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The IceCube Neutrino Observatory has discovered a diffuse neutrino flux of astrophysical origin
and measures its properties in various detection channels. With more than 10 years of data,
we use multiple data samples from different detection channels for a combined fit of the diffuse
astrophysical neutrino spectrum. This leverages the complementary information of different
neutrino event signatures. For the first time, we use a coherent modelling of the signal and
background, as well as the detector response and corresponding systematic uncertainties. The
detector response is continuously varied during the simulation in order to generate a general
purpose Monte Carlo set, which is central to our approach. We present a combined fit yielding a
measurement of the diffuse astrophysical neutrino flux properties with unprecedented precision.
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A combined fit of IceCube’s high energy neutrino data

1. Introduction

A high-energy astrophysical neutrino flux was discovered by IceCube in 2013 [1], and has
subsequently been characterized using several neutrino detection channels such as high energy
starting events [2], through-going muon tracks [3] and cascades [4]. The astrophysical neutrino
flux has been well-described by an unbroken single power law (SPL) so far; see Figure 1 for an
overview of the measured properties. Hints for substructure in the spectrum, as seen in independent
measurements [3] and [4], are so far statistically insignificant, however.

Previously, several data samples have been combined in a likelihood fit [5], thus enabling us to
derive constraints from complementary data samples with different energy resolutions, sky coverage,
and backgrounds. While this did result in an improved characterization of the astrophysical flux,
not all uncertainties in the modeling were treated consistently: most notably, the energy scale was
treated in an independent way between the samples, which increased the fit uncertainty significantly.

Here, we present a combined fit using IceCube’s track and cascade data, which for the first time
uses a rigorously combined treatment of the detector response, as well as signal and background
fluxes. The toolkit developed for such an analysis was previously verified, especially in terms of
the treatment of detector systematic uncertainties [6, 7], and can be easily extended to include more
data samples in the future.

2. Event samples

The combined fit presented here uses events from the cascade and through-going track sample,
with the event selections outlined in more detail below. By combining these two channels we
leverage the complementary information from these different neutrino event signatures: shower-
like events in the cascade channel provide good energy resolution because most of the visible energy
is deposited within the instrumented volume of the detector.

Only atmospheric 𝜈𝜇 neutral current (NC) events, as well as all atmospheric 𝜈𝑒 events, produce
shower-like events. For these cascade event signatures, atmospheric neutrinos can be vetoed
effectively by observing accompanying muons from air showers; this so-called "self-veto" technique
further reduces background for down-going events, see [8] and references therein. The track
sample, on the other hand, provides a much larger effective area since 𝜈𝜇 interacting far outside
the instrumented volume can produce high-energy muons which leave a track-like signature in the
detector. The angular resolution for these events is much better and enables the resolution of the
zenith-dependent atmospheric flux properties.

Both samples were processed using IceCube Pass-2 re-processed data using the latest detector
calibrations for all track and cascade data used within this analysis [9]. This allows for fitting
both selections with a common set of nuisance parameters modeling not only the atmospheric flux
uncertainties but also the detector systematic uncertainties in a common and unified way.

2.1 Track sample
The through-going muon track sample described and defined in [3] focuses on up-going track-

like events with a reconstructed zenith angle 𝜃reco > 85◦. This cut uses the Earth as a shield
against the background of atmospheric muons reaching the IceCube in-ice neutrino detector. This
background is further reduced by a boosted decision tree (BDT) trained to separate atmospheric
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muons from muons originating from charged current muon-neutrino interactions. The result is a
high purity (>99.8 %) sample of muon neutrinos of either atmospheric or astrophysical origin [3].
One year of data taken with the partial 59-string configuration of IceCube is not included in our
combined fit since it cannot be described in the otherwise uniform Monte Carlo modeling of the
detector response. In the combined fit, we use 542066 selected track events.

