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The IceCube-Gen2 facility will extend the energy range of IceCube to ultra-high energies. The key
component to detect neutrinos with energies above 10 PeV is a large array of in-ice radio detectors.
In previous work, direction reconstruction algorithms using the forward-folding technique have
been developed for both shallow (. 20m) and deep in-ice detectors, and have also been successfully
used to reconstruct cosmic rays with ARIANNA. Here, we focus on the reconstruction algorithm
for the deep in-ice detector, which was recently introduced in the context of the Radio Neutrino
Observatory in Greenland (RNO-G).
We discuss the performance-critical aspects of the algorithm, as well as recent and future im-
provements, and apply it to study the performance of a station of the IceCube-Gen2 in-ice radio
array. We obtain the angular resolution, which turns out to be strongly asymmetric, and use this
to optimize the configuration of a single station.
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Direction reconstruction for the in-ice radio array of IceCube-Gen2

1. Introduction

The in-ice radio array of IceCube-Gen2 will extend the energy range of the facility to ultra-high
energies (UHE) above 10 PeV by exploiting the radio emission of in-ice particle showers due to the
Askaryan effect. The in-ice radio array is planned to consist of both hybrid detector stations, with
both shallow and deep (∼ 150 m) antennas, as well as shallow-only stations [1]. At completion,
the array will cover about 500 km2 and improve on current detectors by an order of magnitude
in sensitivity, providing the best chance yet of measuring the flux at this previously inaccessible
energy range, as well as establishing a direct connection between the highest-energy cosmic rays
and neutrinos. To improve the likelihood of their cosmic origin, and enable neutrino astronomy at
these energies, the ability to reconstruct the direction of triggering neutrino events is crucial.

2. The reconstruction algorithm

The reconstruction algorithm used in these proceedings is the forward-folding algorithm [2–
5]. The forward-folding technique has been successfully used to reconstruct cosmic rays with the
shallow upward-facing antennas [4] and has been applied to the shallow detector component of
IceCube-Gen2 finding an average resolution of the neutrino direction of σ68% = 3◦ [3]. As most
events that are detected by the deep component are not expected to be visible in the shallow antennas,
an improved algorithm for these events has been developed in [5] and applied to an RNO-G like
detector in Greenland. Here, we apply this algorithm to study the expected performance of the
deep component of a single station of IceCube-Gen2. The algorithm is available as part of the
open-source NuRadioMC framework [6]. In this section, we only provide a brief summary of this
algorithm; for more details, we refer to [5].

The reconstruction relies on two features of the Askaryan effect that causes the radio emission
which is detected. Firstly, the shape of the frequency spectrum depends on the viewing angle under
which the signal is observed at the detector. The closer this is to the Cherenkov angle (≈ 56◦ in deep
polar ice), the larger the contribution of higher frequency components. Secondly, the polarization
vector points towards the shower axis. Thus, the combined determination of the signal emission
direction, viewing angle and polarization is sufficient to uniquely determine the direction of the
original neutrino. This is illustrated in Fig. 1.

These requirements inform the design of a deep in-ice detector. As most events are expected
to be detected only in a single detector station, each of these consists of three vertical ’strings’ in
a triangular configuration, to enable the determination of the emission vertex. These strings are
populated with omnidirectional antennas that are sensitive either to vertically polarized (’Vpol’)
or horizontally polarized (’Hpol’) signals at various depths, which provide sensitivity to the signal
polarization. A sketch of the reference design for the deep component for IceCube-Gen2 is shown
in Fig. 4.

