau neutrinos from EUSO-
SPB2.

Figure 2: Picture from hang test before launch at
Wanaka, NZ. The CT is at the front with its shutters
open, and a cover to protect from sunlight while tests
were done before launch.

The CT The Cherenkov telescope (CT) uses Schmidt optics [11] realized with segmented
spherical mirror facets. The optical configuration of the mirrors is such that a bi-focal image
is formed from parallel light. This is used to discriminate accidentals caused by the Night Sky
Background (NSB). A photograph of the fully integrated payload is shown in Figure 2. The camera
on board is comprised of 512 Silicon Photo-Multipliers (SiPM) packaged in matrices each with 16
SiPMs (4x4 arrangement). The SiPMs are then connected to a Multiple Use SiPM Integrated Circuit
(MUSIC), which is a readout ASIC specifically designed for CTA [14]. The MUSIC amplifies the
signal while also providing a discriminator. On trigger, the ASIC for General Electronics TPC
(AGET) and the ASIC Support & Analog Digital conversion (ASAD) [15] digitize the incoming
signal. The AGET amplifies, detects and stores the signal so that the ASAD can perform the
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digitization. The AGET uses 512 time bins each with 10 𝑛𝑠 time width. The ASAD has a 12-bit
ADC which reads out the stored analog signal in the AGET and digitizes it for the Concentration
Board (CoBo) to compress, time stamp, and package for storage in the computer. In preparation
for flight, the telescope was tested extensively to obtain relative and absolute calibrations for its
different components in the signal chain.

2. Calibration

2.1 Photon Detection Efficiency

A central component to the telescope’s performance is the SiPMs present in the camera.
Characterizing their response and calibrating it is central to understanding observations done with
the CT. One of the most important characteristics of the SiPMs is determining the photon-detection
efficiency (PDE) of the SiPMs [16]. It was determined that the performance of each SiPM within a
matrix did not vary considerably. Therefore, just one pixel was used for measuring the characteristics
of each of the matrices. A setup as described in [16] for measuring the PDE of a SiPM was used. The
PDE of the detector is recorded at different bias voltages and the voltage to obtain 90% breakdown
probability is chosen. This bias is the nominal operational voltage and is the one at which all
calibrations and measurements are taken.

2.2 Spectral Response

The sensitivity of these detectors to different wavelengths of light had to be characterized to
further compare their performance. The spectral response setup uses a monochromator and a white
light Xe lamp. The light beam is then concentrated by a lens and split into 2 beams. One of them
goes to a calibrated monitor diode and the other to the SiPM [16]. The spectrum ranging from 200
nm to 1000 nm is scanned and a spectral response of the detector is obtained. The spectral response
of a single SiPM is shown in Figure 3 and the matrices’ dispersion is shown in Figure 4.

2.3 System Response Linearity

Using a picosecond laser and the full readout system, the amplitude in ADC counts for
different laser intensities were recorded. Using an oscilloscope the single photo-electron amplitude
was recorded along with the amplitude in mV for each light intensity. Thus, a direct relation could
be drawn from pe to mV and then from mV to ADC. Since the flashed laser is a picosecond laser,
it is safe to assume that all the photons are bunched up and arrive at the same time at the SiPM.
A sample of a digitized signal is shown in Figure 5. This setup would allow us to calibrate the
observed ADC amplitudes and directly relate them to the number of photo-electrons. The result of
this measurement is shown in Figure 6.

From this result, it is possible to infer the number of photo-electrons in a signal from the
amplitude of the digitized signal.

2.4 Discriminator Linearity
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Figure 3: PDE of Hamamatsu S14521
compared to a 1◦ Earth emergence shower
and the measured NSB. Both spectra have
been amplitude normalized. Oscillations in
the PDE are from diffraction patterns in the
Silicon substrate of the SiPM.

Figure 4: Dispersion of the relative difference between each
characteristic spectral response. The distribution of the spectral
responses has a standard deviation of around 18%

Figure 5: Oversampled digitized pulse. Cherenkov
photons are emitted in times shorter than 10 ns,
which would create a signal similar to what is shown.

Figure 6: Linearity of a single pixel and disper-
sion of the whole system. The fitted line and points
plotted correspond to a single pixel in the camera.
The shaded blue region corresponds to the average
calibration of the whole camera and its standard de-
viation.

Figure 7: Linearity profile of the MUSIC dis-
criminator. After about 200 pe the discriminator
saturates and the trigger threshold is always ex-
ceeded.

The discriminator used for triggering was the
one packaged with the MUSICs [14]. To be able to
relate this to the number of photo-electrons in the
SiPM, the linearity of the discriminator had to be
characterized. The same setup as for determining
the linearity of the digitizing system was used. The
trigger threshold of the discriminators was changed
monotonically from a high threshold to a low one.
At each LED amplitude a trigger efficiency curve
was obtained. It is expected that at 50% efficiency
the threshold is set at the middle of the Poisson oscil-
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Figure 8: Average of 100 flashed events. The dark
pixels had bad connections with the digitizer and the
connectors were fixed before flight.

