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TRoplcal DEep-sea Neutrino Telescope (TRIDENT) is a next-generation neutrino detector to be
located in the South China Sea. Muon track events are the primary channel for the discovery of
potential astrophysical neutrino sources. In a typical track-like event, less than 1% of photosensors
are hit, making Graph Neural Networks particularly well-suited for their reconstruction. In this
study, we have trained Graph Neural Networks with simulated track-like events to reconstruct the
direction and energy of incoming muons with high resolution. We present the accuracy and speed
of the machine learning based method and compare it with classic reconstruction methods.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:mo_cen@sjtu.edu.cn
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
3
)
1
2
0
5

Reconstruction of Track-like Event in TRIDENT Project Based on Graph Neural Network Cen Mo

1. Introduction

Machine learning techniques have already been widely used in high-energy physics. They
provide a powerful handle for analysing data with high dimensionality and volume. Various
attempts have been made to investigate the power of machine learning approaches in neutrino
telescopes in recent years. Deep neural networks and Boosted Decision Trees (BDTs) are used to
classify cascade events in IceCube [1]. 3D convolutional neural networks (CNNs) are applied to
reconstruct various neutrino events in KM3NeT/ORCA [2]. CNNs with hexagonally shaped kernel
are utilized to reconstruct cascade events in IceCube’s hexagonal geometry [3]. Sparse Submanifold
Convolutional Neural Networks (SSCNNs) are trained to overcome sparsity of input data and
works as a trigger-level event reconstruction for IceCube [4]. Graph Neural Networks (GNNs) are
developed for low-energy event reconstruction and classification in IceCube [5]. Reconstruction
approaches based on machine learning have been shown to be faster and easier to develop compared
to the traditional likelihood based reconstruction method.

TRoplcal DEep-sea Neutrino Telescope (TRIDENT) aims to identify and study astrophysical
neutrino sources [6]. There are mainly three kinds of neutrino events: track-like events from muon
neutrinos in charged-current interactions, shower-like events from neutrinos in neutral-current
interactions and electron neutrinos in charged-current interactions, and finally double-cascade
events from tau neutrinos in charged-current interactions. In this study, we introduce a GNN-based
method to reconstruct muon track events simulated using TRIDENT’s simulation framework. We
have found that trained GNN models can achieve high resolution and rapid processing speed when
reconstructing the direction and energy of the muons.

2. Track-like Event Simulation

We have simulated a` charge current interactions events from 1 TeV to 1 PeV. The a` energy
distribution takes the form of 𝐸−2. The simulated events are generated using the TRIDENT
simulation framework consisting of two components: the event generator and the detector response
simulator.

The event generator simulates the deep inelastic scattering (DIS) process for a` based on the
CORSIKA8 simulation framework [7]. The TRIDENT detector is represented by a cylinder with
2500m radius and 1000m height located 2900m below the sea level. The energy of the neutrino 𝐸a

is sampled from a 𝐸−2 energy spectrum. The direction of the neutrino is uniformly sampled from
a 4𝜋 solid angle. The DIS process is simulated with PYTHIA8 program [8] as shown in Figure 1.
�̂�a is the neutrino direction and ®𝑥 𝑓 is the DIS vertex.

Particles decay and travel through the TRIDENT detector until they reach the edge of the
detector. The interaction processes between particles and the detector are simulated using the
detector response simulator.

The detector response simulator is built based on Geant4 software framework [9, 10] . The
detector is made of 1200 vertical strings in a Penrose tiling pattern with a radius of 2000m, as
shown in Figure 2. For each string, there are 20 digital optical modules (DOMs) with a vertical
spacing of 30m. In the detector response simulator, we use Geant4 to simulate the propagation of
charged particles and the emission of Cherenkov photons. The cascade of electrons is described by
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Figure 1: The DIS vertex sampling.

parameterization functions to speed up particle-by-particle simulation of the cascade by O (1000)
times. The OptiX ray tracing framework [11] is utilized to accelerate the propagation of Cherenkov
photons tracked up to the surface of DOMs.

Figure 2: Top view of TRIDENT detectors.

