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The discovery of high-energy cosmic neutrinos has raised great interest in the field of neutrino
astronomy. The KM3NeT/ARCA detector is currently under construction at the bottom of the
Mediterranean Sea and is measuring high-energy neutrinos. The complete detector will instrument
a cubic kilometre of seawater with photomultiplier tubes that detect the Cherenkov radiation from
the products of neutrino interactions. The design is focused on discovering high-energy neutrino
sources which requires an excellent angular resolution. This contribution covers the reconstruction
algorithms deployed in the full KM3NeT/ARCA detector and their performances. The angular
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1. Introduction

The detection of high energy cosmic neutrinos by IceCube accelerated the field of neutrino
astronomy [1]. IceCube detected a high-energy neutrino event coincident with a gamma-ray flare
from TXS 0506+056 [2] and an excess of events from nearby active galaxy NGC 1068 [3] but there
are many sources yet to be discovered.

The KM3NeT/ARCA detector is currently under construction offshore from Porto Palo di Capo
Passero, Sicily, Italy [4]. Its primary purpose is to detect neutrinos with energies ranging from
TeV and beyond. The field of the detector view covers the Southern sky in order to study potential
Galactic sources. The detector consists of a three-dimensional grid of optical modules at the bottom
of the Mediterrean sea [5]. Each optical module houses 31 photomultiplier tubes (PMTs) and data
acquisition hardware. Each vertical detection string contains 18 modules that are mounted to the
seabed. The final detector configuration will have 230 strings covering an instrumented volume of
approximately 1 km3.

The discovery and characterisation of new neutrino sources is enabled by reconstruction
and selection of neutrino and background event. This contribution covers the full detector
(KM3NeT/ARCA230) reconstruction algorithms and performance for track, shower and double
shower topologies. This is followed by the track and shower event selections that are used for the
current point source and diffuse flux analyses.

2. Simulation

Neutrino events are simulated using the gSeaGen simulation framework [6]. All neutrino
flavours and interactions are simulated with energies from 102 to 108 GeV and weighted using
different flux models. The atmospheric flux consists of a conventional and prompt component as
described in [7].

The atmospheric muon events are generated using parametric formulas implemented in the
MUPAGE software package [8]. Two samples of atmospheric muon are generated. One with a
bundle threshold of 10 TeV and one of 50 TeV to increase statistics at high energies.

The generated events are processed by software packages for the light simulation and detector
response. The track and shower reconstruction are applied to all events.

3. Event reconstruction

The event reconstruction algorithms covered in this contribution are based on a maximum
likelihood search method.

3.1 Track reconstruction

The track reconstruction fits the energy and direction of high-energetic muons [9]. A coordinate
transformation is applied to align a muon direction hypothesis with the z-axis. The muon trajectory
can then be described by 5 parameters

• 𝜌𝑖: distance of closest approach muon track with PMT,
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• 𝜃𝑖 , 𝜙𝑖: PMT orientation angles,

• Δ𝑡: difference between and measured and expected hit time according to the Cherenkov
hypothesis,

• 𝐸 : energy of the muon.

The non-linearity of the problem requires a prefit where scattering and dispersion of light is
neglected. This results in a linear fit that is performed over all directions with a 1◦ grid angle. The
best 12 fits are stored and passed to the final fit. This fit maximises the likelihood

Likelihood =
∏

hit PMTs

𝜕𝑃

𝜕𝑡
(𝜌𝑖 , 𝜃𝑖 , 𝜙𝑖 ,Δ𝑡, 𝐸) (1)

where 𝜕𝑃
𝜕𝑡

is a semi-analytical probability density function (PDF) which gives the expected scattered
and unscattered photons from Chrerenkov radation and energy losses of a muon. This PDF includes
detector effects like the quantum efficiency and transit time spread of PMTs and background rates
from K40 decays in seawater. Figure 1 shows the angular resolution of the track reconstruction for
the track selection (described in section 4) 𝜈𝜇CC events using the KM3NeT/ARCA230 detector.
The energy resolution is defined as half the difference between the 16th and 84th percentiles of the
energy bias distributions (Energy bias = 100% ·

(
𝐸𝑟𝑒𝑐

𝐸𝑣𝑖𝑠𝑖𝑏𝑙𝑒
− 1

)
) and is shown in Figure 2(b).

