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Since 2020, Super-Kamiokande (SK) detector has been updated by loading gadolinium (Gd) as a
new experimental phase, ‘SK-Gd.’ In the SK-Gd experiment, we can search low-energy electron
antineutrinos via inverse-beta decay with efficient neutron identification thanks to high cross-
section and high-energy gamma-ray emission of thermal neutron capture on Gd. Until July 2022,
the observation is operated with the 0.01% Gd mass concentration. The neutron capture fraction
on Gd is about 50% in this situation. In this paper, the first search result for the flux of astrophysical
electron antineutrinos for the energy range of O(10) MeV in SK-Gd with a 22.5 × 552 kton·day
exposure at 0.01% Gd mass concentration of the initial stage of SK-Gd is reported.
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1. Introduction

Neutrino emission is essential in the core-collapse supernova (CCSN) explosion. However, the
neutrino observation from supernova has been successful only once so far due to the low probability
of a CCSN occurring close enough to observe neutrinos. Therefore, the Diffuse Supernova Neutrino
Background (DSNB) is eagerly tried to observe in the worldwide neutrino detector. DSNB is an
integrated flux of neutrinos emitted from all past supernovae in the universe. This is also called
Supernova Relic Neutrinos (SRNs).

The theoretical expectations for the DSNB flux depend on various parameters, such as the
supernova rate introduced from the cosmic star formation rate, the neutrino mass ordering, the
equations of states for the remnant, the metallicity of the galaxy, the failed supernova rate, and the
binary interaction effect of stars.Therefore, the observation of DSNB would give us much variable
information about not only the supernova explosion mechanism but also the star formation history
in our universe.

One of the aims of the Super-Kamiokande (SK) experiment[1] is to observe DSNB. All types
of neutrinos are emitted from CCSN and drive in the universe as DSNB. Among them, electron
anti-neutrino has the largest cross-section via inverse beta decay (IBD) reaction (𝜈𝑒 + 𝑝 → 𝑒++𝑛) in
the energy range around few tens MeV. Thus, the previous search for DSNB in SK [2] is to identify
the positron signal below 30 MeV and the following neutron signal due to the thermal neutron
capture on the nucleus. This double coincidence event identification, called delayed coincidence,
has the advantage of removing the background without following the neutron and lowering the
energy threshold.

In the previous SK search, although the search couldn’t observe the DSNB signal at that time,
the world’s stringent upper limit on the DSNB flux was placed above the 15.3 MeV region for the
neutrino energy. At that time, a 2.2 MeV gamma ray from a thermal neutron capture reaction on a
proton was used as a neutron signal. However, the neutron signal is very low energy for SK to be
enough to detect, so the detection efficiency of the delayed neutron signal was about 20%.

The further reduction of background and the expansion of energy region in search is needed
to observation of DSNB. Therefore, the new experimental phase called SK-Gd is proposed [3]. Gd
has the largest cross-section for the thermal neutron capture among all stable elements. Also, the
gamma rays emitted from the reaction are a total of ∼ 8 MeV, which can be enough to detect in SK.
Therefore, SK-Gd enables to detection of neutron signals with high-detection efficiency by loading
Gd in SK.

In July 2020, the first Gd loading to the SK tank was operated [4]. At this time, the Gd
mass concentration is 0.011%, and it results in the neutron capture time constant of ∼ 115 𝜇s.
Figure 1 shows an illustration of the neutron signal by the neutron capture on the Gd in the SK-Gd
experiment. To evaluate neutron detection in the SK-Gd experiment, a new neutron detection
algorithm to identify the Gd signal [5] and the new detector simulation [6] based on Geant4 [7]
was developed. At this time, we report a new search for the DSNB in the neutrino energy range of
9.3–31.3 MeV.
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Figure 1: Illustration of the form of delayed neutron signal in the SK-Gd experiment.