To achieve a large photon detection area and measure precise photon hit times, new type of
DOMs called hybrid DOMs (hDOMs) [12] which contain multiple Photomultiplier Tubes (PMTs)
and Silicon Photomultipliers (SiPMs) are used in the TRIDENT detector. Inside the hDOMs, optical
processes such as the refraction, absorption, and reflection of Cherenkov photons are simulated.

3. Network Architecture

To fully utilize the topological features of track-like events in neutrino telescope, we evaluated
performances of various neural networks. We adopted the Submanifold Sparse Convolutional Net-
work (SSCNN)[13] for the task of direction reconstruction. SSCNN demonstrated the ability to
effectively handle high-dimensional data in neutrino telescope. However, it consistently undeper-
formed the GNN in terms of angular resolution for track-like events. Therefore, we choose to use
GNN for track-like event reconstruction.

Each neutrino event in TRIDENT can be represented as a point cloud, where the point cloud is
an edge-less graph comprised by a collection of nodes positioned within a standard 3D coordinate
system with XYZ axes. In this context, a neutrino event is denoted as 𝐺 = {𝑢, 𝑥𝑖 , 𝑝𝑜𝑠𝑖}. Here, 𝑢
represents the global feature of the event, capturing overall event characteristics, while 𝑥𝑖 represents
the feature associated with the 𝑖-th DOM. Additionally, 𝑝𝑜𝑠𝑖 signifies the location of the 𝑖-th DOM.
The construction of 𝑢 and 𝑥𝑖 varies depending on the specific task at hand.
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As depicted in Figure 3, our GNN architecture incorporates a fundamental building block
known as the EdgeConv block, modified from the EdgeConv block used in ParticleNet [14]. The
EdgeConv block, initially introduced in [15], functions as a convolution-like operation designed to
capture local geometric attributes within point clouds. Given a point cloud 𝐺, the EdgeConv block
begins by establishing edges for the point cloud. Each node is connected to its 𝑘 nearest neighboring
points through edges, where 𝑘 is a user-defined hyperparameter. For each edge, a feature vector
is defined by 𝑒𝑖 𝑗 = 𝜙\ (𝑢, 𝑥𝑖 , 𝑥 𝑗 − 𝑥𝑖), where 𝜙 is a multilayer perceptron (MLP) with \ denoting
its parameters. The EdgeConv block then performs an aggregation operation to gather information
from the connected nodes. The feature vector of the 𝑖-th node is updated as 𝑥′

𝑖
= ( 𝑀𝑎𝑥

𝑗=1,...𝑘
{𝑒𝑖 𝑗} + 𝑥𝑖 ),

where 𝑀𝑎𝑥 is the aggregation operation and 𝑥𝑖 is added as a shortcut connection, as introduced in
[16]. The output of the EdgeConv block is passed through a Rectified Linear Unit (ReLU) activation
function [17] to introduce non-linearity.
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Figure 3: Architecture of GNN used in this study is shown on the left plot. The detailed structure of
EdgeConv block is illustrated on the right plot.

The complete GNN architecture incorporates multiple iterations of the EdgeConv block, each
with different parameters, to enrich the graph representation and capture high-level information.
During each iteration, the EdgeConv block takes the input graph 𝐺 and updates the node features
to 𝑥′

𝑖
, resulting in a updated point cloud:

𝑢′ = ΦΘ(𝑢,Global_Average_Pooling({𝑥′𝑖}))
𝑥′𝑖 = 𝑥′𝑖

𝑝𝑜𝑠′𝑖 = 𝑥′𝑖
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whereΦ is another MLP with parametersΘ. After the final iteration, the GNN produces an enriched
graph with high-level information. The desired physical parameters can then be reconstructed
using an output MLP layer, with the input being either the set of node features 𝑥𝑖 for DOM-level
reconstruction or the global feature vector 𝑢 for event-level reconstruction.