Figure 1: KM3NeT/ARCA230 angular resolution for 𝜈𝜇CC of the track selection described in section 4.

3.2 Shower reconstruction

The KM3NeT/ARCA230 shower reconstruction also follows a two-step procedure [9]. The
first step selects coincident hits on the same optical module within 20 ns. Subsequently the vertex
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position and time is found by minimising

𝑀 =
∑︁
𝑖∈hits

√︁
1 + (𝑡𝑖 − 𝑡𝑖) (2)

where 𝑡𝑖 is the measured hit time and 𝑡𝑖 the expected hit time assuming a spherical light pattern
emitted from the vertex. The final fit tests different direction hypotheses around the fitted vertex
position. Twelve isotropic starting directions are chosen where the following likelihood is maximised

log 𝐿 =
∑︁
𝑖∈hits

log(𝑃hit PMTs
𝑖 ) +

∑︁
𝑖∈no hit PMTs

log(𝑃no hit
𝑖 ) (3)

𝑃hit
𝑖 = 1 − 𝑃no hit

𝑖 = 1 − exp(−𝜇sig(𝑟𝑖 , 𝑧𝑖 , 𝑎𝑖 , 𝐸) − 𝑅bg · 𝑇) (4)

where 𝜇sig is obtained from interpolating a PDF based on Monte Carlo simulations and 𝑅𝑏𝑔 is
expected background rate in time window 𝑇 . The PDF depends on the distance from the vertex to
the PMT (𝑟𝑖), the angle between the neutrino direction and the vector between the vertex and the
PMT (𝑧𝑖), the angle between the normal vector of the PMT and the vector between the vertex and
the PMT (𝑎𝑖) and scales linearly with energy. The direction and energy resolution of 𝜈𝑒CC events
selected as shower (described in section 4) are shown in figure 2.

(a) (b)

Figure 2: KM3NeT/ARCA230 angular resolution (a) for 𝜈𝑒CC of the shower selection (described in section
4). The energy resolution (b) of 𝜈𝜇CC selected as track and 𝜈𝑒CC selected as shower.

3.3 Improvements

The shower reconstruction can be improved when including timing information in the fit
procedure [10]. High-energy showers are elongated over several meters resulting in a small lever arm
that helps the direction reconstruction. The algorithm is currently too computationally expensive
to run over large datasets, but figure 3 (a) shows contained 𝜈𝑒CC events reconstructed with and
without timing information. The resolutions drops from 2◦ to below 1◦.

The inclusion of timing information in the reconstruction also opens up the door in recon-
structing double shower events. These events are caused by 𝜈𝜏CC interactions where the 𝜏 decays
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into a electromagnetic or hadronic shower. The relativistic 𝜏 can travel approximately 5 m/100 TeV
resulting in two separated showers. The double shower reconstruction fits a double shower model
based on the hit time information [10]. The fit starting point is the traditional shower reconstruction
result. This is followed by a prefit to get a first estimate of the first and second shower position.
Finally a full fit is performed where the primary vertex, tau flight length, direction and two energies
are fitted. Figure 3 (b) shows the angular resolution as a function of the tau length for contained
events with 𝐸𝜈 > 100 TeV. Dedicated tau selections and analyses are in preparation.

(a) (b)

Figure 3: Angular resolution for the shower reconstruction with timing information (a) and the double
cascade reconstruction (b). Both results are compared with the traditional shower reconstruction. The time
shower reconstruction shows contained 𝜈𝑒CC. The double cascade reconstruction contained 𝜈𝜏CC shower
decay events with 𝐸𝜈 > 100 TeV.

