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Accurate theory calculations for neutrino-nucleus scattering rates are essential in interpreting neu-
trino experiments, from oscillation measurements to astroparticle physics at neutrino telescopes.
In the deep-inelastic (DIS) regime, neutrino structure functions can be reliably evaluated in the
framework of perturbative QCD. However, large uncertainties affect these structure functions at
low momentum transfer, distorting event rate predictions for energies up to 1 TeV. We present
a determination of the neutrino inelastic structure functions valid for all values of 𝑄2, from the
resonance region to ultra-high energies. Our approach combines a data-driven machine learning
parametrization of neutrino structure functions at low and moderate 𝑄2 values matched to pertur-
bative QCD calculations at large 𝑄2. We compare our results to other calculations in the literature
and outline the implications for neutrino telescopes.
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1. Introduction

The double-differential cross section for neutrino-nucleus inelastic scattering can be decom-
posed in terms of structure functions as follows:

d2𝜎

d𝑥d𝑦
=

𝐺2
𝐹
𝑚𝑛𝐸𝜈

𝜋(1 +𝑄2/𝑚2
𝑊
)2
[(1 − 𝑦)𝐹2(𝑥, 𝑄2) + 𝑦2𝑥𝐹1(𝑥, 𝑄2) + 𝑦(1 − 𝑦

2
)𝑥𝐹3(𝑥, 𝑄2)]

Where 𝐸𝜈 is the neutrino energy, 𝑚𝑛 is the nucleon mass, 𝑥 is Bjorken-x, 𝑄 is the momentum
transfer, and 𝑦 is the inelasticity (= 𝑄2/(2𝑚𝑁𝑥𝐸𝜈)).

For momentum transfers above a few GeV, neutrino structure functions can be evaluated in
perturbative QCD in terms of a factorized convolution of process-dependent partonic scattering
cross sections and of process-independent parton distribution functions [1]. This scheme is used to
make predictions of neutrino-nucleus scattering at high energies [2–6].

However, when the neutrino energy is ∼ 100 GeV, 20% of the inclusive cross section can arise
from the 𝑄 < 2 GeV. Therefore, phenomenological models of low-Q structure functions have been
developed to describe inelastic scattering at lower energies [7–12].

We present a new method, called NNSF𝜈, to determine the neutrino-nucleon structure functions
valid from low to high momentum transfers. The NNSF𝜈 predictions are extremely relevant for
the current and next generation of neutrino telescopes [13–18] and for LHC far-forward neutrino
scattering experiments [19–21].

2. The NNSF𝜈 method

In this section, we describe the overall strategy used to determine structure functions in
NNSF𝜈. Fig. 1 shows a schematic representation of the NNSF𝜈 method to compute neutrino
structure functions. This strategy allows us to extend the perturbative QCD computations into the
non-perturbative region. The different regions are described as follows:

• Region I: The perturbative calculation of neutrino structure functions is affected by significant
theory uncertainties. Therefore, a neural network is trained using the information from the
available experimental data.

• Region II: Structure functions are computed at NLO by YADISM [22] with nNNPDF3.0 [23]
as input for all targets. In this region, the neural network parametrization is fitted to these
QCD predictions rather than to the data as in Region I.

• Region III: The neural network predictions are replaced by the direct outcome of the same
YADISM NLO calculation used to constrain the fit in Region II.

The parameterization of neutrino structure functions applicable in Regions I requires exper-
imental data. We consider all available neutrino scattering data to be restricted to the inelastic
regime. Apart from the 𝑄𝑑𝑎𝑡 cut, we require the invariant mass of the final hadronic state to be
larger than 2 GeV. In total, we have more than 4000 data points in the fit from different targets:
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Figure 1: Schematic representation of the NNSF𝜈 strategy to parametrize neutrino structure functions.

Ne (BEBCWA59 [24]), Fe (CCFR [25], CDHSW [26], and NuTeV [27]), Pb (CHORUS [28]),
and CaCO3 (CHARM [29]). The measurements are presented in terms of either differential cross
section or individual structure functions in (𝑥, 𝑄2, 𝐴).