In order to limit the computation time required to reconstruct a single event, the current
approach is to split the reconstruction into two steps. The first step is to reconstruct the position
of the shower maximum, which is treated as the origin of the radio signal using a ray-tracing
approximation. The algorithm used for this step is heavily based on the one outlined in [7], referred
to therein as vertex reconstruction. Note that, however, the position of the shower maximum is
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Figure 1: Illustration of the direction reconstruction algorithm. (a) The neutrino interacts in the ice,
producing a particle shower and Askaryan emission, which travels along curved trajectories in the ice to
reach the detector. (b) The signal direction (at (0,0)) restricts the possible neutrino directions to a broad
cone, which is defined by the viewing angle (≈ Cherenkov angle) and the polarization. Their determination
then allows to uniquely identify the original neutrino direction. (c) The same plot as (b), in local on-sky
coordinates.

not the same as the neutrino interaction vertex; the difference is of the order of 10 m for hadronic
showers, and up to an order of magnitude larger for high-energy electromagnetic showers subject
to the LPM effect. An additional complication arises due to the fact that the index of refraction
in polar ice is not constant. This results in multiple curved and possibly reflected ray trajectories,
referred to as ’ray types’. The obtained signal direction therefore depends also on the ice model
and the ’ray type’. For the former, we use the simple exponential SPICE 2015 model described in
[8] both in simulation and reconstruction; the impact of systematic uncertainties and features such
as layers or birefringence is beyond the scope of this work. The dominant ray type is subsequently
identified by template correlation.

The second part of the reconstruction is the determination of the viewing angle and polarization.
This is done using a ’forward-folding’ approach: the modelled Askaryan signal is propagated
through the ice and convolved with the detector response, after which the χ2 statistic is computed
and minimized between the measured and modelled voltage traces. For in-ice radio detectors, this
approach was shown to offer superior performance in the reconstruction of cosmic rays, particularly
at low signal-to-noise ratios (SNR), compared to traditional ’unfolding’ methods [2].

With respect to the algorithm described in [5], a small number of changes and improvements
has been made:

1. A minimizer, which is initialized at the most common degenerate solutions, has been imple-
mented in addition to the existing brute-force optimization. In ∼ 90% of cases, the same
(global) minimum is found as previously, but the computation time is reduced by more than
an order of magnitude, enabling (relatively) efficient studies to e.g. compare the performance
of different detector layouts, as done here.

2. Due to imperfect vertex reconstruction and, in more realistic scenarios, slight mismodelling
of the detector geometry or the ice, the exact pulse arrival time at each antenna has to be
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Figure 2: Performance of the reconstruction algorithm, shown as the cumulative distribution of the difference
between the true and reconstructed quantity, versus neutrino energy Eν . Note the different horizontal scale
on the third plot. Shaded regions indicate the 1σ statistical uncertainty due to the limited sample size.

determined by an additional correlation step. For very low SNR pulses, this will select and
fit a random noise fluctuation, resulting in an overestimation of the actual signal contribution
in this antenna. This is prevented in two ways; antennas below a certain SNR threshold are
excluded from the fit, and for Hpol antennas (which generally have much less signal than the
Vpol antennas), the timing is determined from an adjacent Vpol antenna that does pass the
threshold. This latter strategy was previously used only for the Hpol antennas on the central
string, but has now also been implemented for the secondary strings.

3. Finally, the algorithm in [5] was designed to reconstruct hadronic showers only. As in reality
a mix of hadronic and electromagnetic showers is expected, a fit for electromagnetic showers
has been implemented, and the event is tagged based on which hypothesis results in the
overall minimum χ2. For low to medium quality events, this tagging is fairly inaccurate,
but does not noticeably deteriorate performance, whereas the resolution for high-quality
electromagnetic-dominated events is improved.

3. Performance

The performance of the algorithm is evaluated by simulating neutrinos at half-decade intervals
ranging from Eν = 1016.5 − 1019.0 eV using NuRadioMC [6]. We include both hadronic and
electromagnetic (due to νe charged-current interactions) events, assuming a 1:1:1 flavour ratio
at the detector. The semi-analytical model described in [9], which includes different stochastic
realizations of the shower profile, is used for the simulation. The reconstruction is performed using
a fully analytic model [10]. The detector layout used is the ’reference’ design [1] for an IceCube-
Gen2 hybrid detector, with a 4-channel phased-array at 150 m depth used for triggering at a target
trigger rate of 100 Hz.

The results of the reconstruction are shown separately for each aspect of the reconstruction in
Fig. 2. We distinguish different simulated neutrino energies, and additionally show results both for
hadronic events only (’Had’) and those for the overall mix of hadronic and hadronic+electromagnetic
events (’All’).

