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KM3NeT is a research infrastructure hosting two large-volume Cherenkov neutrino detectors
which are currently under construction in the Mediterranean Sea. The KM3NeT/ARCA detector
is optimised for the detection of high-energy neutrinos from astrophysical sources in the TeV-PeV
energy range. Once completed, the detector will consist of 230 detection units. Here, we present a
Deep Learning method using graph neural networks that is trained and applied to events gathered
with 6 and 8 active detection units of KM3NeT/ARCA. Graph neural networks have been trained
for classification and regression tasks, showing very promising performances in a range of different
tasks like neutrino-background identification, neutrino event topology classification, energy and
direction reconstruction, and also in the study of properties of muon bundles.
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1. Introduction

Charged particles produced in neutrino interactions with water induce Cherenkov light, which
is detected by 3" photomultiplier tubes (PMTs) hosted in pressure resistant glass spheres. 31 PMTs
are stored in a single digital optical module (DOM), and 18 DOMs are fixed to a long vertical
detection unit (DU) that is anchored to the sea floor. Each of the building blocks of KM3NeT
will consist of 115 DUs [1]. The KM3NeT detector can therefore be modelled as a 3D array of
photosensors capable of registering the arrival time and time over threshold of photons impinging on
a photomultiplier tube (hit) contained inside a DOM. The detected light on each PMT can be used to
reconstruct the particle properties, such as their energy or direction. Each hit has information about
the time and the xyz-position of the PMT that recorded the light, as well as its pointing direction.
All the hit information of an event serves as input to reconstruction and classification algorithms.
Since data recorded by KM3NeT closely resembles point clouds, graph neural networks (GNNs)
are a natural choice as architecture for deep neural networks employed for the data analysis.

2. Graph neural networks

In the past, Deep Learning methods have acquired huge popularity on image recognition tasks,
exploiting convolution and pooling operations on images encoded as a fix grid of pixels. These
techniques have also been developed in the context of the KM3NeT experiment [2]. However,
the fixed pixel structure has shown limitations in its capability to represent data collected by the
telescope. The high dimensionality and sparse signal registered in the detector can be much better
encoded in graphs. Other advantages of graphs with respect to image based methods are linked to the
limited resolution in position and time that can be achieved through images/fixed grid pixels. At the
same time, DOMs in the KM3NeT detector move under the effect of the sea current: this information
is completely lost within the position bin size. The most natural way to encode information of events
into a graph is to represent every photon hit as a node. Therefore, each node has a 7-dimensional
feature space represented by: 3 spatial coordinates, 3 PMT directions, and time. To create the
final graph structures then, nodes are connected to each other, based on Euclidean metric. For
memory usage optimization and for keeping the number of connections under control, each node
is connected to its k-nearest neighbours. For the model architecture adopted in the next sections,
the ParticleNet architecture has been exploited [3]. This architecture was originally designed for
point cloud applications, and used for jet tagging at LHC, showing outstanding performances with
respect to image convolutional techniques.

3. Event reconstruction and classification

3.1 Neutrino energy regression

The architecture explained in Section 2 has been exploited using a last fully-connected layer
with a linear activation function in order to produce an estimation of neutrino energy. The training
was performed with about 4 million simulated events of ARCA, with 6 active DUs, equally divided
among track-like (v, charged current interaction) and shower-like events (v, neutral current, v,
charged current, v, neutral current interaction), including the corresponding antiparticles. The
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validation data set was composed of 200k events. The Monte Carlo (MC) simulated energy is
used as truth reference value for this learning task. A r? score (coefficient of determination! ) is
computed on a test data set, reaching a value of 0.835. For comparison, the r? score achieved by
the standard reconstruction algorithm, based on maximum likelihood, for the same set is 0.353.

