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According to the thermo-acoustic model introduced by Askaryan, the instantaneous energy de-
position of a particle’s shower in a medium produces a sound wave. The concept of acoustic
neutrino detection is based on this principle. As the extremely low flux of Ultra-High Energy
cosmic neutrinos is a limiting factor for the study of related astrophysical phenomena, large de-
tector configurations have to be built. As sound has a much larger attenuation length than light
in water, the development of hydrophone array-based detectors is a feasible solution. The ability
to identify Ultra-High Energy neutrino induced acoustic pulses in underwater sound is discussed
in this contribution. Acoustic pulses from Ultra-High Energy hadronic showers in the sea water
simulated in the EeV regime are added to sea-state 0 noise recordings collected at a water depth
of 1600 meters, Southwest of Peloponnese, Greece. Sophisticated signal processing and artificial
intelligence techniques are developed and used for signal identification.
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1. Introduction

The thermo-acoustic model introduced by Askaryan, describes the production mechanism of
an acoustic pulse as a result of the instantaneous energy deposition from a particle shower [1]. The
concept of acoustic neutrino detection is based on this principle.

To account for the extremely low flux of neutrinos in the Ultra-High Energy regime, detectors
with a large instrumented volume have to be built. Concerning the Cherenkov detectors, the
granularity is constrained by the absorpsion length of the light in seawater or ice. This results in
detector configurations with optical modules arranged at a distance of few tens of meters. As sound
has a much larger attenuation length than light in seawater, hydrophone-array configurations may be
a feasible solution when very large instrumented volume detectors are needed. In such cases, where
detectors would consist of hundreds or thousands of hydrophones, the enormous size of underwater
acoustic recordings would lead to computational issues. A method to overcome this difficulty is to
set a trigger condition according to the acoustic neutrino pulse properties at the hydrophone level.

The ability to identify neutrino induced acoustic pulses in underwater sound hydrophone
recordings is discussed in this work. Simulated Ultra-High Energy neutrino induced acoustic
pulses are added to underwater sound recordings and an ensemble of analysis techniques are used
for their identification. A description of the data and MC simulation used in this work is presented
in chapter 2. The data handling as well as the processing through the different frequency analysis
steps are mentioned in chapter 3. In chapter 4, the classification algorithm used for the pulse
identification is described along with the features used. Finally, a conclusion of this work is found
in chapter 5, along with some ideas for the future steps.

2. Data and Monte Carlo simulation

2.1 Data recordings

The data used in this work have been collected at a sea depth of approximately 1600 meters,
Southwest of Peloponnese, Greece. Two Loggerhead DSG-ST hydrophones [2] were recording
continuously the ambient sea noise for about one month, operating at a sampling frequency of
144 kHz. The data collected in a time period of 2 hours correspond on average to ∼2.1 GB per
hydrophone. A common technique in acoustic data analyses in order to handle this amount of data
conveniently, is to separate them into much smaller partitions, hereafter mentioned as chunks. The
duration of the chunks was chosen to be 5 ms; taking into acount the sampling rate, each chunk
corresponds to 720 discrete values with a ∼7 `s period each.

The data recordings were calibrated according to the data provided by the manufacturer with
respect to the hydrophove sensitivity and the electronics gain, having removed the contribution of
the baseline DC offset. As a result, the 720 discrete digitized values that correspond to each chunk
are converted into pressure (Pa).

2.2 Simulation of neutrino acoustic pulses

The simulation chain of the acoustic neutrino pulses consists of two parts. The first one
concerns the simulation of the particle shower produced by the neutrino interaction, while the
second one concerns the calculation of the pulse waveform at a given hydrophone position, by
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integrating the shower energy deposition and accounting for the attenuation during the propagation
of the pulse in the seawater.

For the shower generation, a special version of the CORSIKA Extensive Air Shower simulation
software has been used [3]. This version, the CORSIKA-IW[4], is modified to simulate showers in
ice or in seawater. A custom modification has been also implemented and concerns the distribution
of the deposited shower energy provided by CORSIKA; it has been modified to provide a two-
dimentional histogram, i.e. the deposited shower energy as a function of the shower’s axial and
radial distance, instead of the standard axial deposited energy distribution provided by CORSIKA.
This is essential as a numerical integration is done according to the profile of the shower’s deposited
energy for the pulse calculation.

The method used for the calculation of the acoustic neutrino pulses is the one developed by
the ACoRNE collaboration as described in [5] and [6]. It is a Monte Carlo numerical solution of
the wave equation extracted by Askaryan and subsequently the calculation of the pulse waveform
accounting for the attenuation. From the technical perspective, this software was re-written from
MATLAB to Python with the aim to take advantage of this language’s support and compatibility,
taking into account its increasing importance in the research community.

