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Search for EHE 𝜈 with IceCube

1. Introduction

Extremely-high-energy neutrinos (EHE, ≳ 107 GeV) are unique messengers to the violent,
high-redshift universe. At these high energies, other Standard Model messengers do not arrive from
great distances (∼ 50 Mpc). Cosmic rays are deflected by magnetic fields, and above∼ 1019.5 eV they
are expected to interact with the Cosmic Microwave Background via the famous Greisen-Zatsepin-
Kuz’min (GZK) effect [1, 2]. Gamma-rays are also expected to be attenuated via interactions with
the CMB and Extragalactic Background Light; they can additionally be absorbed by dust in sources,
in so-called “Compton-thick" environments. Unlike cosmic-rays and gamma-rays, neutrinos are
uncharged and interact only through the Weak force. This allows them to travel through space
undeflected and unattenuated. A UHE flux of neutrinos is expected to arise “in-flight" from
the aforementioned GZK interactions (“cosmogenic" neutrinos), but also from the environments
immediately surrounding the astrophysical accelerators themselves (“astrophysical" neutrinos). The
cosmogenic flux is expected to encode unique and complementary information about the ultra-high-
energy cosmic-ray (UHECR) flux. In particular, the shape and normalization of the neutrino flux is
expected to encode information about the chemical composition, redshift evolution, and maximum
accelerating energy of cosmic ray accelerators.

The IceCube Neutrino Observatory has previously searched for this flux of EHE neutrinos. In
this proceeding, we report on efforts to expand this experimental search. This revision contains an
additional 5.5 years of detector livetime as well as updates to the event selection which improve the
efficiency of the analysis, especially in the Southern Sky.

2. Detector, Data, and Simulation

The IceCube Neutrino Observatory is a cubic-kilometer neutrino detector built at the South
Pole [3]. IceCube is composed of 5,160 Digital Optical Modules (DOMs) buried in the glacier
at South Pole, Antarctica. The DOMs consist of a downward-facing photomultiplier tube with
digitization and readout electronics. They are distributed along 86 “strings" between depths of
1500 and 2500m, with 60 DOMs to a string spaced 15m apart vertically. Each string is ∼ 125 m
apart laterally, resulting in a lattice of detectors instrumenting almost a gigaton of ice. IceCube
underwent phased construction, reaching 22 strings (“IC22") by June 2007, and then 40, 59, 79,
and finally 86 strings (“IC86") in 2008-2011 respectively. In addition to this “in-ice" component of
IceCube, the detector also contains two pairs of tanks (each containing two DOMs) sitting above
each string, composing the “IceTop" instrument. IceTop enables measurements of the extensive air
showers arising from cosmic ray interactions in the atmosphere.

IceCube observes neutrino interactions by looking for the Cherenkov light produced by
neutrino-nucleon interactions in the ice. These Cherenkov photons are converted via the pho-
toelectric effect in the PMT, and are observed in IceCube as charge (𝑄). IceCube can observe
neutrinos of all flavors (𝜈𝑒, 𝜈𝜇, 𝜈𝜏) and types (𝜈, �̄�) primarily through two detection channels. At
these very high energies, neutral-current (NC) interactions of all neutrino flavors, and charged-
current interactions of 𝜈𝑒 produce spatially compact electromagnetic and hadronic showers, which
are observed as roughly spherical depositions of light in the detector, or “cascades". Charged-
current interactions of 𝜈𝜇 and 𝜈𝜏 produce long-lived daughter muon and tau leptons which can
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leave a long series of stochastic energy depositions in the detector, and therefore appear as “tracks."
This second category of events is particularly important to the EHE search. It means that neutrinos
can interact far outside of the IceCube detector volume, travel tens of kilometers and still arrive at
the detector. This enlarges the detector’s effective volume by orders of magnitude relative to the
cubic kilometer of instrumented volume. In addition to astrophysical and cosmogenic neutrinos,
IceCube also observes muons and neutrinos generated by cosmic ray interactions in the atmosphere.
These “atmospheric muons" and “atmospheric neutrinos" are observed at a rate of ∼ 3 kHz and a
few mHz respectively, which both far exceed the µHz rate expected for astrophysical neutrinos, and
nHz rate anticipated for cosmogenic neutrinos.

In this revision to the search for extremely high energy neutrinos, we analyze data from May
2010 to January 2023, covering data collected by IC79 and IC86 for a collective 12.36 years of
livetime. The data from the detector has been completely recalibrated according to the “Pass2"
calibration campaign, which specifically leverages an updated and more accurate modeling of the
DOM single-photoelectronc charge response [4]. This is an addition of almost 5.5 years of new
data relative to the previous search [5]. In contrast to this previous search, this iteration does not
utilize data recorded before May 2010, corresponding to detector configurations predating IC79.
This is because it is challenging to treat these earlier years consistently with the updated calibration
techniques. The impact of removing these prior years is reduced, however, by their comparatively
smaller effective areas and livetimes. We estimate the removal of IC22, IC40, and IC59 reduces the
total integrated exposure of the detector to EHE neutrinos by no more than 10%.