Classic reconstruction methods for direction of muon tracks utilize photon residual times 𝑡res,
which quantify the difference between the time of photon hit and the expected time for photons based
on their geometry. By constructing a probability density function (PDF) of 𝑡res[12], the maximum
likelihood methods achieve an angular resolution of approximately 0.1 degrees for high-energy a`

events[6]. Inspired by this approach, we design the input features to focus on the time and position
of each hit. For a specific a` event, we denote the position and time of the first photon hit as
𝐷0 = (𝑥0, 𝑦0, 𝑧0) and 𝑇0, respectively. Each triggered DOM is represented as a node in the point
cloud, with the position of the 𝑖-th node defined as the relative spatial vector 𝑝𝑜𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) −𝐷0.
The feature vectors of the nodes consist of the concatenated position, time, and the number of
recorded hits: 𝑥𝑖 = (𝑝𝑜𝑠𝑖 , 𝑐(𝑡𝑖 − 𝑇0), 𝑛𝑖), where 𝑡𝑖 is the time of the first photon hit for the 𝑖-th
DOM and 𝑐 is the speed of light. The global feature vector is obtained by performing a Global
Average Pooling operation on the set of node feature vectors: 𝑢 = Global_Average_Pooling(𝑥𝑖).
The specific feature vectors used for each graph are summarized in Table 1.

Table 1: Input Feature Description

Feature Description

𝑥, 𝑦, 𝑧 Relative position for DOM
𝑐𝑡 Relative time of first hit for DOM
𝑛 Number of hits for DOM
𝑢 Global features for graph

4. Reconstruction Results

In this study, we utilize the aforementioned GNN architecture to reconstruct the direction and
energy of a` events. The angular resolution is presented and compared with results using the
maximum likelihood method employed in TRIDENT. Following this, we introduce another model
that predicts the energy of muons resulting from a` charge current interactions.

4.1 Direction Reconstruction

Instead of directly reconstructing the direction vector �̂�` = (𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧) of the muon, our
network is trained to reconstruct the emission locations of Cherenkov photons. For each triggered
DOM located at ®𝐷𝑖 , the earliest trigger time 𝑇𝑖 is known. By leveraging the truth information
(®𝑥`, 𝑡`, �̂�`) of the muon, we can determine the theoretical photon emission position, ®𝑟𝑖 , as is
illustrated in Figure 4. The network is trained to predict ®𝑟𝑖 for each triggered DOM, and the muon
track is then reconstructed using a simple linear fit based on the predicted ®𝑟𝑖 . Our findings indicate
that the combination of GNN and the least squares method results in a smaller angular resolution
compared to directly predicting the muon direction �̂�` using GNN.
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𝜇( Ԧ𝑥𝜇 , 𝑡𝜇 , ො𝑛𝜇)

DOM𝑖(𝐷𝑖 , 𝑇𝑖)

Ԧ𝑟𝑖
𝛾

Figure 4: Muon emits Cherenkov photon at ®𝑟𝑖 and triggers DOM𝑖 .

To reconstruct the emission position, we constructed a network comprising 6 EdgeConv blocks
followed by 2 layers of MLP as the output block. In each EdgeConv block, the parameter 𝑘 was
set to 16. Since our target is to reconstructing the physical parameters of individual DOMs, the
network is configured in the node-level prediction mode.

During the training process, a set of event selection criteria is applied to the dataset, enabling
the network to effectively capture the topological features of a` events. To highlight the unique
characteristics of track-like events, training samples are filtered to include only those with a minimum
muon track length of 500m. Furthermore, training samples are further constrained to contain more
than 8 triggered DOMs. The loss function used in training is mean square error (MSE) and weights
proportional to the number of photon hits, 𝑛𝑖 , are applied:

𝐿𝑜𝑠𝑠 = Σ
𝑖
𝑛𝑖 × |®𝑟pred

𝑖
− ®𝑟𝑖 |2/Σ

𝑖
𝑛𝑖 (1)

To evaluate the performance of the model, the training samples are divided into two sets: the
training set and the test set. The model with the minimum loss on the test set is selected as the final
model.

The result is obtained by applying the trained model to a separate dataset consisting of 130,000
a` events. For this evaluation, the criteria for event selection are relaxed compared to the strict
criteria mentioned earlier. Here, the samples are required to trigger at least 2 DOMs with more
than 10 hits, which is the minimum requirement for identifying a track-like event. Figure 5 presents
the angular resolution achieved by the GNN model as a function of neutrino energy in the left
plot, while the right plot displays the results of the traditional likelihood method. Both methods
exhibit an angular resolution at the sub-degree level across most energy regions, demonstrating the
effectiveness of the GNN model in reconstructing the neutrino direction.

