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scale atmospheric neutrino interactions for the purpose of neutrino oscillation studies. Distin-
guishing muon neutrinos from other flavors and reconstructing inelasticity are especially difficult
tasks at GeV scale energies in IceCube DeepCore due to sparse instrumentation. Convolutional
neural networks (CNNs) have been found to have better success at neutrino event reconstruction
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1. Introduction

The IceCube Neutrino Observatory is a neutrino detector located at the South Pole. When
high energy neutrinos interact with the Antarctic ice they produce fast moving charged secondary
particles that produce Cherenkov radiation. The IceCube detector consists of 86 strings of digital
optical modules (DOMs) that detect this Cherenkov radiation [1]. IceCube DeepCore is an infill
of the IceCube Neutrino Observatory that utilizes more densely instrumented strings to lower the
energy threshold from hundreds of GeV to a few GeV [2]. Many of the IceCube experiment’s
physics goals require reconstructing observables such as neutrino direction, neutrino energy, and
neutrino flavor.

When a muon neutrino / antineutrino undergoes a charged current deep inelastic scattering it
produces an energetic muon / antimuon that can travel a significant distance and produce a detectable
track of light [3]. This is referred to as a track event. At lower energies, for neutral current deep
inelastic scattering events, and for charged current deep inelastic scattering of electron neutrinos /
antineutrinos and most tau neutrinos / antineutrinos, only the hadronic cascade will be visible [2].
This is referred to as a cascade event. Thus, muon neutrinos / antineutrinos can be seperated from
the other flavors using the IceCube detector.

The inelasticity is the fraction of neutrino energy that is deposited in the hadronic cascade of
a deep inelastic scattering. The average inelasticity for muon neutrinos and muon antineutrinos is
different [4, 5]. This can allow us to separate neutrinos from antineutrinos statistically using the
IceCube detector.

Both neutrino flavor and inelasticity are observables that require evaluating the morphology
of individual events. For particle identification (PID), we look for the existence of an outgoing
muon / antimuon track [3]. At the energies relevant for DeepCore, the energetic muon / antimuon
is a minimum ionizing particle, and thus the average length the muon / antimuon travels scales
linearly with the energy of the muon / antimuon. Thus we can look at the length of the outgoing
track and the total light deposited in the hadronic cascade to determine the inelasticity [3]. The
density of the DOMs in the ice means that events at lower energies have lower resolutions, making
standard reconstruction techniques more difficult to use. It has been shown that machine learning
based reconstruction methods are faster and more precise than the photon table based reconstruction
methods that have been previously used in IceCube [6]. In this paper we describe a new convolutional
neural network (CNN) developed to measure PID and inelasticity in IceCube DeepCore.

2. Methods

2.1 Monte Carlo Data and Selection

For training and testing the CNN we use simulated data that includes the following restrictions:

• The energy must be between 3 GeV and 1 TeV for inelasticity reconstruction, 5 GeV to 1 TeV
for PID reconstruction.

• There must be at least eight photon hits and at most 250 photon hits in the event.
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• The interaction must occur between 2106 meters and 2450 meters deep in the ice in a circle
of radius 100 meters surrounding the center of DeepCore.

We elect to use relatively loose selection criteria so that we have more events to train the CNN
with and so that in the future we can apply the trained CNN to existing data sets that have stricter
selection criteria. The energy threshold was lowered from 5 GeV to 3 GeV for inelasticity to match
existing matter dependant studies. For PID reconstruction, we need to select a sample that contains
both tracks and cascades, so we take muon and electron neutrino / antineutrino events, including
both neutral and charged current interactions. For inelasticity reconstruction we just need to focus
on track events, so we only take muon neutrino / antineutrino charged current interactions. After
imposing these restrictions our data has the composition shown in Table 1.

Table 1: Composition of Monte Carlo data used for training the CNN. A track event is a muon neutrino /
antineutrino CC interaction. Everything else is labelled a cascade event.

tracks cascades
PID 4,495,634 2,835,831

inelasticity 4,827,397 0

We then split the data into three sets: 4% for a testing the CNN, 10% for a validating performance
during training, and the rest is used as a training set.

2.2 Monte Carlo Data Preparation

Our data should have translational symmetry in both space and time. However, the strings
in the DeepCore detector are non-uniformly spaced in the x-y plane, as shown in Figure 1, so
exploiting the x-y translational symmetry cannot be easily done. The DOM spacing is uniform
along the strings, so we can exploit the translational symmetry along depth and along time. Thus,
for every event we compose a 2-dimensional image for each string in the DeepCore detector. The
images consist of the DOMs ordered by depth on one axis and time sliced into 25 nanosecond time
segments on the other axis. The charge of the photon hits seen by a particular DOM in an event is
summed, and the pixel containing the earliest photon hit in a particular DOM is populated with the
total charge. An example of such a string image is shown in Figure 2.

