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The detection of the radio signature of in-ice charged-particle showers is a promising technique
for the study of ultra-high-energy neutrinos. Planned large-scale radio arrays require a thorough
understanding of the generation and propagation of electromagnetic radiation in the heterogeneous
environment of polar ice. In this contribution, we introduce Eisvogel, a simulation tool for the first-
principles calculation of the time-domain signal observed by an antenna in such an experiment.
Eisvogel calculates the exact antenna signal through the numerical convolution of the shower
with a precomputed Green’s function that encodes the properties of the surrounding ice and the
antenna and captures all electrodynamic effects. Numerically expensive calculations are thus
amortized into the construction of the Green’s function, with the signal calculation for a given
shower remaining very efficient. Here, we describe the structure of our code and the current stage
of development, show a comparison with an established simulator, and outline future applications.
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1. Introduction

Experiments that aim to detect ultra-high energy cosmic neutrinos through the radio emissions
of charged-particle cascades developing in glacial ice require a thorough understanding of the
creation, propagation, and detection of electromagnetic waves in this complex environment. This
necessitates the accurate modelling of all relevant material properties, summarized in a position-
dependent, anisotropic index of refraction as well as the reception characteristics of each antenna
station.

To ensure a computationally efficient implementation, currently existing simulation codes
typically work in the approximation of geometric optics, where the propagation of electromagnetic
radiation through the ice environment is performed with ray tracing [1]. However, realistic ice
geometries may involve feature sizes that are of the order of the targeted wavelengths and can thus
support phenomena that lie outside the realm of geometric optics. These include, for example,
surface radiation modes [2] that propagate along the ice-air interface, or the presence of thin
reflective subsurface features [3].

Accurately simulating these effects entails, in principle, solving Maxwell’s equations over the
entire instrumented ice volume, where the signal-generating charged-particle shower is included
as a source current distribution 𝑱(𝒙, 𝑡), and the environment is represented by a position- and
frequency-dependent distribution of permittivity �̂�(𝒙, 𝜔), permeability �̂�(𝒙, 𝜔), and conductivity
�̂�(𝒙, 𝜔). These material parameters are generally matrix-valued, reflecting the anisotropic nature
of the ice.

The shower may have an arbitrary orientation with respect to the ice surface and the antenna.
The absence of any symmetries mandates a fully three-dimensional calculation, and the extreme
scale ratio between the domain of interest (with a linear length ofO(km)) and the targeted wavelength
(O(cm) for waves in the frequency range of interest of 100 MHz–1 GHz) renders this approach
infeasible in practice.

In this contribution, we present the simulation code Eisvogel [4], currently under development,
which is designed to compute the exact antenna signal for a given shower current distribution in an
extremely efficient manner. All electrodynamic effects are automatically included in the simulation
without requiring to solve Maxwell’s equations anew for each considered shower. Eisvogel makes
this possible by first constructing an electrodynamic Green’s function for the signal delivered
by an antenna. This expensive operation needs to be performed only once for each antenna and
environment specification. The antenna signal for a given event is then obtained through an efficient
numerical convolution of the Green’s function with the shower.

This document is organized as follows. Section 2 gives a high-level overview of the theoretical
background and the structure of the Eisvogel code. The current state of development and simulation
results for a representative situation are presented in Section 3. Section 4 summarizes potential
applications of the code.

2. Overview of the code

Fig. 1 shows a graphical representation of the signal simulation as implemented in Eisvogel. The
code handles the construction of an electrodynamic Green’s function 𝑲 (𝒙, 𝑡) for a specific antenna
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Figure 1: Structure of the Eisvogel simulation code, including the calculation of the electrodynamic Green’s
function 𝑲 (𝒙, 𝑡) (top half) and the computation of the induced signal through its convolution with the current
density 𝑱(𝒙, 𝑡) of the charged-particle cascade (bottom half).

configuration and environment, as well as the application of this Green’s function to a given current
distribution 𝑱(𝒙, 𝑡) to compute the time-domain antenna signal𝑉sig(𝑡). The latter may be expressed
through a convolution integral of the form [5, 6]

𝑉sig(𝑡) = −
∫

𝑑3𝒙′𝑑𝑡′ 𝑲 (𝒙′, 𝑡 − 𝑡′) · 𝑱(𝒙′, 𝑡′). (1)

(The overall minus sign in this expression is of no physical relevance and chosen by convention.)
The conceptual foundations of both steps are briefly discussed in the following. An in-depth

description of the implementation in Eisvogel is the subject of a forthcoming publication.

