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The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multipurpose liquid-
scintillator detector whose main goal is the determination of the neutrino mass ordering using
the measurement of the vacuum dominated oscillation pattern of reactor anti-neutrinos from eight
reactor cores. The sensitivity of JUNO to the neutrino mass ordering can be enhanced via a com-
bined analysis of reactor anti-neutrinos with atmospheric neutrinos, in which the matter-dominated
oscillation depends on the mass ordering. Such an analysis requires a precise reconstruction of the
energy and the direction of atmospheric neutrinos. As the largest liquid-scintillator detector ever
built, JUNO will also be able to measure the atmospheric neutrino flux down to lower energies
than the current large Cherenkov detectors. This poster presents the reconstruction of the energy
of atmospheric neutrinos with a machine learning approach and the direction reconstruction with
a novel approach. While the machine learning approach relies on the geometrical representation
of the detector with a Graph Convolutional Neural Network, the latter focuses on the reconstruc-
tion of the photon emission topology in the JUNO detector. The results presented are based on
Monte-Carlo simulations, including for the first time the full electronics response, calibration and
waveform reconstruction.
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1. Introduction

The Jiangmen Underground Neutrino Observatory (JUNO), with its large liquid scintillator
(LS) volume and located 700 m underground, will be able to detect atmospheric neutrinos, among
other natural neutrino sources. The main goal of JUNO is to determine the neutrino mass ordering
(NMO) at 3𝜎 level within ∼6 years of data taking by observing reactor neutrinos from two nuclear
power plants at ∼53 km distance. The JUNO detector design and physics goals are discussed
in details in [1]. Here, we focus on the atmospheric neutrino analysis at GeV energies. In fact,
the cosmic muon background in JUNO can be tagged thanks to two veto detectors: a water pool
surrounding the central detector which will act as a cherenkov detector, and a top tracker composed
of three plastic scintillator layers. The synergies with reactor neutrino vacuum oscillations can
therefore be exploited to boost JUNO’s sensitivity to the NMO. Indeed, the atmospheric neutrino
oscillation pattern is sensitive to matter effects, which depend on the neutrino mass ordering. For
that, one needs to consider that matter effects on neutrino oscillations depend on the neutrino
energy and zenith angle, and the oscillation probabilities change as well with the neutrino flavor.
The reconstruction of GeV events in large unsegmented LS detectors like JUNO is not an easy task
(large energy deposit lightening the full detector at a time, event tracks not fully contained in the
detector, etc.). Here, we propose two different approaches to reconstruct the event topology, giving
access to the direction of the primary lepton, and the neutrino energy, that will be used in a final
oscillation analysis.

2. Data

For this work, Monte Carlo (MC) data produced with the GENIE [3] generator V3.00.06 and
the latest version of the official JUNO software [2] has been used. The 17612 large photomultipliers
(LPMTs) of JUNO are considered here. Compared to the work in [7], which used an older GEANT4
detector simulation and MC truth information, the data used for the results that will be shown here
include: a new PMT and LS models (see [8]), the simulation of all possible reflections (internal,
with steel structure, etc.), as well as the electronics effects.

3. Topological Track Reconstruction

The approach of this reconstruction method consists on obtaining the spatial probability dis-
tribution for the origin of the photon emission. The algorithm is described in detail in [4–6]. The
method relies on a model (probability distribution functions, PDFs) describing the direct photon
propagation time and the charge detected as a function of the distance and angle with respect to
the PMTs detecting the photon (see Fig. 1 for an illustration). The procedure to build these PDFs
was described in [7]. The analytical PDFs are shown in figure 2. The PDFs include the attenuation
length and absorption of the liquid scintillator, the PMT angular acceptance, and internal reflections.