The GNN reconstruction process is performed on a 32GB NVIDIA V100 GPU, with each
batch consisting of approximately 2500 events. The average time required to reconstruct a single
event is approximately 2ms. In contrast, the likelihood method spends roughly 350ms per event.
This significant reduction in processing time highlights the computational advantages of the GNN
approach in comparison to the traditional likelihood method.

We have found that the likelihood method outperforms the GNN method in terms of angular
resolution. This outcome possibly can be attributed to the fact that the neural network is de-
signed with a general architecture without prior neutrino-related knowledge. Incorporating physics
constraints into the architecture may lead to improved performance.
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Figure 5: Median angular error of GNN (left) and likelihood method (right) depend on energy of a`. The
median angle between the reconstructed track and the true direction of ` and a` is visualized by the green
and red lines, respectively. Color bands exhibits the 68% and 90% quantiles. Black lines are the median
angle between direction of ` and a`.

4.2 Energy Reconstruction

In the generation of a` charge current events, the DIS interaction vertex is likely to be generated
outside of the detector region. In such cases, the energy loss of the muon before it reaches detector
region is irreducible. Therefore, in this section we focus on the reconstruction of muon energy upon
its arrival within the detector region using the GNN method.

For the task of reconstructing muon energy, we constructed a network comprising 4 EdgeConv
blocks followed by 2 layers of MLP as the output block. In each EdgeConv block, the parameter 𝑘
was set to 10. The smaller value of 𝑘 makes the network to focus on capturing local information
such as 𝑑𝐸/𝑑𝑥, which is a valuable indicator for inferring the muon energy.

Considering that the value of 𝐸` spans several orders of magnitude, the network is trained to
predict 𝑙𝑜𝑔10𝐸`. The loss function is set to be MSE between the predicted and truth values of
𝑙𝑜𝑔10𝐸`. Additionally, weights 𝑤 = 𝑙𝑜𝑔10𝐸` − 2.5 are applied to each sample during training.
Denoting 𝑙𝑜𝑔10𝐸` for the 𝑛-th sample as 𝑦truth

𝑛 , we have:

𝐿𝑜𝑠𝑠 = Σ
𝑛
𝑤𝑛 × |𝑦pred

𝑛 − 𝑦truth
𝑛 |2/Σ

𝑛
𝑤𝑛 (2)

Weights are required here since the energy spectrum for training sample is soft, which leads to
an imbalance in the distribution. By applying weights, the imbalance is mitigated, allowing the
network to effectively learn from events across the energy spectrum.

In order to align with the logarithmic scale used in the target variable, the 𝑛𝑖 term in the input
feature vectors is transformed to 𝑙𝑜𝑔(𝑛𝑖). The trained model tends to predict a lower energy than
truth 𝐸`. To address this, a shift term, 𝑏 = 0.15, is added to each predicted value. The reconstructed
energy is then defined as 𝐸recon = 10𝑦pred+𝑏. The results of the energy reconstruction is illustrated
in Figure 6. The median of |𝑙𝑜𝑔10(𝐸recon/𝐸`) | is smaller than 0.2 for 𝐸` >1TeV.
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Figure 6: Energy reconstruction result of GNN. Left plot is the comparison between truth 𝐸` and energy
predicted by GNN, and right plot illustrates the ratio between two quantity. Solid line is the median value
and color bands corresponds to 68% and 90% quantiles.

5. Conclusion

This study presents a graph neural network architecture for the reconstruction of neutrino
events in TRIDENT. The neural network is trained to accurately reconstruct the direction of a`

from track-like events. The model achieves an angular resolution a little worse than that of the
traditional likelihood method but with a speed improvement of approximately 100 times. Another
model is trained to reconstruct the muon energy, achieving a median value smaller than 0.2 in
|𝑙𝑜𝑔10(𝐸recon/𝐸`) |. With room to improve, the architecture aims to be used to separate neutrino
signal from the atmospheric muon background.
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