2.1 Calculation of the Green’s Function

In a radio neutrino experiment, the raw time-domain voltage waveform delivered by an antenna is
further processed and filtered by its front-end electronics. This filtering operation is assumed to be
a linear operation that may be represented in the frequency domain by a transfer function 𝐹 (𝜔) or
by the corresponding impulse response 𝑓 (𝑡) in the time domain. The filtered signal 𝑉sig(𝑡) is then
used for the reconstruction of the shower-initiating neutrino and, as such, is the quantity that one
wishes to simulate.

As explained in Refs. [5, 6], it is possible to construct a Green’s function for 𝑉sig(𝑡) by
propagating a delta-like signal through the full signal path in reverse. As shown in Fig. 1, the Green’s
function 𝑲 (𝒙, 𝑡) is the electric field distribution radiated by the antenna if a current 𝐼 (𝑡) ∼ 𝑓 (𝑡)
is applied to its terminals. This is a well-defined electrodynamics problem that may be solved
numerically for arbitrary material geometries (�̂�(𝒙, 𝜔), �̂�(𝒙, 𝜔), �̂�(𝒙, 𝜔)).

Before considering this general case, it is useful to study the much simpler situation of an
electric dipole antenna embedded in a homogeneous and isotropic material, for which the Green’s
function exists analytically. For a dipole oriented along the 𝑧-axis in a medium with permittivity 𝜖
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and vanishing conductivity 𝜎 ≡ 0, it reads (in spherical coordinates),

𝐾𝑟 (𝑟, 𝜃) = −2
𝐿

4𝜋𝜖
cos 𝜃
𝑟3

[
𝑓0

(
𝑡 − 𝑟 𝑛

𝑐

)
+ 𝑟 𝑛
𝑐
𝑓

(
𝑡 − 𝑟 𝑛

𝑐

)]
, (2)

𝐾𝜃 (𝑟, 𝜃) = − 𝐿

4𝜋𝜖
sin 𝜃
𝑟3

[
𝑓0

(
𝑡 − 𝑟 𝑛

𝑐

)
+ 𝑟 𝑛
𝑐
𝑓

(
𝑡 − 𝑟 𝑛

𝑐

)
+
(𝑟 𝑛
𝑐

)2
𝑓 ′

(
𝑡 − 𝑟 𝑛

𝑐

)]
, (3)

𝐾𝜑 (𝑟, 𝜃) = 0, (4)

provided that the effective length 𝐿 of the antenna is small compared to the wavelengths of interest.
In Eqs. 2–4, 𝑟 and 𝜃 are the radial coordinate and polar angle, respectively, 𝜑 is the azimuthal angle,
𝑛 is the index of refraction of the medium, and 𝑐 is the speed of light in vacuum. The Green’s
function contains the expressions 𝑓 ′(𝑡) and 𝑓0(𝑡), which are related to the impulse response 𝑓 (𝑡)
of the signal processing chain, 𝑓 ′(𝑡) = 𝑑𝑓 /𝑑𝑡 and 𝑓0(𝑡) =

∫ 𝑡

−∞ 𝑑𝑡
′ 𝑓 (𝑡′). For most situations, these

functions are smooth, well-behaved expressions. For example, in the practically relevant case where
the signal-processing chain implements a low-pass filter of order 𝑁 and peaking time 𝑡𝑝, we have

𝐹 (𝜔) = 1(
1 + 𝑖𝜔𝑡𝑝/𝑁

)𝑁+1 , 𝑓 (𝑡) = 1
𝑡𝑝 (𝑁 − 1)!