A simulation chain was developed using the tools described above. Hadronic showers were
generated in the energy range between 10 EeV and 100 EeV, according to an �−2 energy spectrum.
Dozens of pulses have been calculated for each generated hadronic shower, with the shower to
hydrophone distances varying between 50 and 250 meters. Indicatevely, the shape of an acoustic
neutrino pulse simulated with the tools described above is presented in Fig. 1a, along with its
spectrum at the frequency domain using fourier transform in Fig. 1b. The characteristic narrow
shape of the bipolar pulse leads to a broad frequency spectrum.

(a) (b)

Figure 1: Acoustic neutrino pulse from a 100 EeV shower at a distance of 1000meters (left), and its spectrum
at the frequency domain (right).

3. Data processing - Frequency analysis techniques

The investigation of the ability to identify acoustic neutrino pulses in underwater data recordings
is reduced to a classification problem. The elements of the considered signal and background classes
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are the chunks, as introduced in Chapter 2. Data chunks with pure underwater noise recordings
constitutes the background class. For the signal class, simulated neutrino acoustic pulse waveforms
are added in random positions on top of the recorded pressure time-series. The chunks used for
both classes have been selected in an alternate way to avoid potential background bias. In more
detail, for a given chunk 8 that is used for the backgound class, the chunks 8 + 2, 8 + 4 , 8 + 6 etc. are
used for background, while the chunks 8 + 1, 8 + 3 , 8 + 5 etc. are used for signal. The processing of
the chunks for signal and background classes through frequency analysis techniques is described in
the following.

3.1 Subtraction of dolphin clicks

Cetaceans and other underwater mammals produce various sounds, with the so-called dolphin
clicks to be among them. The waveform as well as the frequency spectrum at which dolphin clicks
occure is known [7]. The presence of dolphin clicks in the data recordings was noticed during
the analysis; An example is shown in Fig. 2a (blue). A criterion was developed in order to spot
the chunks containing dolphin clicks, as the subtraction of these chunks is necessary for further
analysis.

For the identification of the chunks that contain dolphin clicks, a Butterworth/bandstop filter
is applied. This filter is applied to each chunk and removes the contribution of the frequencies
between 22 kHz and 45 kHz from the waveform. In Fig. 2b, the subtraction of the frequencies is
presented using a Sound Pressure Level diagram. The application of this filter on the waveform is
illustrated again in Fig. 2a (orange). An efficient subtraction of the dolphin click related frequencies
is noticed, while the rest of the waveform barely changes. A metric is finally constructed in order
to characrerize chunks that contain dolphin clicks, taking into account the difference between the
original waveform and the one with the bandstop filter applied. The chunks which are marked to
contain dolphin clicks are excluded from further analysis. In a future hydrophone-array acoustic
neutrino detector, dolphin clicks could also be rejected by modifying accordingly the higher-level
trigger conditions (i.e. correlations between hydrophones).

(a) (b)

Figure 2: Left: Chunk with a dolphin click (blue) and the same chunk after the application of the bandstop
filter (orange); Right: Sound Pressure Level for the same waveforms.
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3.2 Removing the contribution of lower frequencies

An additional filter is applied during the data processing, in order to remove the contribution
of the low frequency sources, such as ship engines, seismic activity, etc. The frequencies below 5
kHz are removed with the application of a Butterworth/High-Pass filter. In Fig. 3, the waveform of
a chunk is shown, before and after the application of the high-pass filter. A neutrino acoustic pulse
has been added to this chunk (slightly before 600). With the application of the high-pass filter, an
excess is noticed at the position where the neutrino pulse has been added, with respect to the filtered
baseline. The impact of this filter has been proven effective as it increases the overall efficiency of
the classification, thus this technique has been followed in the processing.

Figure 3: The waveform of a chunk in units of pressure (blue), with the acoustic neutrino pulse added on
top (orange), and the latter after the high-pass filtering.

3.3 Application of the wavelet transform

The final step concerns the processing of the chunks through a wavelet transform [8]. The
wavelet transform is efficient when deconvoluting a signal which is extremely localized in the time
domain. In Fig. 1, it is noticed that the narrow shape of the neutrino pulse at the time domain
leads to a broad frequency domain spectrum. This indicates that methods based on the Fourrier
transform may not be efficient, as has been also shown in [8]. In contrast to the Fourier Transform
which expresses a signal as a linear combination of periodic functions (sine and cosine), the wavelet
transform expresses a signal in a basis generated by a mother wavelet. Commonly used mother
wavelets are shown in Fig. 4a. The elements of the basis are stretched or shrunk versions of the
mother wavelet in the time domain. The mother wavelet that was chosen in order to deconvolute
the acoustic neutrino pulse shape from the background is the one shown in Fig. 4b. The basis used
for the deconvolution consists of eight wavelets generated by this mother wavelet.

