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The KM3NeT Collaboration is building a neutrino telescope in the Mediterranean Sea. The
detector is expected to achieve an angular resolution better than 0.1 degrees for energies above
10 TeV. This is critical for attaining one of the key goals of the experiment, i.e. the identification
of cosmic neutrino sources. In order to achieve a good angular resolution, the detector requires a
relative time calibration of the order of 1 ns.

The Nanobeacon is a cost-effective time calibration device developed by the KM3NeT
Collaboration to synchronise in situ the detector photomultipliers with a nanosecond relative
accuracy. In this contribution we will describe the design and operation of the Nanobeacon.
Moreover, we will present the results of data taken in real sea-conditions and we will show how
they are used to validate the time calibration parameters measured onshore.
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1. The KM3NeT detectors

The Kilometre Cube Neutrino Telescope (KM3NeT) is a research infrastructure currently under
construction in the Mediterranean Sea [1]. It comprises two detectors situated at different locations.
The first one, known as ARCA (Astroparticle Research with Cosmics in the Abyss), is being installed
off the coast of Capo Passero in Italy at a depth of 3.5 km. The second detector, ORCA (Oscillation
Research with Cosmics in the Abyss), is located off the coast of Toulon in France at a depth of
2.5 km. The main scientific goal of ARCA is the detection of high-energy cosmic neutrinos, while
ORCA focuses on studying neutrino properties, including neutrino oscillations and neutrino mass
hierarchy.

Both detectors share the same hardware, differing only in their layout, which determines
the energy range to which they are sensitive. KM3NeT relies on a network of Digital Optical
Modules (DOMs) [2], each equipped with 31 photomultiplier tubes (PMTs) measuring 3 inches in
diameter [3]. These DOMs are arranged in strings called detector units (DUs), forming a 3D matrix
that optimally captures the Čerenkov radiation induced by high-energy neutrinos interacting with
the matter surrounding the detector.

Each DOM is controlled by a Central Logic Board (CLB) [4], where all registered data in such
DOM is formatted and sent to shore. In particular, when photons are detected by a PMT a "hit"
entity is generated. This entity contains the time of detection plus a proxy of the amount of light
converted in the PMT photocathode. The latter, called ToT (Time-over-Threshold), is the time the
PMT charge has been integrated above a certain detection threshold. The former, is the time when
such threshold was exceeded.

In this work, it is discussed how the LED beacon housed in the DOM is used to calibrate one
of the corrections that must be applied to the hit time.

2. Time calibration in KM3NeT

Accurate time calibration is a crucial aspect in the operation of neutrino telescopes, playing
a fundamental role in event reconstruction, which relies on both, the measurement of the arrival
times of the Čerenkov light on the different sensors of the detector and their position estimate at
the moment of the light detection. For a detailed description of the determination of the KM3NeT
sensor positions see contribution [5].

Čerenkov light propagation through the detector medium introduces unavoidable uncertainties
on individual photon detection, partially compensated statistically when, after its propagation,
enough light is detected. This contribution is limited by the optical medium, in practice water or
ice for neutrino telescopes, and therefore to its scattering and absorption lengths, being better those
of water. The remaining uncertainties reside only in the capability to assign a correct time for the
photon detection in the PMT photocathode.

Due to various factors, such as signal propagation delays and instrument response time, achiev-
ing precise time calibration to millisecond events along a kilometer scale detector poses significant
challenges. Absolute time accuracy is limited by the GPS reference used in computers on shore,
which in practice implies a few tens of nanosecond accuracy, always below the millisecond, typi-
cally enough for astrophysical purposes. On the other hand, the necessary relative time accuracy to
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Figure 1: Left: diagram of a KM3NeT DOM, showing the position of the NB LED. Right: A picture of
part of the top hemisphere of a DOM with the position of the NB highlighted by a circle. The three closest
PMTs used for the flash trigger are partially visible. From [7].

achieve angular resolutions below the degree in a neutrino telescope is at the nanosecond level on
the photon detection.

An intrinsic uncertainty contribution comes from the Transit Time Spread of the PMTs, which
for KM3NeT is around 2.5 ns [3]. This contribution is compensated statistically in the event
reconstruction when the number of detected photons increases.