Track-like and shower-like event topologies are characterized by a different spatial evolution
inside the detector, hence in Figure 1 the performances are reported separately.
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Figure 1: Top: predicted energies versus true MC energies for track-like events in the GNN (op left) and
standard reconstruction case (fop right). Bottom: predicted energies versus true MC energies for shower-like
events in the GNN (fop left) and standard reconstruction case (top right).

It is worth to notice the better performances of the shower-like topologies: in fact the GNN r2
for shower-like and track-like events is respectively 0.895 and 0.628. This behaviour is probably
due to the better event containment for showers.

r= is calculate using the following formula: r= = 1 — 3¢ where SS;¢g is the residual sum of squares
12 lculated by using the following formula: r? = 1 - 5 where SS the residual f sq
O

2 (e — ylpred)2 and SS;o; is the total sum of squares 3 | (y{"™¢ ~ 3 trueyZ
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3.2 Neutrino direction regression

The reconstruction of the neutrino direction is performed by a similar GNN as adopted for
the energy estimation but followed in this case by three parallel layers, one for each component of
the neutrino direction CosX, CosY, CosZ, with custom cosine activation function. The training,
validation and test events are the same as in the energy regression case.

In Figure 2 the performances for the reconstruction of the neutrino zenith with the GNN
and the standard reconstruction algorithms are reported. The GNN reconstructions show a better

behavior compared to the standard method for both the shower-like component (r2G vy =074 vs.
rgT p = 0.58) and the track-like component (ré Ny = 0.96 vs. rgT p = 0.78). The track-like

component plot for the GNN case exhibits a narrow distribution around the trues values respect
the standard reconstruction. However, the median of the distribution produced by the standard
reconstruction shows a better agreement with the true values. The other directions show similar
behavior, so they will be omitted here.
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Figure 2: Top: predicted cosine of the zenith versus true MC value for the GNN (fop left) and the standard
reconstruction case (top right) for the track-like component. Bottom: predicted cosine of the zenith versus
true MC for the GNN (bottom left) and standard reconstruction case (bottom right) for the shower component.

The trained models have also been used for inference on real data: Figure 3 shows the data to
Monte Carlo comparison for energy and zenith regression.
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Figure 3: Comparisons of the inferred energies (left) and cos(zenith) (right), varying the inference test data
set and reconstruction methods.

The previous plots have been obtained applying a cut on the number of triggered hits for each
event in order to suppress events generated by environmental optical background, mainly due to “°K
decay. The good agreement between the GNN inference on real data (back dots), GNN inference
on Monte Carlo (black lines), and the Monte Carlo simulated value (red lines) for both energy and
zenith is clearly noticeable.

4. Signal/background classification

A classification model has been trained to distinguish between atmospheric muons and neu-

trinos. The classifier produces a score for each event, ranging from O to 1, that represents the
probability of the event to be of a certain class. During the training phase the GNN takes as input
graphs created from MC simulations of the recorded hits for each event: specifically, each hit
represents a node of the graph and causality relations between hits represent the edges of the graph.
The training process exploits approximately 90% of the data set for training and 10% for validation.
Three training sessions were conducted, one for each different detector configuration geometry:
one for ARCA with 6 active DUs (ARCA®6), one using ARCA7 and one employing ARCA8. The
training sets consist of 800k events for ARCA6, 500k for ARCA7, and 1 million events for ARCAS,
all with a fraction of 50% atmospheric muons and 50% neutrinos. The networks are trained with
k-nearest neighbors equal to k = 16, ReL.U activation function and Adam optimizer (8; = 0.9,
B2=0.999 and £ = 0.1).
The inference of the network trained on ARCA6 has been performed on a total lifetime of 45 days,
for the ARCA7 trained GNN, a period of 25.5 days has been used, while for the network trained on
ARCAS, a period of 22.2 days was examined. In total 93 days have been analysed. The analysis
results are depicted in Figure 4, where the probability for each event to be classified as neutrino is
reported. In order to exclude events mainly due to “°K decay, the same event selection described
in Section 3.2 has been applied. It can be noted a peak of events with very high neutrino score in
the data, compatible with an excess of atmospheric neutrinos in that region of the neutrino score.
The data-Monte Carlo comparison is compatible with values obtained in other KM3NeT analyses,
exploiting other selection methodologies [4].
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Figure 4: Probability of the events to be classified as neutrino for ARCA6-8.