2.2 Cascade sample
We select cascade data as described in [4], resulting in a full-sky sample. The selection

differentiates low-level cascade events in low- and high-energy regimes, where the low-energy
event selection mainly uses a BDT method and the high energy (𝐸reco > 60 TeV) event selection
uses selection cuts on individual reconstructed event properties; see [4] and references therein. The
event selection was updated in terms of using the Pass-2 re-processing described above and uses
improved modeling [10] of glacial ice for the reconstruction of cascade events, and the data sample
was extended until mid 2021. In the combined fit, we use 12641 selected cascade events.

In addition to using events classified as cascades for spectral measurement, the low-energy event
selection also identifies a class of events with muons mimicking showers. This muon control sample
is used to constrain the flux level in our background modeling. Moreover, the single-sample cascade
analysis also uses classified starting track events mimicking showers identified in the low-energy
selection. This constrains the contribution of NC 𝜈𝜇 events constituting the dominant background
from the conventional atmospheric neutrino flux. This latter class of events is not included in the
combined fit presented here.

3. Analysis methods
3.1 Detector response modeling and treatment of systematics

In order to model the detector response and corresponding uncertainties, we use the so-called
StormStorm MC approach, as outlined in [11]. Detector response parameters which are uncertain
are varied continuously on an event-by-event basis in the Monte Carlo simulation, populating the
phase space in which the detector response parameters fall, which we constrain from calibration
measurements. Contrary to the method proposed in [12], we extract gradients from the SnowStorm
simulation set [11] and apply those to a separate Monte Carlo set simulated at nominal detector
response parameters. This latter approach was verified in [6]. The detector response parameters
taken into account in this analysis are those describing the bulk scattering and absorption coefficients
of the glacial ice, the impact of the re-frozen drill holes as well as the efficiency of the optical sensors.

We use this Monte Carlo simulation consistently for estimating the observable distribution in
all event selections, and we note that such an approach is central to the combined fit which has to
take into account the correlations between the different event samples.

In order to simulate signal and background neutrino interaction events, we use the CSMS
cross-section [13] and propagate secondary particles using [14], and its parametrization of the
muon energy losses.

3.2 Background modelling
Table 1 lists all nuisance parameters used to model the background flux components in the

combined fit. The atmospheric neutrino flux contributions are calculated using MCEq [15]. We
use H4a as a primary cosmic ray flux model and Sibyll 2.3c as a hadronic interaction model as
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Nuisance parameter Allowed Range Prior
Optical Efficiency [0.9, 1.1] -
Bulk Ice Absorption [0.9, 1.1] -
Bulk Ice Scattering [0.9, 1.1] -
Hole-Ice 𝑝0 [−0.84, +0.3] -
Hole-Ice 𝑝1 [−0.134, +0.05] -
Self-veto Effective Threshold in GeV [5, 2000] -
Conventional Flux Normalization [0.0,∞) -
Prompt Flux Normalization [0.0,∞) -
Muon Flux Normalization (cascades only) [0.0,∞) -
Muon Template Normalization (tracks only) [0.0,∞) -
Cosmic-Ray Model Interpolation [−1.0, +2.0] G(0.0, 1.0)
Cosmic-Ray Spectral Index Shift [−1.0, +1.0] -
Barr H [−0.8, +0.8] G(0.0, 0.15)
Barr W [−0.6, +0.6] G(0.0, 0.4)
Barr Y [−0.6, +0.6] G(0.0, 0.3)
Barr Z [−0.244, +0.6] G(0.0, 0.12)

Table 1: Nuisance parameters in the analysis, their allowed ranges, and Gaussian priors G(𝜇, 𝜎) (if used).

baseline, as well as an interpolation between the two primary cosmic ray models H4a and GST4
as in [3]; see also the references therein. Uncertainties on the conventional neutrino flux are taken
into account following the scheme from Barr et al. [16], the corresponding nuisance parameters
referred to as Barr 𝑋 , see [3] for detailed description of this as well as the muon template.