(
𝑁𝑡

𝑡𝑝

)𝑁
𝑒−𝑁𝑡/𝑡𝑝 . (5)

For fully general material distributions and antenna characteristics, Eisvogel interfaces to the
finite-difference time-domain (FDTD) code Meep [7] to solve Maxwell’s equations and find the
Green’s function. While still nontrivial, symmetries often considerably reduce the computational
effort required to construct a Green’s function. For example, in the common case where the recep-
tion characteristic of the antenna and the surrounding environment are (approximately) cylindrically
symmetric, also the Green’s function inherits this (approximate) symmetry. It can then be parame-
terized by the vertical coordinate 𝑧 and the radius 𝑟𝑥𝑦 in the 𝑥𝑦-plane, reducing to a two-dimensional
electrodynamics problem which is significantly easier to solve numerically. Furthermore, it is often
possible to separate the environment into a domain where the material parameters are strongly
position-dependent, and a surrounding homogeneous “exterior” region of much larger spatial ex-
tent. For example, the complicated geometry of the firn ice is sandwiched between the much more
homogeneous bulk ice on one side and the atmosphere on the other side. In such situations, it is
possible to restrict the FDTD calculation to the spatially inhomogeneous region, impose transparent
boundary conditions, and then extend the resulting Green’s function to the exterior domain by man-
ually propagating the outgoing radiation field through the Rayleigh-Sommerfeld diffraction integral
[8]. Taken together, this technical infrastructure allows in-situ measurements of the ice geometry
to be directly taken into account in the Green’s function from first principles.

To illustrate these aspects, Fig. 2 shows the Green’s function computed with Meep for a dipole
antenna located in a simple material geometry representative of an in-ice neutrino observatory.
Similar to the analytic solution in Eqs. 2–4, it shows wavefronts that propagate away from the
antenna at the local phase velocity. Moreover, the Green’s function exhibits genuine wave-optics
phenomena, such as propagating surface modes, which were already identified in the previous
simulation study of Ref. [9].

2.2 Sampling, interpolation, and convolution

The Green’s function 𝑲 derived for a given geometry must be kept in non-volatile memory from
which it may be retrieved and used for the calculation of the antenna signal at a later time. As
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Figure 2: The vertical component 𝐾𝑧 of the Green’s function for a vertically oriented infinitesimal electric
dipole antenna (marked by the black triangle), computed with Meep [7]. The antenna is embedded in a
material geometry with 𝑛 = 1 for 𝑧 > 0 and 𝑛 = 1.78 for 𝑧 < 0; the transition between both components is
marked by the white dashed line. A low-pass filter of the form of Eq. 5 with 𝑁 = 6 and 𝑡𝑝 = 1 ns is used.
The field is displayed in cylindrical coordinates, where 𝑧 labels the vertical direction and 𝑟𝑥𝑦 is the radial
distance measured in the 𝑥𝑦-plane.

discussed above, the Green’s function represents the electromagnetic radiation pattern resulting
from a band-limited current source and is thus itself band-limited in space and in time. It can
therefore be represented without loss of information by a collection of regularly spaced samples
taken at positions (𝒙𝒊 , 𝑡 𝑗), so long as the sampling frequency in each coordinate direction is not
smaller than the respective Nyquist frequency. The Green’s function may be evaluated at an arbitrary
intermediate location (𝒙, 𝑡) by interpolating between the samples 𝑲 (𝒙𝒊 , 𝑡 𝑗). The interpolation is a
linear operation that combines neighbouring sample values through the interpolation kernel ℎ,

𝑲 (𝒙, 𝑡) =
∑︁
𝒊, 𝑗

ℎ(𝒙 − 𝒙𝒊 , 𝑡 − 𝑡 𝑗) 𝑲 (𝒙𝒊 , 𝑡 𝑗). (6)

The explicit form of Eq. 6 depends on the coordinate system in which the Green’s function is
expressed. In cartesian coordinates, the voxel specified by the vector index 𝒊 = (𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧) and the
temporal index 𝑗 is centered on the position 𝒙𝒊 =

(
Δ𝑥 · 𝑖𝑥 ,Δ𝑦 · 𝑖𝑦 ,Δ𝑧 · 𝑖𝑧

)
and the time 𝑡 𝑗 = Δ𝑡 · 𝑗 .