In order to design a search, we must simulate both signals (cosmogenic neutrinos) and back-
grounds (astrophysical neutrinos, atmospheric neutrinos and muons). The atmospheric muon back-
ground is simulated using the CORSIKA air shower simulation framework [6] with the SIBYLL2.3c
hadronic interaction model [7] up to primary energies of 1011 GeV assuming a primary cosmic ray
flux from [8]. Neutrinos – cosmogenic signal, as well as astrophysical and atmospheric neutrinos
– are simulated with JULIET [9] up to energies of 1011 GeV. The baseline model for cosmogenic
signal used here is [10]. Astrophysical neutrinos are modeled based on previous IceCube measure-
ments [11–13]. For conventional and prompt atmospheric neutrinos models from [14] and [15] are
used respectively.

3. Event Selection

The main background for EHE neutrinos in IceCube are down-going high energy, high mul-
tiplicity muon bundles produced by cosmic ray air showers in the Earth’s atmosphere. Additional
backgrounds are astrophysical neutrinos as well as atmospheric neutrinos. The astrophysical neu-
trinos produce an isotropic flux of neutrinos reaching Earth with an almost equal predicted flavor
ratio of 𝜈𝑒 : 𝜈𝜇 : 𝜈𝜏 = 1 : 1 : 1, and a spectral index of about 𝛾 ∼ −2.5, dominating the flux of
atmospheric neutrinos at energies above 100 TeV. Atmospheric neutrinos are produced in the same
cosmic ray air showers as atmospheric muon bundles. Their spectral index is with 𝛾 ∼ −3.7 much
softer than the spectral index of astrophysical neutrinos making them dominant at low energies.

The event selection approach is based on [16], where signal candidates are found by applying
four consecutive steps aimed at reducing these atmospheric backgrounds.

3
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Search for EHE 𝜈 with IceCube

Figure 1: Distribution of LineFit Speed and charge 𝑄 for atmospheric muons (left), atmospheric neutrinos
(center), and cosmogenic neutrinos (right). The Level 3 track quality cut applied is shown as a red line.

Level 2

In the fist step of the event selection only events with a total recorded charge of𝑄tot ≥ 27 500 PE
and a number of hit DOMs of 𝑛DOMs ≥ 100 are kept. This cut already rejects a large majority of
atmospheric neutrinos, that are the dominant neutrino component at this stage.

Level 3: Track quality

The Level 3 cut is shown as the red line in Fig. 1 for atmospheric muons, atmospheric
neutrinos and cosmogenic neutrinos respectively. The cut is a two-dimensional cut in the plane
of reconstructed event velocity (described later) and the total recorded charge 𝑄tot. The Level 3
criterion has multiple purposes. It rejects atmospheric neutrinos, especially prompt neutrinos (see
the middle panel), and also rejects mis-reconstructed atmospheric muon events and neutrino events.
The velocity calculation relies on the “LineFit" reconstruction algorithm [17]. The reconstruction
assumes light traveling with a speed ®𝑣 along an infinite track. For a well reconstructed track the
speed will be distributed closely around the speed of light. Cascades or mis-reconstructed tracks
will have smaller reconstructed speeds. As a consequence, the LineFit speed can also be used to
separate the final event sample into subsets of cascades and tracks, which is done at the pivot point
of the Level 3 cut (| |®𝑣 | | = 0.27 m ns−1).

Level 4: Muon bundle

The goal of the Level 4 cut criterion is to remove the main background of down-going muon
bundles. The cut is made in the 2D plane of reconstructed particle zenith cos(𝜃) and total recorded
charge 𝑄tot and is visible in Fig. 3. In this cut plane, the differences between signal (cosmogenic
neutrinos) and dominant background (atmospheric muons) appears in both the zenith distribution
and the energy loss profile of single muons/taus compared to muon bundles with large multiplicities.
As the energy of a muon increases, its energy losses become more stochastic. In a muon bundle
with the same total energy, the energy is distributed among many muons resulting in a superpo-
sition of lower energy muons losing their energy more continuously. To obtain a measure of the
"stochasticity" of an event, the energy loss profile is reconstructed using a segmented energy loss
reconstruction [18]. The reconstructed profile is then compared to a muon bundle PDF obtained
with PROPOSAL [19] to get a stochasticity reconstruction: stochasticity =

∑
𝑖 log(𝑃(Δ𝐸𝑖/𝐸))/ndf,

4
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Figure 2: Distribution of stochasticity for atmospheric muons (muon bundles) and 𝜈𝜇 CC (single muons)
events. Smaller stochasticity values are more compatible with the muon bundle hypothesis.

Figure 3: Distribution of atmospheric muon background as a function of charge and cos(𝜃) for small
stochasticities (left) and large stochasticities (right). The events below the black lines are removed by the
Level 4 criterion.

similar to a reduced log-likelihood. The distribution of the stochasticity is shown in Fig. 2 for
atmospheric muon background simulation and 𝜈𝜇 CC events to represent single muons.