Figure 9: Dispersion of the mean of each of the
SiPMs.

lations. Using this 50% efficiency point the trigger
threshold vs number of photo-electrons can be de-
termined for the camera as shown in Figure 7.

3. Commissioning

3.1 Flat Fielding

An important consideration in characterizing the linearity of both the system and the discrimi-
nator is that the camera must be flat-fielded. As observed in Figure 4 the PDE of each matrix varies
considerably. Along with the PDE, there is also a dispersion in the gain of each SiPM. These 2
factors influence the observed digitized amplitude. To obtain a camera that responds homogenously
to the same light source, a flat-fielding procedure was carried out. To achieve this, all the SiPMs in
the camera were biased to the same value, this value had been identified as the average at which the
breakdown probability equals 90%. Once all SiPMs have the same bias, the camera was pointed
to a screen that acts as a Lambertian surface, and a light source was flashed to the screen. A
relative difference with respect to the average was calculated using the digitized amplitude. This
was then related to a fraction of the over-voltage, as the gain is directly proportional to it [16]. Small
corrections in the bias voltage for each SiPM were applied by modifying the voltage offset in the
MUSIC readout channels. This fine-tuning has the effect of causing a hardware flat-field of the
camera, such that the product of the PDE and the gain is constant across the camera (as both are
affected by the over-voltage).

Once the camera has been flat-fielded using this procedure, it is possible to assume that the
camera will respond equally to the same light intensity. The dispersion of the non-flat-fielded
camera response was 18% which was improved to a rough 10% relative error of the average across
the whole flat-fielded camera. The response of the flat-fielded camera to the Lambertian surface
used for flat-fielding is shown in Figure 8. The distribution of the average ADC amplitude of the
digitized signal for 100 flashes is shown in Figure 9. If the distribution is Poisson limited, then
the standard deviation should be smaller than what is observed. This widening in the distribution
is due to electrical noise, the dispersion within each matrix, and the limited bias voltage adjustment
of each SiPM as the effective dynamic range of the MUSIC only allows for 600 mV adjustment.
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The CT was flown with two Health LEDs (HLED), which allowed evaluating the state of the
SiPMs in the camera. The setup of the HLED was such that the dispersed light of the HLED was
shown from close to the focal plane, to the mirrors. It was identified that the gaps between the
mirror segments were also projected to the camera, causing 2 distinct columns in the camera to be
obscured from one of the HLEDs. One of the HLED flashes captured is shown in Figure 10, A
similar test as the flat-fielding procedure was done by flashing the HLEDs in the telescope, while
the aperture was closed (effectively making it a dark box). Once the mirror obscuration was taken
into account, 3 distinct distributions were observed in the camera. By flashing the HLED 1000
times and extracting the amplitude, it was observed that the system was Poisson limited. This result
is shown in Figure 11, where the 3 distinct regions (the 2 columns that only see one HLED and the
rest of the camera) are separated.

Figure 10: Camera image of the HLED flashes after
amplitude extraction. The 2 cold matrix columns are
readily seen along with a bright spot probably also
caused by a geometric effect from the mirrors.

Figure 11: Distribution of the HLED amplitude
after 1000 flashes. The blue distribution is the un-
obscured regions of the camera. The red and green
correspond to the obscured regions. The black dis-
tribution is the sum of all the regions.

With this, the performance of the camera had been characterized and the instrument was flight-
ready. The camera could be operated within its linear range and its performance was understood.

3.2 Trigger Scans

During flight, multiple trigger scans were performed to characterize the background trigger
rate. The CT was the first to attempt observation of Cherenkov light from a suborbital vantage
point. As such, information about the background light and expected trigger rates by accidentals
and actual events was very limited. The discriminator threshold was lowered until the noise floor
was reached. This allowed us to understand the background light observed when looking above and
below the horizon. At the time of this writing, the data obtained from these scans are still being
analyzed to determine actual rates for both accidentals and candidate events.

4. Performance

The performance of the CT is being evaluated as of this writing. The CT had 2 nights of
observation aboard SPB2. About 30,000 candidate events were recorded during this time. These
are not the totality of the triggered events observed in flight. The full data set was pre-processed
to discard all events that did not meet the bifocal condition. Since the discriminators do a logical
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OR of 8 pixels at a time, it is possible to create a trigger without a true bifocal signal. Therefore,
every event was checked for compliance with the bifocal optics (the signal is contained in 2 pixels
separated by one pixel). These candidate events can still pass both tests without being actual
cosmic-rays. The analysis and calibration of these events is still ongoing.

5. Conclusion

For the first time, a Cherenkov Telescope was flown at 33km altitude and captured around
30,000 candidate events. The pre-flight calibration and commissioning of the instrument allows us
to confidently evaluate the obtained data from this short but fruitful flight. The in-depth study of
the electronics comprising the CT camera, will aid in the analysis of the data and prove that the
technique used is viable and can produce meaningful scientific data even in extreme conditions.
The detailed analysis of the electronics will serve future missions like POEMMA in implementing
and understanding their Cherenkov Telescopes, opening the avenue to novel contributions to the
UHE and VHE cosmic ray field.
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