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The experimental observation of the phenomena of neutrino oscillations, which essentially con-
firms non-zero masses of neutrinos, has opened a new sector to explore physics beyond the
Standard Model. The models describing new-physics phenomena often come with some unknown
interactions of neutrinos termed Non-Standard Interactions. It is crucial and interesting to ex-
plore the impact of Non-Standard Interactions in the ongoing and upcoming neutrino oscillations
experiments to precisely measure the oscillation parameters. In this work, we have probed the
impact of a scalar-mediated Non-Standard Interaction in the long baseline sector, focussing on
the three upcoming long-baseline experiments: DUNE, T2HK and T2HKK. The effects of scalar
Non-Standard Interaction appear as medium-dependent corrections to the neutrino mass term.
Its contribution scales linearly with matter density, making long-baseline experiments among the
most suitable candidates for probing such effects. We show that the presence of scalar Non-
Standard Interaction may significantly impact the oscillation probabilities and the event rates at
the detectors and the 𝜒2-sensitivities of 𝛿𝐶𝑃-measurements of the experiment. We also show
that synergy among the long-baseline experiments (DUNE+T2HK, DUNE+T2HKK) may offer
a better capability of constraining the scalar NSI parameters as well as an improved sensitivity
towards CP-violation.
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1. Introduction

The discovery of neutrino oscillations by Super-Kamiokande (SK) [1] and Sudbury Neutrino
Observatory (SNO) [2] provides new insights into physics beyond the Standard Model (BSM),
confirming neutrino mass and offering experimental hints of BSM-physics. Neutrino oscillation
parameters are extensively studied in various experiments. Neutrinos present a promising avenue
to explore BSM physics, including non-standard interactions (NSIs) that involve unknown neu-
trino couplings. Given the high precision of current and upcoming neutrino experiments, these
subdominant NSI effects on neutrino oscillations can significantly impact the physics potential of
these experiments. We focus on the impact of scalar mediated NSIs [4, 6, 7] on the measurement
of the leptonic phase 𝛿𝐶𝑃 in the long baseline experiments DUNE, [9], T2HK [10] and T2HKK
[11]. Through a synergy analysis of these experiments, we investigate the effects of scalar NSIs in
a model-independent manner.

2. Scalar NSI formalism

The neutrinos interact with matter via weak interaction and gravity. These interactions involve
the mediation of a W± boson (Charge Current – CC) or a Z boson (Neutral Current – NC)
[3]. While both interactions contribute to the matter potentials in the neutrino Hamiltonian, only
CC-interactions affect the oscillation probabilities. NC-interactions, on the other hand, do not
contribute to the oscillations as they appear as a common term in the Hamiltonian. The Lagrangian
for neutrino–matter coupling via CC interactions may be written as [3],

Leff
cc = −4𝐺𝐹√

2

[
a𝑒 (𝑝3)𝛾`𝑃𝐿a𝑒 (𝑝2)

]
[𝑒(𝑝1)𝛾`𝑃𝐿𝑒(𝑝4)] , (1)

where, 𝐺𝐹 represents the Fermi coupling constant, while 𝑝𝑖 denotes the momenta of the incoming
and outgoing states. Additionally, 𝑃𝐿 = (1− 𝛾5)/2 and 𝑃𝑅 = (1+ 𝛾5)/2 represent the left and right
chiral projection operators, respectively. The effective Hamiltonian, Heff , can be framed as,

Heff = 𝐸a +
1

2𝐸a

Udiag(0,Δ𝑚2
21,Δ𝑚

2
31)U

† + diag(𝑉CC, 0, 0) , (2)

where,U is the Pontecorvo-Maki-Nakagawa-Sakata matrix, 𝐸a is neutrino energy,Δ𝑚2
𝑖 𝑗
= 𝑚2

𝑖
−𝑚2

𝑗
,

are the neutrino mass-squared differences, and 𝑉SI = ±
√

2𝐺𝐹𝑛𝑒, comes due to matter interactions.
The presence of NSI between neutrinos and a scalar mediator has implications for probing

physics beyond the Standard Model [4, 5]. The effective Lagrangian describing the coupling of
neutrinos with the scalar, denoted as 𝜙, can be expressed as,

LS
eff =

𝑦 𝑓 𝑦𝛼𝛽

𝑚2
𝜙

(ā𝛼 (𝑝3)a𝛽 (𝑝2)) ( 𝑓 (𝑝1) 𝑓 (𝑝4)) , (3)

where, 𝛼 and 𝛽 correspond to the neutrino flavors e, `, 𝜏, 𝑓 represents matter fermions (e.g.,
electron, up-quark, down-quark), 𝑓 represents the corresponding antifermions, 𝑦𝛼𝛽 denotes the
Yukawa couplings of neutrinos with the scalar mediator 𝜙, 𝑦 𝑓 represents the Yukawa coupling of 𝜙
with 𝑓 and 𝑚𝜙 represents the mass of the scalar mediator. Due to the presence of Yukawa terms,
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this Lagrangian cannot be converted into vector currents. Incorporating the effect of scalar NSI
into the corresponding Dirac equation, we obtain,