Modeling the effect of the atmospheric self-veto for the cascade selection is computationally
challenging since, in principle, full air shower simulation including neutrino yields has to be
produced to evaluate the effect of accompanying muons to atmospheric neutrinos. Since the event
selections are typically very effective in terms of rejecting atmospheric muons, this becomes a hard
problem, since most of the generated simulation will not pass the selection. In order to model the
effect of the atmospheric self-veto, we use the MCEq atmospheric flux and muon range calculations
employed in [8].

We note that the response to atmospheric muons is event selection specific. It is parameterized
in terms of the veto probability as a function of the muon energy at detector entry. The self-veto
effective threshold describing this response is hard to constrain due to the computational limitations
explained above; we therefore leave it a free nuisance parameter in the fit.

3.3 Signal modelling
For modeling the astrophysical neutrino flux multiple models of the spectral shape are tested.

For all models, the astrophysical flux is assumed to be isotropic over the full sky with a flavor
composition of (𝜈𝑒 : 𝜈𝜇 : 𝜈𝜏)at Earth = (1 : 1 : 1) and equal ratio of 𝜈/�̄� corresponding to idealized
pp sources where neutrinos are produced from decays of 𝜋±.

The tested spectral shapes include a single power-law (SPL) flux, a log-parabolic (LogP), and
a broken power law (BPL) flux according to models A, C, and D in [4]. Also, a segmented flux
model that assumes an 𝐸−2 flux in individual neutrino energy bins with independent normalization
each is used.
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3.4 Likelihood fit
The analysis is performed with a forward-folding likelihood fit where the Monte Carlo events

are weighted according to the parameters describing the signal and background fluxes as described
above. We bin cascade and track data separately in the respective reconstructed energy and zenith
observables, in order to resolve spectral features and discriminate the isotropic astrophysical neutrino
flux from the atmospheric backgrounds with different zenith dependencies. We take into account
the limited amount of Monte Carlo simulation statistics, due to computational limitations, in terms
of using the effective likelihood described in [17]. The analysis bins in the combined fit are de-
correlated by removing all overlapping events from the tracks sample - these are a minor fraction
of starting events that are not relevant to the sensitivity of this measurement [12]. We note that this
de-correlation can only be achieved using the general-purpose MC simulation developed for the
purpose of this work.

In order to perform the fit, O(107) Monte Carlo events have to be re-weighted at every
minimizer iteration. In order to do this computationally efficiently, we use aesara [18] allowing
for fast evaluation of mathematical expressions involving multi-dimensional arrays as well as
efficient symbolic differentiation, which we use to provide gradients of the likelihood function to
the minimizer.

4. Results

We find good agreement between data and Monte Carlo in the combined fit, see Figure 2. This
agreement was tested extensively in the background region below 10 TeV in reconstructed energy
to ensure correct combined modeling of the region where the atmospheric fluxes dominate.

In the region of the spectrum where the astrophysical flux dominates, we see structures deviating
from a SPL. Notably, we see an excess of data at around 20-30 TeV in reconstructed cascade energy,
which is consistent with previous findings [4, 19]. Moreover, we see a deficit in the reconstructed
cascade energy spectrum at a few hundred TeV, which was also reported in [2]. The events in the
tracks sample do not provide the energy resolution necessary to resolve these fine features but help
in the combined fit by constraining the atmospheric flux and detector nuisance parameters due to
the high statistics of the sample.

The measured parameters of the SPL astrophysical neutrino flux are shown in Figure 1. We
note that more complex models are preferred statistically, but the contour shown here is in agreement
with the sensitivity assuming a SPL. We test models of the astrophysical neutrino flux as described
in Section 3.3, and find that curvature or a spectral break in the astrophysical neutrino flux better
describes the data. The outcome of these fits is described in Table 2 and also shown in Figure
3. The segmented flux fit follows this trend and indicates spectral features around 30 and several
hundred TeV, as seen in the cascade energy spectrum. The sensitive energy ranges quoted in Table 2
are computed under the assumption of the respective fluxes. We fit the Asimov sets corresponding
to astrophysical fluxes unrestricted in energy with the same spectral assumption, but restricted to
[𝐸𝜈,low, 𝐸𝜈,up]. The limits given in Table 2 are then derived from 1D profile likelihood scans of
𝐸𝜈,low and 𝐸𝜈,up, assuming Wilk’s theorem.