There are two types of strings of DOMs in the DeepCore detector. Seven of the strings are
identical to the strings that are used in the rest of the IceCube detector. We will refer to those strings
as IceCube strings. There are eight strings that are more densely instrumented surrounding a single
IceCube string. We will refer to those strings as DeepCore strings. We utilize all of the strings in
the blue circle in Figure 1 in our CNN. For the inelasticity CNN we also incorporate the IceCube
strings surrounding the DeepCore detector shown in Figure 1. This is done because it was found
that we obtain better reconstruction results at higher energy. We will do the same for PID in the
future, but the results shown in this paper for PID do not include those additional IceCube strings.

We elect to only use DOMs that are below a particular dust layer at about 2000 meters to 2100
meters deep that reduces the optical quality of the ice [7]. This creates the complication that the
string images constructed from DeepCore strings will have more rows than the images constructed
from IceCube strings since there are more DOMs below the dust layer on the DeepCore strings
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2D Convolutional Neural Network for Event Reconstruction in IceCube DeepCore

Figure 1: Spacing of strings in the x-y plane of
the DeepCore detector. The black triangles rep-
resent strings of DOMs identical to the strings
that are found in the rest of IceCube. The red
spots represent DeepCore strings that were in-
stalled specifically for the DeepCore detector and
are more densly instrumented. All of the strings
that are within the blue circle are used in the
DeepCore detector.

Figure 2: Example of a string image. Each row
is a DOM, and the rows are ordered based on
depth in the ice. The pixels are populated with
the total charge that each DOM saw starting at a
particular slice of time. Each event will have an
image for every string in the DeepCore detector.

than on the IceCube strings [1]. Thus we pad the IceCube string images with empty DOM rows in
such a way that IceCube string DOMs and DeepCore string DOMs with similar depths will be in
the same row in the string images. We then stack the DeepCore string images and padded IceCube
string images together to feed to the CNN.

2.3 Neural Network Architecture and Training

Our CNN includes four convolutional blocks followed by a two layer multi-layer perceptron
(MLP). Each convolution block includes two 2-dimensional convolution layers with rectified liner
unit (ReLU) activation functions. Then we apply a max pooling layer to the output of the convolu-
tional layers. For the MLP we use a dropout rate of 25% to help regularize the CNN. A diagram of
the neural network architecture is shown in Figure 3.

For the inelasticity CNN, we have a single output that is passed through a sigmoid activation
function after the MLP. Inelasticity is bounded between 0 and 1, so the sigmoid activation function
insures that the output of the CNN upholds these bounds.

For PID, we have two outputs: a label for the presence of a significant muon track and a label
for a significant hadronic cascade. We use these labels to represent the fact that some events are
dominated by the hadronic cascade, some are dominated by the muon track, and some events have
a significant cascade and track. We use true inelasticity as a metric for when we identify an event
as having a significant track and cascade. Table 2 shows how each event is assigned its labels.
The cuts in the table are determined by training many networks with different cuts and picking the
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Figure 3: Architecture of our 2D CNN. The "out" at the the end represents whatever output one might need,
for this paper it would be inelasticity or a track or cascade confidence.

configuration with the best performance.

Table 2: The conditions used to label each event. Each event has a muon track and hadronic cascade label
to indicate if there is a visible muon track or hadronic cascade.

Muon Track label Hadronic Cascade label
label condition label condition
track 𝜈𝜇 CC events cascade 𝜈𝜇 NC events, 𝜈𝑒 events, 𝜈𝜇 CC events w/ 𝑦 > 0.8

no track 𝜈𝜇 NC events, 𝜈𝑒 events no cascade 𝜈𝜇 CC events w/ 𝑦 < 0.8

For training, we use the Adam algorithm [8] for optimization with a learning rate of 0.0001. We
stop the training when the validation loss achieves a minimum and starts to increase upon following
epochs.

For the inelasticity CNN, we use the following L1 loss:

𝐿𝑜𝑠𝑠𝑖𝑛𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡 𝑦 = |𝑦𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒 |. (1)

This choice was made because we find that we achieve better performance at higher energies with
this loss compared to L2 loss. For the PID CNN we use the binary cross entropy (BCE) loss applied
to both outputs:

𝐿𝑜𝑠𝑠𝑃𝐼𝐷 = 0.7 × 𝐵𝐶𝐸 (𝑜𝑢𝑡𝑝𝑢𝑡𝑡𝑟𝑎𝑐𝑘 ; 𝑙𝑎𝑏𝑒𝑙𝑡𝑟𝑎𝑐𝑘) + 𝐵𝐶𝐸 (𝑜𝑢𝑡𝑝𝑢𝑡𝑐𝑎𝑠𝑐𝑎𝑑𝑒; 𝑙𝑎𝑏𝑒𝑙𝑐𝑎𝑠𝑐𝑎𝑑𝑒). (2)

The binary cross entropy loss for the track label is weighted by a factor of 0.7, which was found to
improve performance via a grid scan.
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3. Results and Discussion

3.1 Particle Identification

We find that the track and cascade labels provide very similar outputs, and so we only show here
the output of the track label. However, we find that using this labelling scheme and loss gives better
results than just using the cross entropy loss, which is why we keep it regardless of the unintended
behavior.