2. Event selection

To search the DSNB signal, reductions of background events originating from various sources
are required. The major background sources in the search energy region are atmospheric neutrino
interaction events, the radioactive decay of isotopes originating from the spallation by cosmic-ray
muons, and reactor neutrino events.

The atmospheric neutrino typically has a few hundred MeV. However, some of the charged-
current and neutral-current interactions finally result in forming an event with a few tens MeV. The
Charged-Current Quasi-Elastic (CCQE) reaction of neutrinos produces nucleons and charged lepton
corresponding to the incoming neutrino flavor. In the case of electron (anti-electron) neutrinos, the
produced lepton is electron (positron), and the lower energy tail component penetrates the signal
region. If the neutrinos are muon type, the produced muon sometimes has lower energy than
the muon Cherenkov threshold. In that case, the muon doesn’t emit any photons, and it becomes
invisible (invisible muon), and only electrons produced muon decay is detected. The event has
a well-known Michel spectrum, and these have components in the signal energy region. On the
other hand, the Neutral-Current Quasi-Elastic (NCQE) reaction knocks out nucleons and makes an
excitation state to the remaining nucleus. The nucleus emits deexcitation gamma rays, and these
become background. Because the nuclei knocked out from the nucleus sometimes cause secondary
interaction with other nuclei and results in multiple gamma-ray emission, the energy spectrum of
the NCQE background has large uncertainty.

SK is exposed by the 2 Hz of cosmic-ray muons. The radioactive isotope decay originating from
the spallation by the cosmic-ray muon (muon spallation background) is dominant below 16 MeV.
These events are difficult to link to the parent muon because the lifetime is typically larger than the
SK event window. Especially, the events from the decay of 9Li (Li9) remain in the final background
because the decay has the 𝛽 + 𝑛 channel with 51%, a long-live time of 0.26 s, and a relatively high
yield (1.9 × 10−7 𝜇−1 g−1 cm2) [8]. The production rate of the Li9 event in SK is measured to be
0.86 ± 0.12 (stat.) ± 0.15 (syst.) kton−1 · day−1 [9], and a prediction of the spectrum of 𝛽 is given
in [2].

If the electron or positron events, which do not have any neutrons, which are misidentified
as neutrons, accidentally form the pair of delayed coincidences, these are inevitable backgrounds.
Other spallation events than the Li9 event dominantly contribute to this background because the
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spallation event rate is about O(106) times higher than the DSNB signals. To extract the meaningful
search result over the background, the spallation event reduction is required to be O(10−6) reduction
by combining with lowering the neutron misidentification probability.

Because the reactor neutrinos consist of electron antineutrinos, the background events are the
IBD and are completely the same as DSNB. However, the energy of these events is typically lower
than the search energy range. Thus, the events do not have so much effect on the search. The
event selection basically the same method as the previous DSNB search [2] is applied to the prompt
positron event. The search neutrino energy range corresponds to the positron kinetic energy range
of 7.5–29.5 MeV. At this time, the major background of this search, such as a radioactive isotope
decays originating from muon spallation, atmospheric neutrino events, and other backgrounds from
detector originating, are removed. In addition, neutron tagging, which is an event selection using
the following neutron, is applied. The number of delayed neutrons signal in the IBD event search
is definitely one. Therefore, the prompt events with exactly one delayed neutron signal are selected
as the IBD event. The spallation event can be reduced to O(1)% by the reduction. Thus, the
misidentification probability of neutron is required to reduce it to O(10−4) per event in order to
remove accidental coincidence background events. To achieve such a low probability, the additional
neutron selection cut criteria, which are above 3.5 MeV, are applied in the neutron selection. By
applying this cut, the neutron identification efficiency is estimated to be 35.6 ± 2.5%, and the
misidentification probability is found to be (2.8 ± 0.2) × 10−4 per event.