5. Muon bundles reconstruction

The bulk of events measured in a neutrino telescope corresponds to atmospheric muons,
induced by the interaction of cosmic rays (CRs) with the nuclei in the atmosphere. A common
technique of background rejection is to use the Earth as a shield, selecting therefore only upgoing
particles. Atmospheric muons can be exploited for a variety of physics cases and detector checks,
like primary CR composition studies and validation of detector performances and calibrations. A
great challenge is the reconstruction of the properties of atmospheric muons, especially if multiple
muons traverse the detector simultaneously (muon bundles) [5].

5.1 Direction reconstruction

A regression model has been trained on Monte Carlo events, in order to infer the direction (zenith
and azimuth) of the incoming bundle. Each muon inside the bundle, even if having slightly different
zenith angles, is simulated with a parallel direction, therefore the two targets for the regression are
uniquely defined. The architecture adopted for this task follows the ParticleNet structure described
in Section 2. The difference is in the output activation function, for which a normal distribution is
assumed in order to measure also an uncertainty associated to the reconstruction. In Figure 5, the
2D distribution of predicted cosine of zenith as a function of the true simulated value is reported,
after applying a cut on the uncertainty value itself.

The training sample was composed of ~2 million events, and the validation set was chosen to
be 10% of the training one.

An important aspect of Deep Learning algorithms is their robustness, when applied to data.
The performance of the GNN algorithm is compared to the standard reconstruction which is based
on the maximization of a likelihood function. The data-Monte Carlo comparison for both the
algorithms is reported in Figure 6.
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Figure 5: 2D distribution of the predicted cosine of zenith as a function of the true MC one, selecting the
best 80% reconstructed events, cutting on the uncertainty estimation.
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Figure 6: Data-Monte Carlo comparison of the reconstructed cosine of the zenith angle for the GNN (left)
and for the standard algorithm (right). In both plots the Monte Carlo true cosine of the zenith is also reported.

5.2 Muon bundle multiplicity reconstruction

A graph neural network was also trained in order to infer the number of muons in a bundle
traversing simultaneously the detector, called muon multiplicity. The muon multiplicity is a very
important parameter since it allows various studies of CRs and their interactions, and in particular
to estimate the mass of the CR primary particle. At the same time, the light yield produced by
muon bundles, when traversing the detector, is collected and reconstructed by classical algorithms
as a single muon, with energy equal to the sum of the energies of the muons in the bundle.

The choice on the architecture was done similarly to the direction regression task, even if
the muon multiplicity is a discrete quantity, and bound from below. An example of the network
capabilities is shown in Figure 7: the 2D histogram represents the predicted multiplicity in function
of the true one. Also in this case the network is capable to provide not only the inferred multiplicity
on a given event but also the error on the estimate itself. In Figure 7 also the data-Monte Carlo
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comparison for the predicted muon multiplicity is reported showing a general agreement, especially
at mid to high muon multiplicities.

KM3NeT/ARCA8 Preliminary, GNN

1064 -2 [ Prediction simulation ARCA8
¢ Prediction Data Arca8

KM3NeT/ARCA8 Preliminary
L]
[]

Entries / bin

Prediction Multiplicity

15 20 25
£1.0 L True Multiplicity

T T T T T T
5 10 15 20 25 30
Muon multiplicity

Figure 7: Left: Data Monte Carlo comparison on ARCAS data set for GNN predicted muon multiplicity.
Right: 2D histogram showing the predicted muon multiplicity in function of the true one for ARCAS8 data
set.
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