ā𝛽

[
𝑖𝜕`𝛾

` +
(
𝑀𝛽𝛼 +

∑
𝑓 𝑛 𝑓 𝑦 𝑓 𝑦𝛼𝛽

𝑚2
𝜙

)]
a𝛼 = 0 , (4)

where 𝑛 𝑓 represents the number density of environmental fermions. The effect of scalar NSI serves
as a perturbation to the neutrino mass term. Thus, the effective Hamiltonian can be written as,

HSNSI ≈ 𝐸a +
𝑀eff𝑀

†
eff

2𝐸a

±𝑉SI , (5)

where 𝑀eff = 𝑀 + 𝛿𝑀 represents the effective mass matrix, accounting for both the regular mass
matrix 𝑀 and the contribution from scalar NSI (𝛿𝑀 ≡ ∑

𝑓 𝑛 𝑓 𝑦 𝑓 𝑦𝛼𝛽/𝑚2
𝜙
). In this work, we explore

the effects of scalar NSI in neutrino oscillations by parameterizing 𝛿𝑀 as follows:

𝛿𝑀 ≡
√︃
|Δ𝑚2

31 |

[𝑒𝑒 [𝑒` [𝑒𝜏

[`𝑒 [`` [`𝜏

[𝜏𝑒 [𝜏` [𝜏𝜏

 . (6)

The dimensionless elements [𝛼𝛽 quantify the size of scalar NSI. The Hermicity of the Hamiltonian
requires the diagonal elements to be real and the off-diagonal elements to be complex. In our
analysis, we explore the impact of a diagonal element of the scalar NSI matrix one at a time.

3. Methodology

We employed the GLoBES simulation package [12] to compute numerical probabilities and
construct the statistical framework for investigating the physics sensitivities. The benchmark
values of neutrino oscillation parameters used throughout the analysis are [13]- \12 = 34.51◦,
\13 = 8.44◦, \23 = 47◦, 𝛿𝐶𝑃 = −𝜋/2, Δ𝑚2

21 = 7.56 × 10−5𝑒𝑉2, Δ𝑚2
32 = −2.497 × 10−3𝑒𝑉2 and

Δ𝑚2
31 = 2.55 × 10−3𝑒𝑉2. By default, we assume NH as the true mass hierarchy and HO as the

true octant, unless explicitly stated otherwise. We define a statistical 𝜒2 which is a measure of
sensitivity as,

𝜒2
𝑝𝑢𝑙𝑙 = 𝑚𝑖𝑛

Z 𝑗

©«min
[

∑︁
𝑖

∑︁
𝑗

[
𝑁

𝑖, 𝑗
𝑡𝑟𝑢𝑒 − 𝑁

𝑖, 𝑗
𝑡𝑒𝑠𝑡

]2

𝑁
𝑖, 𝑗
𝑡𝑟𝑢𝑒

+
𝑘∑︁
𝑖=1

Z2
𝑖

𝜎2
Z𝑖

ª®®¬ , (7)

where, 𝑁 𝑖, 𝑗
𝑡𝑟𝑢𝑒 and 𝑁

𝑖, 𝑗
𝑡𝑒𝑠𝑡 represents the number of true and test events in the {𝑖, 𝑗}-th bin respectively.

We incorporate the systematic errors as additional parameters known as nuisance parameters (Z𝑘)
with the systematical errors (𝜎2

Z𝑘
).

4. Results and Discussion

We first explore the impact of scalar NSI parameters on the oscillation probabilities. We then
further probe its impact on CP-violation and constraining capability towards scalar NSI elements.
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4.1 Effects on oscillation probabilities

Figure 1 shows the impact of diagonal scalar NSI elements ([𝑒𝑒, [``, and [𝜏𝜏) on the oscillation
probability as a function of neutrino energy for DUNE (top row), T2HK (middle row), and T2HKK
(bottom row). The solid red line in each plot represents the case without scalar NSI, where [𝛼𝛽

= 0. The solid (dashed) black, blue, and magenta lines indicate positive (negative) values of [𝑒𝑒,
[``, and [𝜏𝜏 respectively. The inclusion of scalar NSI parameters has a notable impact on the
oscillation probabilities at all three baselines, particularly near the oscillation maxima. For [𝑒𝑒,
a positive (negative) value enhances (suppresses) the probabilities around the oscillation maxima,
while for [𝜏𝜏 , the effects are complementary. In the case of [``, a positive (negative) value shifts
the oscillation maxima to higher (lower) energies while slightly suppressing the amplitude.
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Figure 1: The effects of [𝑒𝑒 (left–column), [`` (middle–column) and [𝜏𝜏 (right–column) on 𝑃`𝑒 at the
baselines corresponding to DUNE (top–row), T2HK (middle–row) and T2HKK (bottom–row). Here, 𝛿𝐶𝑃 =
-𝜋/2, \23 = 47◦ and true mass Hierarchy = NH.