Figure 2 shows the total signal efficiency for IBD events between 7.5–29.5 MeV in the positron
kinetic energy. The efficiency is evaluated for each 2 MeV energy bin. Above 15.5 MeV, the signal
efficiency by spallation cut is reduced due to applying harsher spallation cut to ensure the spallation
background to a negligible level. Final signal efficiency, shown as the red line, is about twice larger
than the previous search [2], especially below 15.5 MeV thanks to the higher neutron detection
efficiency.

3. Search Result

A series of data reductions are applied to the observed data taken in 552.2 days of live time
in the initial period of the SK-Gd experiment. As a result, 16 events remain in the signal energy
region. Figure 3 shows the comparison of reconstructed kinetic energy spectra between observed
data and the expected background. The signal energy region is separated into five energy bins by
considering the kinds of backgrounds. The width of the first and second bins are 2 MeV, and these
have enough statistics. The third bin is the largest energy, including Li9 and accidental background
events. The fourth bin is the almost largest energy bin, including atmospheric NCQE interaction
events. The final bin consists of almost only atmospheric non-NCQE type events.

The probabilities of finding the observed number of events due to the fluctuation of the
background events (𝑝-value) are evaluated for each bin to estimate how the observed events are
significant over the expected data. In order to evaluate 𝑝-value, 106 times pseudo experiments based
on the expected background events, and these systematic uncertainties are operated. The 𝑝-value
is estimated using the number of events for actual observed data (𝑁obs) and for toy MC (𝑁toy) as
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Figure 2: IBD signal efficiency for the signal energy region. The 100% efficiency line corresponds to
data after noise reduction cuts. These lines show the cumulative efficiency at each cut stage, performed in
the order shown in the legend. More detailed explanations for each reduction step, except for the neutron
requirement, are described in Ref. [2].

follows:

𝑝-value =
The number of toy MC with 𝑁toy ≥ 𝑁obs

The number of generated toy MC
. (1)

Table 1: Summary of observed events, expected background events, and 𝑝-value for each kinetic energy
𝐸rec bin. Errors for the expected background represent only the systematic uncertainty.

𝐸rec [MeV] Observed Expected 𝑝-value
7.5–9.5 5 7.73 ± 2.54 0.798
9.5–11.5 5 4.14 ± 1.23 0.398
11.5–15.5 3 2.13 ± 0.59 0.359
15.5–23.5 2 0.98 ± 0.35 0.258
23.5–29.5 1 0.98 ± 0.41 0.597

The 𝑝-value is required to be less than 0.05 for that the data implies significant excess over
than expected background. Thus, we result in any significant excess that could not be found in
the observed data. From this result, we extracted the 90% confidence level (C.L.) upper limit on
the number of DSNB signals (𝑁90). It is evaluated by the pseudo experiments using the number
of observed events with these 1𝜎 statistical uncertainties and the number of expected background
events with their systematic uncertainties. Then, the flux upper limit is calculated based on 𝑁90 of
the observed events can be calculated as the following formula:

𝜙limit
90 =

𝑁90
𝜎̄IBD · 𝑁𝑝 · 𝑇 · 𝜀sig · 𝑑𝐸

. (2)

5



P
o
S
(
I
C
R
C
2
0
2
3
)
1
1
7
3

First result of search for DSNB in SK-Gd experiment M.Harada

 [MeV]recE

10 20 30 40 50 60 70 80

]
-1

 N
um

be
r 

of
 e

ve
nt

s 
[b

in

0

2

4

6

8

10

12
SK-VI observed data (552.2 days)

 (non-NCQE)νAtmospheric-
 (NCQE)νAtmospheric-

Li9Spallation 
νReactor-

Accidental coincidence
DSNB (Horiuchi+09 6-MeV, Max.)

 [MeV]recE

10 20 30 40 50 60 70 80

]
-1

 N
um

be
r 

of
 e

ve
nt

s 
[b

in

1−10

1

10

210
SK-VI observed data (552.2 days)

 (non-NCQE)νAtmospheric-
 (NCQE)νAtmospheric-

Li9Spallation 
νReactor-

Accidental coincidence
DSNB (Horiuchi+09 6-MeV, Max.)