Figure 4: Histogram of MC events with all three
flavors on neutrinos binned by PID score.

Figure 5: Receiving operating characteristic
curve for the 2D CNN evaluated on a set of MC
events with all three flavors of neutrinos. The 2D
CNN classifies better than a BDT trained for the
same task.

For Figure 4 and Figure 5, we use all muon, electron, and tau neutrino / antineutrino Monte
Carlo (MC) events that pass the data selection criteria outlined in Section 2.1. After checking the
normalized PID distributions for the test set and the training set, we find they are nearly identical,
suggesting that overfitting has been well-regulated.

Figure 4 is the distribution of PID outputs for the set of MC events described previously. There
are three notable features of this distribution; the spike in track events near a PID score of 1, The
collection of events around a PID score of 0.5, and the cascade rich tail below a PID score of 0.2.
The spike in track events near a PID score of 1 and the central collection of cascade and track events
are common features for other PID reconstruction algorithms for the DeepCore detector [9, 10].
The collection of cascade and track events around a PID score of 0.4 to 0.5 and the lack of a spike
of cascade events around a PID score of 0 are a reflection of the fact that at low energies many track
events look like cascades, and only when there is a definite muon track can we be confident in what
a particle’s identity is. The cascade rich tail is a feature that isn’t seen in similar reconstruction
methods, and suggests that the CNN has started to find features in the data unique to cascade events.

Figure 5 shows the receiver operating characteristic curves for our CNN and a boosted decision
tree (BDT) that is used in another analysis [9]. This plot demonstrates that the CNN method is
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(a) (b)

(c) (d)

Figure 6: MC events binned by true inelasticity and inelasticity reconstructed by the CNN. The dashed black
line indicates where events would be assuming a perfect reconstruction. Plot (a) contains all events in the
test set, whereas (b), (c), and (d) show events separated by different true energy ranges.

better at identifying tracks and cascades than the BDT based method, which relies on high level
reconstructed inputs.

3.2 Inelasticity

Figure 6a is a two dimensional histogram of events binned by the true inelasticity and the
inelasticity from CNN reconstruction. An ideal reconstruction would have all events in the bins
along the dashed black line. There are two populations of events that can be seen here. The flat
distribution are events that are hard to reconstruct, and so the network learns to assign roughly
the mean inelasticity of those events. The second population of events can be seen faintly in the
upper-right corner of the plot. These are events that are being reconstructed more effectively.

A good proxy for the difficulty of reconstruction is the energy of the event. Lower energy
events will have less photon hits and hence lower resolution. Thus, we can make cuts in the energy
to separate the two populations.

Figure 6b, Figure 6c, and Figure 6d are similar histograms to Figure 6a but with the events split

7
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into three populations based on energy (the specific energy ranges are shown in the plots). Figure
6b clearly shows the first population of events without the second. There is a slight asymmetry
in the reconstructed inelasticity distribution which can be used to slightly separate neutrinos from
antineutrinos. To quantify this separation power, we separate events with true energies of 3 GeV to
20 GeV into two bins, 𝑦𝑟𝑒𝑐𝑜 > 0.32 and 𝑦𝑟𝑒𝑐𝑜 < 0.32. Then we calculate the ratio of antineutrino
events to all events in each bin and we find ratios of 0.34 and 0.31 respectively.

Figure 6c shows a definite improvement in reconstruction when compared to Figure 6b, and
Figure 6d even better reconstruction than Figure 6c. This is expected because the larger the energy
of the event, the more DOMs will detect photons and thus it will be easier to resolve the event
morphology. The second plot shows that we can push the inelasticity reconstruction down to
roughly 30 GeV.

4. Conclusion

We have developed a new 2D CNN architecture as well as a new method for preparing IceCube
DeepCore events that is effective for reconstruction tasks in IceCube DeepCore. We also show that
when this CNN is applied to PID reconstruction it outperforms a BDT based method used in other
DeepCore analyses, and when we apply the CNN to inelasticity reconstruction we can effectively
measure inelasticity down to 30 GeV and gain some neutrino antineutrino separating power below
20 GeV. It is likely that this CNN will be developed further, perhaps with different loss functions or
more optimized architectures. We will also incorporate the IceCube strings surrounding DeepCore
into the PID CNN in the near future. We then hope to apply this CNN to inelasticity based studies
and/or matter effect dependant oscillation studies, where separating neutrinos from anti-neutrinos
can greatly benefit sensitivity [5].
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