Particularly at low energies, the overall reconstruction is limited by the performance of the
shower maximum reconstruction, which determines the signal direction. These relatively low-
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Figure 3: The 2D distribution of all reconstructed events. Left: After rotation and projection to the
polarization and viewing angle directions, the (reconstructed − true) neutrino directions are distributed along
elongated ellipses. Shown are individual reconstructed events, as well as the ellipse containing 50% of all
events. Events passing the analysis cut are indicated with filled symbols and dashed ellipses. Right: the
fraction of reconstructed events contained within an ellipse of a certain area, for both all events and those
passing the analysis cut. Note that this does not imply that these events also have single-event N% uncertainty
contours that are smaller than the given ellipse. The top x-axis shows the area-equivalent 1D angle for a
symmetric contour.

energy events are generally lower in SNR, and originate from closer to the detector and nearer to
the ice surface. They are more challenging to reconstruct in general, but especially for the shower
maximum reconstruction, which requires a signal in all three strings and at least two different depths
to be unambiguous. If either the position of the shower maximum or the appropriate ray type is not
determined successfully, this may additionally impact the subsequent aspects of the reconstruction
by assuming the wrong pulse position within the voltage traces.

If the shower maximum reconstruction is successful, the overall error is instead dominated
by the error on the polarization angle. This is due both to the much larger phase space for this
quantity compared to the viewing angle, which is constrained to lie within a couple of degrees of
the Cherenkov angle, and the fact that the Hpol antennas are less sensitive and generally record a
much smaller contribution than the Vpol antennas.

In general, the reconstruction performs best for the ’middle’ energies. At the lowest energies,
the lower SNR and more challenging shower maximum reconstruction strongly limit the fraction
of triggered events that can be reconstructed well. At the highest energies, as the shower shapes
become more irregular, performance once again starts to decrease. Finally, the performance for
electromagnetic events at low energies is slightly better than that for purely hadronic events. This
can be partially explained by considering that for electromagnetic events, the entire neutrino energy
is deposited in the particle showers, leading to a larger signal amplitude at the detector.

Because the overall error is dominated by the polarization, we do not quote the space angle
difference. Instead, we proceed as follows: we project the reconstructed neutrino direction onto a
frame where the polarization direction lies along the x-axis, and the viewing angle direction along
the y-axis. This is shown in Fig. 3, left. We then quote the fraction of reconstructed events contained
within the area of an elongated ellipse centred on the true neutrino direction. This gives a more
accurate impression of the actual 2d spread of the reconstruction algorithm; however, it should be
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Figure 4: Different detector layouts used for the performance comparison. The central string contains the
four-channel phased array used for triggering at the bottom. The antennas present in each configuration are
shown in orange and green, with the unused antennas in grey.

stressed that the area within which a single event reconstructs does not allow to make inferences
on the true single-event uncertainty, which may be smaller or larger. A procedure to determine
single-event uncertainty contours using resimulation has been described in [5]; as this process takes
of the order of several hours per event, we do not use this here.

Instead, we show how the resolution can be improved by applying an analysis cut, which is
here defined by requiring a minimum SNR of 2.5 in two antennas on the central string, of which at
least one should be at a different depth than the phased array, as well as an SNR > 2 on at least one
antenna in both of the secondary strings. The fraction of events retained at each energy after this
cut is shown on the right of Fig. 3. Note that this cut has been defined based on the true (simulated)
signal SNR in the [96, 500] MHz band; it is expected that a similar cut can be defined based on
data with a moderate loss of either efficiency or resolution.

4. Comparison of different layouts

In addition to evaluating the performance of the ’reference’ design of the IceCube-Gen2 hybrid
radio station, we have also performed the reconstruction for several alternative detector layouts. In
order to be able to compare the performance of different layouts consistently, the simulation was
only performed once, using an ’overinstrumented’ detector containing all antennas one wants to
consider. As the trigger remains the same for all layouts considered here, the same events can be
used for the comparison by simply changing the antennas used in the reconstruction.