The NNSF𝜈 parameterization follows the NNPDF fitting methodology [30], based on the
combination of neural networks as universal unbiased interpolator with the Monte Carlo replica
method for error estimate and propagation. The network output includes a preprocessing factor
that facilitates the learning and extrapolation of structure functions in the small-x region [31]. In
addition, we subtract the behavior at 𝑥 = 1 to reproduce the elastic limit where structure functions
vanish due to kinematic constraints. Hyperparameters like the network architecture are determined
by means of a dedicated optimization procedure.

The baseline fit shows a total of 𝜒2
exp = 1.287, and we do not observe outliers in the fits to

data from single experiments. In addition, the fit quality is similar if the QCD structure function
constraints are not included with a Δ𝜒2 = 0.1.

3. Total cross section

The inclusive cross section is obtained by integrating over x and 𝑄2

𝜎𝜈𝑁 (𝐸𝜈) =
∫ 𝑄2

max

𝑄2
min

d𝑄2
∫ 1

𝑥0 (𝑄2 )
d𝑥

d2𝜎𝜈𝑁

d𝑥d𝑄2 (𝑥, 𝑄
2)

where the integration limits are given by

𝑄2
max = 2𝑚𝑁𝐸𝜈 𝑥0(𝑄2) = 𝑄2

2𝑚𝑁𝐸𝜈

The lower integration limit 𝑄2
𝑚𝑖𝑛

should go all the way down to zero. Previous studies impose
a cut in 𝑄2

𝑚𝑖𝑛
to restrict the integration to the perturbative region. This is not required within the

NNSF𝜈 approach since the structure functions are calculated for all 𝑄2 values. For the calculations
presented in this section, a kinematic cut in the final-state invariant mass of 𝑊 > 2 GeV is applied
to restrict the calculation to the inelastic scattering region. The total uncertainty is evaluated using
the uncertainty prescription for the structure-function grids.
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Fig. 2 displays the inclusive (anti)neutrino-Oxygen inelastic cross section as a function of the
neutrino energy 𝐸𝜈 . The NNSF𝜈 prediction is compared with the Bodek-Yang, BGR, and CSMS
calculations. The NNSF𝜈 model is the only available prediction applicable in the complete range
of E𝜈 relevant for neutrino telescopes. The region of applicability of the Bodek-Yang calculation
is 𝐸𝜈 < 105 GeV, while CSMS and BGR are restricted to 𝐸𝜈 > 100 GeV. In the comparisons of
Fig. 2, CSMS and BGR predictions are provided for a free isoscalar target and hence do not account
for nuclear modification effects.
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Figure 2: The inclusive neutrino (left) and antineutrino (right) inelastic cross section on Oxygen as a function
of the neutrino energy. The NNSF𝜈 prediction and the associated 68% CL uncertainty are compared with
the central values of the Bodek-Yang, BGR, and CSMS calculations.

NNSF𝜈 predicts a larger cross section than Bodek-Yang by a factor between 5% and 15%,
depending on the E𝜈 value. In the high-energy region, the NNSF𝜈 prediction is bracketed by the
CSMS above and BGR below. The differences with BGR are explained by combining the input
PDFs and the treatment of top quark mass effects (NNSF𝜈 uses FFNS5, and BGR is based on
FONLL).

Fig. 3 displays the NNSF𝜈 predictions for the inelastic cross section comparing the results
of neutrino and antineutrino projectiles on oxygen, iron, and lead targets. Differences between
inclusive cross sections on different targets are moderate for energies in the intermediate region
between 10 TeV and a few PeV. In the high-energy region, the most marked effect is the strong
suppression of the cross sections in lead compared to lighter targets, reaching up to 20% at 100
EeV. For neutrinos, differences remain at the few percent level in the region where the non-DIS
contribution is sizable, whereas, for antineutrinos, a suppression is observed for heavier targets.