Figure 3: Reconstructed kinetic energy spectra of the observed data and expected background after data
reductions with a linear (left) and a logarithmic (right) scale for the vertical axis. These include the signal
energy region and the side-band region above 29.5 MeV. These color-filled background histograms are stacked
on the other histograms. The error bar shown with the observed data is statistical uncertainty. The hatched
areas represent the total systematic uncertainty for each energy bin. The red dotted-dashed line shows the
DSNB expectation from the Horiuchi+09 model [10], which is drawn separately from the stacked histogram
of the backgrounds.

Here, 𝜎̄IBD is the averaged total cross-section of IBD for each energy bin, 𝑁𝑝 is the number of
protons as a target in the 22.5 ktons of the fiducial volume in SK,𝑇 is the live time of the observation
(552.2 days), 𝜀sig is the signal efficiency for each energy bin after all event selection criteria are
applied as shown in Figure 2, and 𝑑𝐸 is the bin width at each bin. The neutrino energy 𝐸𝜈 is
calculated by 𝐸𝜈 = 𝐸rec + 1.8 MeV. The total cross-section is given by the calculation in Ref. [11].
Also, the expected upper limit from the background-only hypothesis at 90% C.L. (𝑁exp

90 ) is evaluated
using the number of expected background events and their statistical uncertainty. Then, we extract
the expected flux sensitivity by replacing 𝑁90 with 𝑁

exp
90 in Equation 2.

Evaluated observed upper limit and expected sensitivity on the flux are shown in Figure 4. The
largest flux expectation in Figure 4 is calculated by Kaplinghat+00 model [12], and the least flux
is predicted by Nakazato+15 [13] with the assumption of normal mass ordering, in whole energy
ranges, respectively. Table 2 summarizes the upper limits placed by the SK at this time and previous
search [2], with the range of theoretical prediction.

4. Conclusion

We report the search result for the DSNB using 552.2 days of initial data set in the SK-Gd
experiment, with 0.01% Gd loaded water. This is the independent data set from the previous DSNB
search [2] using pure water. The sensitivity is comparable to the previous search, though the live
time is five times smaller. This is achieved by the higher neutron detection efficiency and the
lowered accidental coincidence in the whole energy range. This result shows the SK-Gd experiment
is the most sensitive to the DSNB in the world.
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Figure 4: Upper limits on the 𝜈̄𝑒 flux, calculated by Equation 2. The red (orange) lines show the observed (ex-
pected) 90% C.L. upper limit for SK-VI. The blue (black) lines show the observed (expected) 90% C.L. upper
limit for SK-IV [2]. The cyan line represents the 90% C.L. observed upper limit placed by KamLAND [14].
The gray-shaded region represents the range of the modern theoretical expectation. The expectation drawn
in the figure are for ranges of DSNB flux models of Kaplinghat+00 [12] and Nakazato+15 [13].

Table 2: Summary table of upper limits, sensitivity, and optimistic and pessimistic DSNB expectation from
[12], and [13], respectively.

Neutrino Energy Observed upper limit Expected sensitivity Averaged theoretical expectation
[MeV] [cm−2 s−1 MeV−1] [cm−2 s−1 MeV−1] [cm−2 s−1 MeV−1]

SK-IV SK-VI SK-IV SK-VI
9.29–11.29 37.30 34.07 44.35 50.78 0.20 – 2.40
11.29–13.29 20.43 18.43 11.35 15.12 0.13 – 1.66
13.29–17.29 4.77 3.76 2.05 2.71 0.67 – 0.94
17.29–25.29 0.17 0.90 0.21 0.50 0.02 – 0.30
25.29–31.29 0.04 0.33 0.11 0.33 < 0.01 – 0.07
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