The intervals Δ𝑥, Δ𝑦, Δ𝑧, and Δ𝑡 are the respective sampling intervals. Eq. 6 may then be written
as the product of the interpolation kernels ℎ1 for the respective coordinate directions

ℎ(𝒙 − 𝒙𝒊 , 𝑡 − 𝑡 𝑗) = ℎ1

( 𝑥
Δ𝑥

− 𝑖𝑥
)
ℎ1

(
𝑦

Δ𝑦
− 𝑖𝑦

)
ℎ1

(
𝑧

Δ𝑧
− 𝑖𝑧

)
ℎ1

( 𝑡
Δ𝑡

− 𝑗

)
.

Linear interpolation corresponds to ℎ1(𝑛) = (1 − |𝑛|) 𝐻 (1 − |𝑛|) with the Heaviside step function
𝐻. By default, Eisvogel uses the cubic interpolation kernel derived in Ref. [10], which guarantees
that the interpolation error decreases with the third power of the sampling interval. In cases where
the Green’s function has cylindrical symmetry, an equidistant grid in polar coordinates is used. The
spatial interpolation in Eq. 6 then involves summing over 𝒊 = (𝑖𝑟𝑥𝑦 , 𝑖𝑧) with 𝒙𝒊 = (Δ𝑟𝑥𝑦 · 𝑖𝑟𝑥𝑦 ,Δ𝑧 · 𝑖𝑧).

Like the Green’s function, also the source current density 𝑱(𝒙, 𝑡) is taken to be band-limited
and thus subject to an interpolation relation similar to Eq. 6. Note that the current samples 𝑱(𝒙𝒊 , 𝑡 𝑗)
need not necessarily be specified on the same grid as those of the Green’s function. It is useful,
for example, to align one of the coordinate axes with the propagation direction of the shower. This
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coordinate system is then generally rotated with respect to the antenna coordinate system. For
simplicity, we will nevertheless continue to use the same notation for samples specified in either
coordinate system.

Given the two sets of samples 𝑲 (𝒙𝒊 , 𝑡 𝑗) and 𝑱(𝒙𝒊 , 𝑡 𝑗), their convolution is then performed as
follows. First, the Green’s function and the current density are interpolated onto a common grid so
that the product 𝑲 (𝒙′, 𝑡 − 𝑡′) · 𝑱(𝒙′, 𝑡′) appearing in the integrand of Eq. 1 may be evaluated. In
terms of the integration variables 𝒙′ and 𝑡′ the integrand then takes the form

𝑲 (𝒙′, 𝑡 − 𝑡′) · 𝑱(𝒙′, 𝑡′) =
∑︁
𝒊, 𝑗

ℎ

(
𝒙′ − 𝒙′𝒊 , 𝑡

′ − 𝑡′𝑗
)
𝑲 (𝒙′𝒊 , 𝑡 − 𝑡

′
𝑗) · 𝑱(𝒙′𝒊 , 𝑡

′
𝑗).

Integrating the above expression and using the fact that the one-dimensional interpolation kernel
must integrate to unity,

∫
𝑑𝑛 ℎ1(𝑛) = 1, Eq. 1 may be written as

𝑉sig(𝑡) = −
∫

𝑑3𝒙′𝑑𝑡′ 𝑲 (𝒙′, 𝑡 − 𝑡′) · 𝑱(𝒙′, 𝑡′) = −Δ𝑉
∑︁
𝒊, 𝑗

𝑲 (𝒙′𝒊 , 𝑡 − 𝑡
′
𝑗) · 𝑱(𝒙′𝒊 , 𝑡

′
𝑗), (7)

with the voxel volume Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧Δ𝑡. The convolution integral in the form of Eq. 7 is well-suited
for an efficient vectorized evaluation.