Two types of nuclear effects are responsible for differences between scattering rates on a heavy
and light nucleus. The first is related to the different content of protons and neutrons. Compared
to an isoscalar target, heavy nuclear targets display a different content of valence quarks which
leads to a change in the associated structure functions. This effect is most relevant in the valence
structure function region. As the energy increases, the cross section becomes dominated by small-x
scattering involving sea quarks and gluons.
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Figure 3: NNSF𝜈 prediction for the inclusive neutrino (left) and antineutrino (right) inelastic cross section
on Oxygen, Iron, and Lead as a function of the neutrino energy. The bands represent the associated 68% CL
uncertainty.

The second type of nuclear effect is modifying the bound nucleon’s structure functions com-
pared to free nucleon. In the perturbative QCD region, these modifications are encoded by the
nuclear PDFs, here taken from the nNNPDF3.0 determination. The corrections, similar for neu-
trinos and antineutrinos, become most important in the shadowing region at medium and small-x,
where a suppression in heavy nuclei is preferred. Given the large nPDF uncertainties, high-energy
cross sections for heavy and light targets are compatible within errors.

Nuclear structure modification effects are also present for 𝐸𝜈 < 1 TeV, a region where the
low-𝑄 contribution is significant and the factorization of nuclear PDFs does not work. Within
the NNSF𝜈 framework, one estimates the nuclear modifications in that region by allowing a free
dependence of 𝐹𝑖 (𝑥, 𝑄2, 𝐴) to be directly constrained from the data and then matched to the QCD
calculation at high-𝑄.

4. Inelasticity

The fraction of the incoming neutrino energy that is transferred to the hadronic final state is
called inelasticity 𝑦. At 𝐸𝜈 < 100 TeV, neutrino interactions are expected to produce, on average,
more energetic hadronic showers than their antineutrino counterparts. Therefore, measuring the
event-by-event inelasticity provides a useful proxy to separate 𝜈 and �̄� interactions. This feature has
already been exploited in IceCube analyses [32]. The mean value of the inelasticity as a function
of the neutrino energy can be computed using as input a given prediction for the double-differential
scattering cross section.

< 𝑦 > (𝐸𝜈) =
∫ 𝑄2

max

𝑄2
min

d𝑄2
∫ 1

𝑥0 (𝑄2 )
d𝑥 𝑦

d2𝜎𝜈𝑁

d𝑥d𝑄2 (𝑥, 𝑄
2)
/
𝜎𝜈𝑁 (𝐸𝜈)

Fig. 4 displays the mean value of the inelasticity as a function of the neutrino energy 𝐸𝜈 for both
iron and lead targets. An overall good agreement is observed between the different predictions, with
differences up to 10% depending on the target and 𝐸𝜈 ranges. Specifically, the NNSF𝜈 prediction
is around 10% smaller than CSMS at high-neutrino energies. A good agreement between NNSF𝜈
and Bodek-Yang is found in the region of applicability of the latter.
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Figure 4: The mean inelasticity as a function of the neutrino energy 𝐸𝜈 for iron (left) and lead (right) targets.
The NNSF𝜈 prediction, together with the associated 68% CL uncertainty band, is compared with the central
values of the Bodek-Yang, BGR, and CSMS calculations.

5. Conclusions

We have presented a novel method to determine neutrino inelastic structure functions. The
approach uses a data-driven parametrization at low values of 𝑄2 matched to perturbative QCD
calculations at high 𝑄2. The resulting structure functions enable us to predict neutrino deep
inelastic scattering from few GeV up to EeV energies and for different targets. In addition, the
calculation includes uncertainties associated with the structure functions.

Comparisons with existing calculations in the literature show discrepancies in different energy
regions mostly related to nuclear effects. Therefore, it is crucial to start accounting for these effects
in analyses with neutrino telescopes for which systematic uncertainties are relevant.

The framework used to produce the NNSF𝜈 determination of neutrino inelastic structure
functions can be obtained from the project website (https://nnpdf.github.io/nnusf). The structure
functions are provided in LHAPDF grid format [33] and they have been tested with the HEDIS
module of GENIE [34]. More details about this work can be found in [35].
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