The usage of the wavelet transform in this analysis is illustrated in Fig. 5.At the top-left plot, the
waveform for a chunk is presentedwithout (blue) andwith (green) the high-pass filtering. In addition,
the same is shown at the top-left plot with a neutrino acoustic pulse added on top slightly before
chunk 600 (orange). The bottom plots concern the values of the wavelet transform coefficients,
each for the above plot respectively. The first and last four samples have been removed from the
chunk after the wavelet transform to reject the strong correlation values because of the discontinuity.
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(a)
(b)

Figure 4: Left: Common functions that are used as mother wavelets. Right: The chosen mother wavelet in
this work.

Strong correlation coefficient values are noticed at the position where the acoustic neutrino pulse
was added. The final step of the analysis benefits from this, as variables are constructed from the
wavelet correlation matrix, with the aim to be used as features in a classification algorithm.

Figure 5: Left: The waveform of a chunk before and after the filtering (top) along with the wavelet transform
coefficients (bottom). Right: The same as in the left plots with a neutrino acoustic pulse added in the chunk
waveform.

4. Classification

4.1 Gradient Boosted Decision Tree

A Boosted Desicion Tree (BDT) with Gradient Boosting has been used for classification using
the scikit-learn software [9]. Eighteen variables are used as features, all extracted from the wavelet
correlation coefficient matrix. The construction of these variables involve operations between the
rows of the matrix, ratios between maximum values and the baseline in the rows of the matrix, as
well as values of different order matrix norms.
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The phase space of the BDT parameters has been also scanned to define optimal values for the
number of trees, the boosting parameter and the maximum tree depth. The chunks that have been
processed as described in Chapter 3 have been used to train and evaluate the BDT classifier. The
resulting ROC curve is shown in Fig. 6a. A signal efficiency of ∼ 69% can be achieved with a
background rejection of ∼ 95%, as shown in Fig. 6b.

(a) (b)

Figure 6: Left: ROC curve for the evaluation of the BDT classifier. Right: Confusion matrix for the same
classifier.

4.2 Convolutional Neural Network

A different approach has been also tried for classification, taking advantage of the state-of-
the-art Deep Learning technique of Convolutional Neural Network (CNN). For the implementation
of the CNN algorithm in this analysis, the Flux package has been used [10], written in Julia
programming language. As the execution of Deep Learning algorithms is computationally intense,
high-performance GPUs are used to achieve a significant reduction of the runtime.

A one-dimentional CNN is used for classification. The signal and background classes are as
defined earlier, but in the case of the CNN the chunks are only high-pass filtered and they have
not processed through the wavelet transform. The input layer consist of 720 nodes, one for each
sample of the chunk. The architecture of the model includes Convolutional and MaxPooling layers
for pattern identification and dimensionality reduction, as well as Dropout layers, which improve
the model’s robustness by offering multiple paths to the output layer. The CNN is re-trained several
times, the so-called epochs, and the one with the lowest validation loss value is chosen as the optimal
as shown in Fig. 7a. The confusion matrix is shown in Fig. 7b, demonstrating a signal efficiency
of ∼ 76% with a background rejection of ∼ 95%.

5. Conclusion

An investigation on the idectification of acoustic neutrino pulses at the hydrophone level has
been made in this analysis. A simulation chain has been developed in order to generate Ultra
High Energy hadronic showers in the seawater and moreover to simulate the thermo-acoustic
model, in order to extract acoustic neutrino pulses. The simulated pulses have been added in
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(a) (b)

Figure 7: Left: Accuracy and loss for the training and validation samples for each epoch. Right: Confusion
matrix for the CNN with the least validation loss (8th epoch).

underwater data recordings, and the data have been processed through frequancy filters and a
wavelet transformation. A Machine Learning classifier (BDT) has been developed with features
based on the wavelet coefficient matrix; an efficiency of ∼ 69% is achieved with a background
rejection ∼ 95%. The potential to identify acoustic neutrino pulses is explored also with a Deep
Learning classifier (CNN), illustrating a signal efficiency of ∼ 76% with a background rejection
of ∼ 95%. Both techniques show promising first results for neutrino acoustic pulse identification
at the hydrophone level. With these as starting points, studies for a trigger condition that involve
different hydrophones could be implemented. Investigations for such a trigger condition could lead
to a feasible data acquisition system for a future acoustic neutrino detector.
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