The time of detection of a hit is assigned by the DOM CLB according to the clock signal
propagated along the whole detector infrastructure from the shore computers. This delay is partially
estimated during the DU integration in the dark room plus multiple calibrations on parts of the
infrastructure. As a result there are three levels of relative time calibration in KM3NeT:

• Intra-DOM: this one reefers to the relative time synchronization of all the PMTs within each
DOM. This one can be achieved in situ using the K40 decays in the sea and looking for the
offsets that maximize the coincidences.

• Inter-DOM: that corresponds to the relative timing of the DOMs along the same DU. It is
firstly estimated in the dark room using a laser that simultaneously illuminates two reference
PMTs in each DOM and can be checked in situ using muon tracks and optical beacons, in
particular the Nanobeacons.

• Inter-DU: that determines the relative offsets between the different DUs of the detector. It is
firstly estimated via multiple calibrations on parts of the infrastructure and during the dark
room calibration and can be checked in situ using muon tracks (see contribution [6]) and
optical beacons, like a laser beacon.

In this work we present the application of the Nanobeacons to the inter-DOM calibration in
KM3NeT plus its prospects.

3. Nanobeacon devices

The Nanobeacon (NB) system [7] is an evolution of the LED beacon system [8] mainly used for
time calibration purposes in the ANTARES neutrino telescope. The NB has two main components:
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Figure 2: Sigmoid plot for a particular DOM and reference PMT in ORCA.

the pulser and the DC/DC converter. The pulser consists of a LED and an electronics board
responsible for generating the trigger signal for the optical pulse. On the other hand, the DC/DC
converter is integrated in the power board inside the DOM and delivers the power supply to the NB
pulser.

The inherent simplicity of the NB system not only makes it a cost-effective solution but also
allows for a smooth integration inside each DOM, providing a high-redundancy calibration of the
detector.

In order to mitigate the effects of sedimentation and biofouling on the glass sphere of the DOM,
the NB is strategically positioned ∼45◦ off the axis from the top of the DOM, as shown in Figure 1.

The selected LED model was the HLMP-CB1A-XY0DD produced by Broadcom [9]. This
model can provide light intensities that are one order of magnitude higher than the intensities
provided by the LEDs used in ANTARES.

The NB emits short-duration pulses with a width of approximately 5 ns (FWHM) and a rise
time of around 3 ns (from 10% to 90% of full amplitude). The intensity of the pulse is controlled
by a configurable voltage that can range between 4.5 and 30 V.

To perform the calibration of the KM3NeT PMTs using the NB system, a reference time is
required to accurately establish the moment when the NB flash is emitted. This reference time
is obtained by using the three closest PMTs to the NB within the DOM. To prevent data-taking
saturation and confirm the NB’s emission, a voltage scanning procedure is conducted in a dark
room before deploying the DOMs. This scanning helps determine the optimal voltage at which the
NB will operate effectively.

The optimal voltage for operating the NB system is expected to vary depending on the medium
in which it operates. This is due to the different reflection indices of air (in the dark room) and water
(in the sea), resulting in different signals collected by the reference PMTs. Since voltage scanning
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Figure 3: Resulting calibration curve for the NB voltage.

after deploying the DOMs would significantly reduce detector uptime, the scanning process in the
sea can only be afforded for a limited number of lines. The characteristic sigmoid-shaped curves
resulting from an example of these scanning done in the dark room and in the sea are shown in
Fig. 2.

From the sigmoid curve, it is possible to calculate the cumulative distribution and determine
the voltage at which the 50th percentile, very stable and robust to determine, is reached. Matching
the percentiles for the dark room and sea sigmoids gives the data points shown in Fig. 3. These
points exhibit a clear trend which can be fitted to a 2-degree polynomial (red line). To account for
fluctuations along the fitted line and minimize cases where the assigned V may not allow proper
light emission from the LED, a systematic shift of 0.25 V has been introduced (blue line). This blue
line will ultimately be used to determine the appropriate voltage for operating the NB in the sea.

4. Calibration methodology

It is possible to find the relative time offsets between DOMs by illuminating simultaneously
various of them with the same NB. This can be done via the detection time of the NB flash measured
on each DOM relative to the flash emission corrected by the time it takes the NB light pulse to
reach the corresponding DOM. Due to the NB emplacement at the top of the DOM and its PMT
distribution, it is intended to be used to illuminate most efficiently and directly the lower PMTs
of the DOMs above the flashing NB (see Fig. 4). These DOM pairs, with the most direct light
illumination, will be considered for the calibration.