3. Comparison with ARZ

To illustrate the utility of this approach, we use it to compute the signal produced by an exemplary
electromagnetic shower, parameterized by the longitudinal charge excess profile taken from the
publicly available library of Ref. [11]. The shower energy is 1 EeV. The evolution of the charge
excess, visualized in Fig. 3a, is affected by the Landau-Pomeranchuk-Migdal (LPM) effect. The
transverse extent of the shower is not parameterized.

The shower develops in a homogeneous and isotropic medium with an index of refraction
of 𝑛 = 1.78 and is observed by an electric dipole antenna oriented along the vertical direction,
positioned close to the Cherenkov cone. The signal is processed by a low-pass filter of the type of
Eq. 5 with 𝑁 = 6 and 𝑡𝑝 = 1 ns, corresponding to a 3 dB-bandwidth of around 300 MHz.

Figs. 3b and 3c show simulation results for the antenna signal in the time- and frequency domain,
respectively, as computed with Eisvogel and the ARZ algorithm [12] implemented in NuRadioMC
[1]. To facilitate a comparison of the signal shapes, the simulated signals are normalized to their
respective maximum values, 𝑉sig(𝑡)/𝑉max

sig . The results from both codes are in excellent agreement.
Note that, although the same one-dimensional shower profiles were passed as input to the

two simulation codes, the resulting absolute signal amplitudes for this example situation cannot
be directly compared, and are thus not shown. This is due to differences in the internal treatment
of the transverse charge profile between Eisvogel and ARZ: while the ARZ code in NuRadioMC
automatically attempts to include the effect of the transverse shower profile through hard-coded
form factors [12, 13], Eisvogel calculates and returns the signal produced by the specified one-
dimensional shower current. The two approaches differ in the degree of coherence of the radio
emission from different parts of the shower, and thus result in different absolute signal amplitudes.
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Figure 3: Simulation results for an electromagnetic shower with an energy of 𝐸 = 1018 eV observed by a
vertically-oriented dipole antenna placed at an angle of 𝜙 − 𝜙𝑐 = 1◦ with respect to the Cherenkov cone. (a)
Excess charge profile of the shower as a function of time in units of the electron charge. (b) Time-domain
voltage signal delivered by the antenna, normalized to its maximum value. (c) Frequency-domain voltage
signal delivered by the antenna, normalized to its maximum value. The solid blue curves show the signal
as calculated by Eisvogel starting from a one-dimensional representation of the shower. The dashed green
curves are calculated by the ARZ algorithm [12] implemented in NuRadioMC [1].

4. Conclusions and outlook

In this contribution we have introduced Eisvogel, a numerical code for the efficient calculation of
neutrino-induced antenna signals in complicated environments such as those faced by in-ice radio
neutrino observatories or balloon experiments. The central element of the code is an electrodynamic
Green’s function for the antenna signal, which contains information about the environment through
which the radiation propagates, and allows the signal to be calculated starting from the shower
current distribution. For the first time, this scheme makes the exact signal accessible in a numerically
efficient manner, obviating the need for further approximations or simplifications that are commonly
made in existing simulators.

These new capabilities have the potential to significantly improve the understanding of current
and future experiments targeting ultra-high energy cosmic neutrinos or charged cosmic rays. For
example, important instrumental backgrounds such as downgoing air showers that impact the ice
from above can be simulated in a rigorous fashion, and their impact on the physics potential can
be quantified. Propagation effects resulting from birefringence or impurities trapped in the ice are
naturally and straightforwardly included in the signal simulation, allowing the region of validity of
currently existing codes (and their corresponding approximations and assumptions) to be validated.
This could be of relevance also for signals induced by air showers in cases where interactions of
the radiation field with the environment are important, e.g. for highly-inclined showers observed by
antennas positioned in mountainous terrain.
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