4.2 Constraining scalar NSI parameters

In Figure 2, we present the sensitivity of the experiments towards constraining the scalar
NSI parameters, [𝛼𝛽, for DUNE, T2HK, and DUNE+T2HK. The plots for [𝑒𝑒, [``, and [𝜏𝜏 are
displayed in the left-panel, middle-panel, and right-panel, respectively. We kept the true values of
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[𝛼𝛽 fixed at 0.1 and marginalized the test [𝛼𝛽 ∈ [-0.5, 0.5]. We plotted Δ𝜒2 as a function of the
test [𝛼𝛽 parameters, where the dashed green and dashed magenta lines indicate the 3𝜎 and 5𝜎
confidence levels, respectively. We see that, DUNE exhibits better sensitivity (at 3𝜎) in constraining
[𝑒𝑒 (for a true [𝑒𝑒 = 0.1) compared to T2HK. Conversely, T2HK demonstrates superior constraining
capability for [`` and [𝜏𝜏 (for true [𝛼𝛽 = 0.1) due to its larger detector size (approximately 374kt)
leading to improved statistics. The combined study with DUNE+T2HK enhances the sensitivity for
constraining the [𝛼𝛽 parameters and tightens the bounds on [𝛼𝛽. The combination of DUNE and
T2HK always yields improved sensitivity due to the substantial combined data from both detectors.
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Figure 2: The sensitivity of DUNE, T2HK and DUNE + T2HK towards constraining non–zero [𝑒𝑒 (left–
panel), [`` (middle–panel), and [𝜏𝜏 (right–panel) at true 𝛿𝐶𝑃 = -𝜋/2 and true \23 = 47◦.

4.3 Effects on CP-violation sensitivity

In Figure 3, we show the impact of scalar Non-Standard Interaction on CP violation (CPV)
sensitivity for DUNE (left column), T2HK (middle column), and DUNE + T2HK analysis (right
column). The inclusion of scalar NSI significantly affects both DUNE and T2HK’s CPV sensitivity.
The plots depict the statistical significance 𝜎 (calculated as

√︃
Δ𝜒2

𝐶𝑃𝑉
) as a function of the true

𝛿𝐶𝑃. The top row corresponds to [𝑒𝑒, the middle row to [``, and the bottom row to [𝜏𝜏 . For the
𝜒2 study, we marginalized over the NSI parameters. The CPV sensitivity is calculated as,

Δ𝜒2
CPV (𝛿true

CP ) = min
[
𝜒2 (𝛿true

𝐶𝑃, 𝛿
test
𝐶𝑃 = 0), 𝜒2(𝛿true

𝐶𝑃 , 𝛿
test
𝐶𝑃 = ±𝜋)

]
. (8)

The solid red curve in each plot represents the case with no scalar NSI, i.e., [𝛼𝛽 = 0. The solid
(dashed) black and blue curves indicate chosen positive (negative) values of [𝛼𝛽 . We observe that,
for [𝑒𝑒, a positive (negative) value mostly enhances (suppresses) CP violation sensitivities. For
[𝑒𝑒 = 0.1 and 𝛿𝑡𝑟𝑢𝑒

𝐶𝑃
∈ [0, 90◦], the sensitivities without and with scalar NSI nearly overlap. The

combined study of DUNE + T2HK improves sensitivities for all cases, including the overlapped
region, primarily due to data collection in a broader range of degenerate spaces. For [``, a positive
value deteriorates CPV sensitivities in the upper half plane of 𝛿𝐶𝑃, i.e., [0, 𝜋], for DUNE, but shows
mild fluctuations for the rest of 𝛿𝐶𝑃. A negative [`` significantly suppresses the sensitivities for
both DUNE and T2HK. At T2HK, positive [𝜏𝜏 enhances sensitivity.
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Figure 3: The CPV sensitivity of DUNE (left–column), T2HK (middle-column) and DUNE + T2HK (right-
column) in presence of [𝑒𝑒 (top-row), [`` (middle-row) and [𝜏𝜏 (bottom–row).

5. Summary and Conclusion

With the remarkable advancements in neutrino physics and cutting-edge experimental setups,
the neutrino oscillation parameters are being measured with utmost precision. Currently, the least
constrained parameters in neutrino physics are the CP-violating phase (𝛿𝐶𝑃) and the octant of the
mixing angle (\23). Identifying these subdominant effects of neutrinos and understanding their
impact on the physics reach of different neutrino experiments is crucial. This study focused on
investigating the effect of scalar NSI on three upcoming long-baseline experiments. The ongoing re-
search is exploring the effects of NSI on other physics sensitivities in various neutrino experiments.
A collaborative effort involving solar, atmospheric, reactor, and other experiments is essential for
comprehending the impact of NSI. Equally important is placing stringent constraints on the effects
of scalar NSI to interpret data from various neutrino experiments accurately.
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