The observed light distribution in the illuminated DOMs follows a Gaussian like distribution,
due to the direct light, with a tail due to the scattered light (see Fig. 5). This corrected time
difference can be denoted as Δ𝑡0(𝑖, 𝑗) and under a perfect calibration it will be null. If any of the
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Figure 5: NB illumination of ORCA.0011 line.

implied DOMs has a miscalibrated offset, it will then be Δ𝑡0(𝑖, 𝑗) = 𝑡
𝑗

0 − 𝑡𝑖0, where 𝑡𝑖0 would be the
miscalibrated time offset of the flashing DOM and 𝑡

𝑗

0 the one of the illuminated DOM. It is worth to
mention that this method will not be sensitive to determine any global absolute offset of the whole
DU, that should be determined with an inter-DU calibration, so only DOM relative corrections can
be provided.

Being a NB on each DOM, it is possible to have a significant redundancy by considering all
the possible pairs of flashing-illuminated DOMs, allowing a robust in situ calibration system. For
18 DOMs it is possible to define a system of up to 1

218(18 − 1) = 153 equations, with 17 unknown
offsets (one DOM offset can be fixed, e.g. 𝑡10 = 0, since the method is not sensitive to any DU global
offset) which can be summarized as follows:

©«

1 0 0 · · · 0 0

−1 1 0 · · · 0 0

−1 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 1

ª®®®®®®®®®®®®¬

©«

𝑡10

𝑡20

𝑡30
...

𝑡18
0

ª®®®®®®®®®®®®¬
=

©«

0

Δ𝑡0(1, 2)

Δ𝑡0(1, 3)
...

Δ𝑡0(17, 18)

ª®®®®®®®®®®®®¬
(1)

or more compactly:

𝑀𝑚𝑛 · (𝑇0)𝑛 = (Δ𝑇0)𝑚 (2)

with 𝑚 = 1, ..., 154 and 𝑛 = 1, ..., 18.
Each available Δ𝑡0(𝑖, 𝑗) pair can be estimated from a Gaussian fit to the time difference

distribution. This fit has an associated error 𝜎
𝑖, 𝑗
𝜇 that can be introduced in the least squares
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solutions by means of a weighting covariance matrix 𝑊 :

𝑊𝑚𝑚 = 𝑑𝑖𝑎𝑔

(
1
𝑥2 ,

1
(𝜎1,2

𝜇 )2
,

1
(𝜎1,3

𝜇 )2
, · · · , 1

(𝜎17,18
𝜇 )2

)
(3)

Figure 4: Concept of NB time calibration.
DOM 𝑖 NB flash is detected by the closest
PMTs and observed mostly by those at the
bottom of DOM 𝑗 .

This will be helpful since sometimes theΔ𝑡0(𝑖, 𝑗) fits
can be not optimal nor very reliable, weighting them out
when solving the system in eq. 2 via:

𝑊𝑚𝑚 · 𝑀𝑚𝑛 · (𝑇0)𝑛 = 𝑊𝑚𝑚 · (Δ𝑇0)𝑚 (4)

leading to the system solution:

(𝑇0)𝑛 =

(
𝑀𝑇

𝑛𝑚 ·𝑊𝑚𝑚 · 𝑀𝑚𝑛

)−1
· 𝑀𝑇

𝑛𝑚 ·𝑊𝑚𝑚 · (Δ𝑇0)𝑚
(5)

A covariance matrix V for the time offsets can also
be defined:

V =

(
𝑀𝑇

𝑛𝑚 ·𝑊𝑚𝑚 · 𝑀𝑚𝑛

)−1
(6)

allowing to evaluate the goodness of the found offsets.

5. Results

This calibration method has been applied to in situ
NB data (see an example in Fig. 6) assuming a preliminary
fixed geometry of the detector and mostly confirming
the goodness of the dark room inter-DOM calibration.
Further checks with a revised geometry are on-going. It will be used to determine the inter-DOM
offset of the few DOMs that, due to technical issues, were not possible to calibrate during the dark
room phase. For the future it is planned to design a sustainable NB data taking to scale reasonably
up to the whole detector including the optimally tuned NB voltages described in this work.
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Figure 6: NB time calibration.
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