4. Neutrino selections

The neutrino purity is increased by applying cuts to remove atmospheric muon events. This is
done for two separate observation channels; tracks and showers. The variables used for rejecting
background are output from the track and traditional shower reconstruction. Selection cuts are
followed by the training of a boosted decision tree model to obtain the final selections. Selections
based on the time shower fit and double cascade reconstruction are under preparation.

4.1 Track selection

The track selection is optimised to find upgoing track-like neutrino events that are reconstructed
within 10◦ of the neutrino direction. Upgoing and horizontal events are selected for reconstructed
zenith 𝜃 < 100◦. Various variables of these events are used to train the boosted decision tree
model including reconstructed energy, fit quality, direction error, track length and more. The
final selection contains a more strict cut for horizontal (80◦ < 𝜃 < 100◦) events due to higher
mis-reconstructed muon contamination. Figure 4 shows the KM3NeT/ARCA230 event rate per
year versus the reconstructed energy and zenith of the track selection for a cosmic neutrino flux of

𝜙𝜈𝑖+�̄�𝑖 = 1.2 · 10−8
(
𝐸𝜈

GeV

)−2
GeV−1 cm−2 s−1 sr−1.
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(a) (b)

Figure 4: KM3NeT/ARCA230 event rate per year versus the reconstructed energy (a) and zenith (b) of the

track selection for a cosmic neutrino flux of 𝜙𝜈𝑖+�̄�𝑖 = 1.2 · 10−8
(
𝐸𝜈

GeV

)−2
GeV−1 cm−2 s−1 sr−1.

4.2 Shower selection

The shower selection aims to improve the sensitivity to point sources and the diffuse neutrino
flux by selecting as many neutrino events that not pass the track selection. Events are selected with
a shower reconstruction vertex z position below the top layer of optical modules. This is followed
by cuts on the number of hits that fulfill the Cherenkov hypothesis. Another boosted decision tree
model is trained using variables like reconstructed position, direction, energy, fit quality and the
inertia ratio of the hits. Figure 5 shows the KM3NeT/ARCA230 event rate per year versus the
reconstructed energy and zenith of the shower selection.

(a) (b)

Figure 5: Event rates per year versus the reconstructed energy (a) and zenith (b) of the shower selection for

a cosmic neutrino flux of 𝜙𝜈𝑖+�̄�𝑖 = 1.2 · 10−8
(
𝐸𝜈

GeV

)−2
GeV−1 cm−2 s−1 sr−1.
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4.3 Performance

The effective area of the final selections can be found in figure 6.

(a) (b)

Figure 6: Effective area for a flux of 𝜈𝑖 + �̄�𝑖 for the track (a) and shower (b) selection for KM3NeT/ARCA230.

The final event rates per year for the full detector are shown in table 1.

Trigger Track selection Shower selection
Atmospheric 𝜇 80.6e6 713 1524
Atmospheric 𝜈 19.1e4 85.2e3 2264
Cosmic 𝜈 728 220 96
Signal efficiency 94.5% 69.7%
Neutrino purity 99% 60.8%

Table 1: Yearly event rate for KM3NeT/ARCA230 at trigger level and for the track and cascade selection

for a cosmic neutrino flux of 𝜙𝜈𝑖+�̄�𝑖 = 1.2 · 10−8
(
𝐸𝜈

GeV

)−2
GeV−1 cm−2 s−1 sr−1.

The signal efficiency is calculated by dividing the signal events that pass the selections divided
by upgoing signal events for tracks and all signal events for showers. The signal definition for tracks
entails events with a muon and that have the direction reconstruction within 10◦. Signal events for
showers are events without a muon, that are contained within the detector and have the direction
reconstruction within 10◦.

5. Conclusions

This contribution summarises the KM3NeT/ARCA230 reconstruction software and neutrino
selections that are used for the current point source and diffuse analyses. The track selection is a
pure upgoing neutrino sample and the cascade selection includes as much extra signal as possible.
Future improvements will include timing information in the shower reconstruction resulting in an
angular resolution below 1◦ above several 100 TeV. A dedicated double shower algorithm and a
dedicated neutrino selection is in preparation.
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