Fig. 3 shows the 2D-distributions of events in charge and the cosine of the reconstructed zenith
angle split into two stochasticity bins, with the boundary set at 8.37. The solid black lines show the
cuts applied to remove the majority of the atmospheric muon background. The split in stochasticity
allows for a looser cut in the downgoing region cos(𝜃) > 0, increasing the signal efficiency in this
step relative a version of the analysis without stocasticity binning.

A comparison between simulations and burnsample data before applying the Level 4 criterion
for the two main observables, charge and reconstructed zenith, is shown in Fig. 4. We show these
plots for a 10% subsample (“burn sample") of the data, where we see excellent agreement between
data and simulations in these two central cut variables.

Level 5: IceTop veto

IceTop can be used to further reduce the background rate of atmospheric muons. IceTop hits
correlated with an event in the in-ice detector can be found by extrapolating the reconstructed track

5
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Figure 4: Comparison between simulations and burnsample data before applying the Level 4 criterion. The
simulations are weighted to a five component cosmic ray primary flux. Since the cosmic ray composition is
not well known at the highest energies, a prediction assuming only protons/iron as cosmic ray primaries are
also shown.
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Figure 5: Zenith-averaged effective area for each
neutrino flavor compared to the effective area for the
event selection presented in [16].

Table 1: Event expectations for different signal
and background components after applying the Ice-
Top veto. The expected astrophysical background is
shown covering a range of spectral indices observed
in other IceCube analyses.

Flux component Events in 12 yrs 𝛾astro

𝜇atmo 0.08
𝜈conv 0.17
𝜈prompt 0.03
𝜈astro,tracks [11] 8.62 −2.37
𝜈astro,cascades [12] 4.78 −2.53
𝜈astro,HESE [13] 1.20 −2.89
𝜈GZK [10] 5.35

to the surface and find the time 𝑡CA, where the track is at its closest approach to IceTop. Correlated
IceTop hits are defined by the collections of hits that satisfy −1 µs ≤ 𝑡CA ≤ 1.5 µs. Events are
vetoed if they have two or more correlated hits in IceTop, reducing the remaining atmospheric muon
background by about 60 % but only reducing the all-sky neutrino rate by less than 5%.

The zenith-averaged neutrino effective area for the event selection (before applying the IceTop
veto) is shown in Fig. 5 compared to the event selection presented in [16]. The new event selection
mostly improved the 𝜈𝜇 effective area between 10 PeV and 1 EeV by about 30%, while reducing
the 𝜈𝑒 and 𝜈𝜏 effective area between 1 PeV and 10 PeV to reduce the background of astrophysical
neutrinos. Expected event rates for different components and flux assumptions for 12 years of
IceCube data are listed in Tab. 1.

6
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Figure 6: Sensitivity to the 90 % CL differential upper limit on the ultra high energy neutrino flux for
neutrinos energies between 3 PeV and 100 EeV. The expected average upper limit is compared to previous
upper limits set by IceCube [5, 16] and to cosmogenic neutrino flux models [10, 21, 22]. The model shown
from [22] assumes 𝛾 = 2.5, 𝐸max = 1020 eV, 𝑚 = 3.4 and a 10 % proton fraction.

4. GZK Model Tests and Differential Limit

After applying the event selection the sample is split into a subset of tracks and cascades as
described in Sec. 3. The energy and arrival direction is reconstructed for both sub-samples using
a likelihood-based reconstruction with a track and a cascade hypothesis respectively. A binned
Poisson likelihood approach is used to fit to the data (following [5]):

L(𝜆GZK, 𝜆astro) =
∏
𝑖

𝑃(𝑛𝑖 |𝜆GZK𝜇𝑖,GZK + 𝜆astro𝜇𝑖,astro + 𝜇𝑖,bkg), (1)

where the two free parameters are the relative normalization to the signal GZK model 𝜆GZK, and
the relative normalization of the astrophysical nuisance flux 𝜆astro.

The compatibility of the data with different GZK models will be tested using a likelihood-ratio
test

Λ = log

(
L(�̂�GZK, �̂�astro)

L(𝜆GZK = 1, ˆ̂𝜆astro)

)
. (2)

A differential limit can also be constructed to obtain a more model independent constraint on
the UHE neutrino flux. The differential limit is constructed in the same way as described in [5].
The same likelihood formalism (Eq. 1) is used, but for each tested energy 𝐸𝑐 an 𝐸−1 signal flux
with a width of one energy decade centered around 𝐸𝑐 is injected. Then, for each 𝐸𝑐 a Feldman-
Cousins 90 % confidence interval is constructed [20]. The expected average upper limit to the
differential UHE neutrino flux (using the most conservative background expectation from [11] for
the astrophysical neutrino flux) is compared to previous IceCube results in Fig. 6.

5. Conclusion

In this contribution, we have described work towards an updated search for Extremely High
Energy (EHE) neutrinos with the IceCube detector. The search leverages new selection variables

7
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which improve the overall efficiency of the analysis and adds almost 5.5 years of additional detector
livetime. The new search will have world-leading sensitivity to the flux of neutrinos at PeV energies
and above.
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