The updates of this work with respect to the previous preliminary results are the following:
i) using as input data the first hit time and total charge observed by each PMT instead of the
full PMT waveform, and ii) incorporating the effect of the waveform reconstruction to extract the
reconstructed first hit time (FHT) and charge detected by each PMT. In fact, it was shown in [9]
that when dealing with GeV events (up to millions of photoelectrons deposited in the detector), the
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Figure 1: Illustration of the basic information on photon propagation used for the topological reconstruction.
A neutrino event interacts with the LS of the JUNO central detector at the reference point r𝑟𝑒 𝑓 at the reference
time t𝑟𝑒 𝑓 . The primary charged lepton product of the interaction travels along a straight track through 𝑥. The
charged lepton may be accompanied by secondary hadronic emission, depending on the interaction channel.
A photon emitted with wavelength 𝜆 at a point 𝑥 reaches the photosensor at distance r 𝑗 with a speed equal to
the wavelength-dependent group velocity v𝑔(𝜆).

information on the first hit detected by each PMT is enough to reconstruct the direction of GeV
particles in JUNO, while allows to reduce the requirements for data storage and the computational
time of the algorithm, without degrading the reconstruction performance.

Figure 2: Time (left) and charge (right) PDFs, and a function of the distance and angle (X and Y-Axis).
The Z-axis shows mean time propagation time of photons in the LS from the emission point to the PMT
observing the light for the time PDF, and the fraction of the total charge deposited observed by each PMT
for the charge PDF.

3.1 Time correction to use the reconstructed FHT after calibration

The topological reconstruction method relies on a local reference point in space and time. In
the previous preliminary work, the true MC interaction time and vertex were used for each event.
When one moves to the full simulation including electronics (trigger), calibration and waveform
reconstruction, the hit time distribution and thus the first hit time reconstruction, are shifted with
respect to the true reference time, used to build the PDFs. This is shown in Fig. 3 (left).
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Figure 3: Left figure: distribution of the first hit time over all LPMTs in JUNO for a simulated atmospheric
neutrino event. Right figure: FHT distribution weighted by the total charge in the PMT.

The idea is to find the time T0 in the distribution of the FHT weighted with the charge (Fig. 3
right) which corresponds to the start of the physical signal first hit times, and correct the FHT values
in data for it to match the reference time in the algorithm and PDFs. The way of doing so is to find
the time bin (1ns width) for which the charge in the PMTs with FHT value within the next 20 ns
significantly exceeds (at least three times greater) the average charge for PMTs with FHT below 200
ns, given the 300 ns pre-trigger time window in the electronic simulation. This ensures the rise of
the distribution due to the signal start with respect to PMTs having low FHT value driven by noise
hits. The total charge detected by each PMT is computed in the corresponding signal time window.

3.2 Results

In this sub-section, we show the reconstructed emission probability maps obtained for two
atmospheric neutrino events as an example, both corresponding to the charged current interaction
of a ∼3 GeV muon neutrino. The output of the reconstruction in Fig. 4 shows that the emission
probability maps match well with the true particle track in red, with higher probability of the
photons being emitted from where truly the particle was passing through. This allows to infer the
event topology and the particle direction. Since the highest probability is reconstructed near the
interaction point, an estimation of the vertex position can also be obtained.

4. Energy reconstruction with graph convolutional networks

The energy reconstruction is based on graph convolutional networks, feeding the geometrical
detector representation as the graph into the network. This is achieved by assigning a node to each
used PMT. These nodes are connected over edges to their spatially closest neighbors. This allows
convolution on the detectors skin, without a loss of geometrical information.

To reconstruct the energy, all large PMTs of JUNO (17612) are considered. During training,
each node gets the input features. The used inputs are the first hit time and the number of
photoelectrons (npe) for each PMT, and the npe over time distribution summed over all LPMTs,∑

npe(t). For the Graph Convolution an implementation after Kipf and Welling [10] is used.
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Figure 4: Reconstruction results after 6 iterations, projected over the z (right) and y (left) planes. On top,
an atmospheric 𝜈𝜇-CC interaction where small hadronic contribution. The bottom shows an event where a
significant part of the neutrino energy goes into secondary hadronic emission.