A sketch of all layouts used in this study is shown in Fig. 4. All designs include 16 deep in-ice
antennas, leaving 8 of the total 24 DAQ channels for the shallow component. In addition to the
reference design, we further consider:

• The alt1 and alt2 designs increase the horizontal baseline of the three strings. A larger
baseline helps to more accurately constrain the position of the shower maximum, and may
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Figure 5: Comparison of the performance of the different detector layouts. The improvement is shown as
the additional fraction of all events that reconstructs within a certain ∆, compared to the reference layout, for
which the CDF is shown on the top x-axis.

also help to constrain the polarization by mapping out the Cherenkov cone, at the cost of the
loss of SNR as one goes away further from the triggering antenna.

• The alt3 layout moves all four Hpol antennas to the central string. In general, the highest SNR
is expected close to the triggering antennas; having all four Hpol antennas directly above the
phased array may therefore help to increase the signal contribution in these antennas.

• Finally, the alt4 and alt5 designs move the two shallower Vpol antennas deeper. A signal in
one of the upperVpol antennas can provide a strong additional constraint in the reconstruction,
particularly for the position of the shower maximum. However, due to their relatively large
separation from the triggering channels, as well as the ’shadow-zone’ [8] due to the downward-
bending of in-ice radio signals, detectable signals in these antennas are rare, motivating these
designs with smaller vertical baselines, which are expected to contribute for a larger fraction
of triggered events.

The results for each configuration are shown in Fig. 5. They show the improvement in
performance as the additional fraction of events that reconstructed within a certain resolution, i.e.
the difference between the respective CDFs. We compare the performance across all energies by
reweighting with the expected flux at the detector, assuming a single power-law spectrum [11] plus
a GZK component from cosmogenic neutrinos [12]. Only hadronic events were included for the
comparison, although as only the performance relative to the reference is shown here, the impact
of excluding electromagnetic events here can be assumed to be small.

We make the following observations: Increasing the horizontal baseline (configurations alt1,
alt2) mainly improves the precision of the signal direction determination, but only for the ∼ 30%
best events. The error for these events, however, is dominated by the uncertainties on viewing
angle and polarization, where no clear improvement is observed. For lower quality events, on the
other hand, the lower signal contribution in the now further-away secondary strings hinders the
reconstruction of the shower maximum, especially for the largest baseline (alt2).

Moving all four Hpol antennas to the central string (alt3) does not affect the signal direction
reconstruction, which relies only on the Vpol antennas. No clear improvement is shown for the
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viewing angle or polarization reconstruction, either, however. (Note that, before improvement 2 in
Sec. 2 had been implemented, this configuration did show a ∼ 5% improvement in the number of
events reconstructed with a polarization error of ≤ 10◦).

Finally, replacing the two uppermost Vpol antennas with deeper antennas (alt4, alt5) signifi-
cantly increases the fraction of events with a signal direction reconstructed within O(1) deg, without
negatively impacting the resolution obtained by the other parts of the algorithm. Most of the im-
provement, however, seems to apply to low or medium quality events, such that the increase in the
fraction of events reconstructing within a certain area is relatively modest.

In general, the impact of changing the detector configuration is not dramatic, and larger
improvements are expected by further refinements of the reconstruction algorithm, or the use of
machine-learning based approaches such as [13, 14].

5. Conclusion

We have applied the forward-folding reconstruction algorithm outlined in [5] to the reference
design for the deep component of the in-ice radio detector of IceCube-Gen2. Although the detector,
ice and exact trigger configuration are different, the overall resolution obtained is similar to that
for the RNO-G-like station in [5] for purely hadronic events, and slightly improved for events with
electromagnetic showers, thanks to the addition of a new step in the fitting algorithm. As in that
work, the resolution obtained is much larger in one direction than in the other, necessitating a full 2D
treatment in order to accurately capture the actual uncertainty. In the second part, we have compared
the performance of different layouts of the deep component. We conclude that, in particular for the
viewing angle and the polarization, the exact positioning of the additional Vpol antennas only has a
minor impact on the reconstruction. Conversely, the reconstruction of the signal direction is shown
to improve for designs which move some of the shallower Vpol antennas closer to the bottom of the
station, which on average increases the number of channels with a detectable signal contribution.
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