The prompt neutrino flux component fits to a value close to the flux level expected from
the decay of charmed mesons, but has a large uncertainty and also depends on the choice of the
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astrophysical flux model [20] since the prompt flux component is subdominant over the full energy
range.

Astrophysical
Model

Result Energy Range
(90% CL)

−2ΔlogL
over SPL

SPL Φ𝜈+�̄�
@100TeV /𝐶 = 1.80+0.13

−0.16
𝛾 = 2.52+0.04

−0.04
2.5 TeV to 6.3 PeV -

LogP
Φ𝜈+�̄�

@100TeV /𝐶 = 2.13+0.16
−0.19

𝛼LP = 2.57+0.06
−0.05

𝛽LP = 0.23+0.10
−0.07

8.0 TeV to 2.2 PeV 16.4

BPL

Φ𝜈+�̄�
@100TeV /𝐶 = 1.77+0.15

−0.11
log10 (𝐸break/GeV) = 4.39+0.09

−0.08
𝛾1 = 1.31+0.50

−1.21
𝛾2 = 2.74+0.06

−0.07

13.7 TeV to 4.7 PeV 24.7

Table 2: Measurement results for all tested astrophysical flux models and their estimated sensitive energy
range. The uncertainties are derived from 1D profile likelihood scans, assuming Wilks’ theorem. The flux
normalization is measured in units of 𝐶 = 10−18/GeV/cm2/s/sr.

We note that the BPL assumption results in a description of the data that is nearly as good
as the segmented flux differing only in ∼6 TS units, despite having fewer parameters. Fitting the
samples individually, we find that a BPL fit to the cascade sample alone results in very similar
astrophysical flux parameters, with a slightly softer 𝛾2. A BPL fit to only the tracks sample results
in a higher 𝐸break, and also a slightly softer 𝛾2 compared to the combined fit. Performing a
likelihood ratio test against the combined best-fit BPL, we see a ∼2 sigma difference in the BPL
fit to only the tracks sample. These differences are also reflected in the energy spectra shown in
Figure 2, where we see some excess of high-energy track events compared to the combined model.
We observe a mild tension between the low-energy spectral index 𝛾1, derived from cascades and
tracks, and results derived from a sample of starting events (ESTES, [21], this conference), where
no significant break in the spectrum is observed. An important difference between these samples
targeting different event signatures is that they reach the highest sensitivity in different regions of the
sky. Possible future directions for investigations are, whether these differences can be attributed to
non-isotropic contributions, such as the Galactic Plane [22], and/or to the uncertainties of modeling
the atmospheric neutrino background, the neutrino inelasticity, muon energy loss modeling, as well
as the optical properties of the glacial ice [23].

5. Conclusion and Outlook

For the first time, we perform a fit of two independent data samples of IceCube’s high-energy
neutrino data using a consistent treatment of nuisance parameters. We find good agreement
between the data and our model, with some deviations at the highest energies. We see indications
for deviations from a SPL with hardening at lower energies and softening at higher energies, in
agreement with what has been reported before using the tracks and cascades samples going into
our combined fit. This opens up possibilities for deepening our understanding of the high-energy
neutrino flux. The toolkit compiled for this work will be expanded with more event selections in
the future for even better constraints on the astrophysical neutrino flux properties.
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Figure 1: Result of the combined
fit of tracks and cascades (in red) un-
der the assumption of an astrophys-
ical SPL neutrino flux. Previous re-
sults from measurements using sin-
gle event channels are shown for
comparison. Note that the sensitive
neutrino energy ranges (as indicated
in the upper panel) and neutrino fla-
vor probed are different amongst the
different samples.

Figure 2: Best-fit spectra assuming a BPL astrophysical neutrino flux. Left: Reconstructed muon energy
spectrum for all events in the tracks sample. Right: Reconstructed deposited energy spectrum for all events
in the cascade sample.
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