4.1 Architecture

The network architecture consists of three parts: a Graph Convolution, a 1D Convolution, and
a Fully Connected Network. The network architecture, described below, is shown schematically
in Fig. 5. Each block can be used several times in a row with adjusted parameters to improve the
reconstruction performance. The number of blocks, features and clusters are all hyper-parameter for
this architecture, and they have been adjusted in a Bayesian optimization. The Mean-Squared-Error
is used as loss function. On all layers, but the last one, the ReLU activation function is used.

For the Graph Convolution, an adapted form of the ResNet Architecture [11] is used. In these
blocks, the amount of node features 𝑁𝐹 needs to be constant. For this reconstruction, a Graph
Convolution layer with increasing node features is followed by one or more ResNet blocks. The
number of blocks and features are increasing in a pyramid scheme. After the ResNet blocks, a
pooling method is implemented. Here, the Graph Partition Pooling [12] method is used. This
method reduces the number of nodes in the graph by clustering the nodes using the k-means++
algorithm and pooling on maximal values on each cluster. This method is the first one published
that suitable for this task: pooling a Graph that is used as a detector representation.

The input data for this Graph Convolution are the FHT and npe of each PMT. The 1D Convo-
lution uses as input the charge (npe) over time distribution summer over all PMTs. In this part, 1D
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Figure 5: Schematics of used architecture, 𝑁𝐹 is short for number of features used in the specific Layer, 𝑁𝐶

the number of clusters used by Graph Partition Pooling to reduce the amount of nodes of the graph. For the
Graph Convolution 2 input features are used for the 17612 nodes, one node represents one LPMT. The 1D
Convolution takes the charge over time distribution as input, which has 100 bins. Both parts are combined
in some linear layers, which return the prediction.

Convolution layers with increasing amount of features alternate with 1D MaxPooling. Afterwards,
flattening is used to adjust the dimensions. At the end, both outputs are appended in one tensor,
which is used as the input for the Fully Connected Network. At this step, the outputs are processed
together and the amount of nodes is decreased to fit the prediction.

4.2 Results

The visible energy of atmospheric neutrino events is reconstructed with the previously described
approach. To check the reconstruction performance, the true (in the following label) visible energy
is compared with the visible energy predicted by the neural network described above. Compared to
previous studies (see [7], the quenching effect has been include in the visible energy). The predicted
visible energies are plotted against the label ones in figure 6. Figure 7 shows the differences between
the label and predicted visible energy (in percentage), defined as:

dE [%] =
(Elabel − Eprediction)

Elabel
· 100 (1)

with Elabel as label energy and predicted energy Eprediction.
The predicted values show a systematic offset towards lower predicted visible energies. The

mean of the 𝑑𝐸 distribution is at 0.64 %. To correct for this bias, the reconstructed energies are
binned in range [0.5, 15] GeV with a bin width of 0.5 GeV. For each energy bin, the reconstructed
energy is weighted by a correction factor. Those factors are multiplied with the predicted energies
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in each bin, and the energy deviation is calculated for each correction factor. The energy deviations
are fitted to the correction factors with a linear function. For each function, the factor for 𝑑𝐸 = 0
is found and used as correction factor. In this way, each bin is corrected individually. The results
shown in the following are bias corrected, with the described method. Fig. 6 and 7 show the bias
corrected dependence of the label to predicted energy as a narrow linear distribution. One can
see that the differences 𝑑𝐸 are well centered around dE= 0 after bias correction. The resulting
resolution is of ∼ 2%. For comparison, a simple linear regression approach between the detecter
charge npe and the true visible energy results in a resolution of around 5 %.

Figure 6: Predicted visible energy against label
visible energy, after bias correction.

Work in progress

Figure 7: Difference between label and predicted
visible energy in percentage, after bias correc-
tion. Overall mean and standard deviation are
0.0 ± 2.05 %.

5. Conclusions and outlook

This proceedings present two different approaches to reconstruct the energy and direction
of GeV events in a liquid scintillator detector. We show the capability of JUNO to reconstruct
atmospheric neutrinos within the requirements for oscillation studies. Next steps of this work will
include an optimisation of the algorithms, their implementation into the official JUNO software,
and the studies on the systematics related to different neutrino generators.
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