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Modeling of the galactic cosmic-ray anisotropy at TeV
energies using an intensity-mapping method in an MHD
model heliosphere

T. K. Sako,∗ on behalf of the Tibet AS𝛾 collaboration, and N. V. Pogorelov†

It has been established by high-statistics cosmic-ray experiments that the distribution of arrival
directions of TeV cosmic rays have small anisotropic features with amplitudes of ∼0.1%. In this
presentation, we use the intensity-mapping method based on Liouville’s theorem for the modeling
of the TeV cosmic-ray anisotropy. Our results derived from the data of the Tibet AS𝛾 experiment
and the calculation of cosmic-ray trajectories in an MHD model heliosphere indicate that the
relative intensity distibution of cosmic rays at the outer boundary of the heliosphere contains
small-scale ansiotropic features with angular scales of smaller than ∼10◦, which does not seem
realistic. A possible problem would be that the MHD model heliosphere used in this presentation
is a single snapshot of the positive polarity phase of a solar cycle, while the experimental data
covers ten years during the negative polarity phase of the 23rd solar cycle. In order to improve our
intensity-mapping method, it would be necessary to have multiple snapshots of the MHD model
heliosphere corresponding to the negative polarity phase, perform the intensity-mapping for each
of the snapshots and take the average of the results.
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1. Introduction

Arrival directions of galactic cosmic rays observed at the Earth are not completely uniform. At
TeV energies some recent high-statistics experiments (e.g. [1–6]) have reported small yet significant
anisotropic features with amplitudes of roughly 0.1%, such as a large-scale deficit region called
‘Loss-Cone’ and an excess region called ‘Tail-In’. The origins of these structures have not been
known yet, although the anisotropy is considered to reflect how cosmic rays propagate through
magnetic fields in the heliosphere and the surrounding interstellar medium.

Some recent studies [7, 8] make use of the ‘intensity-mapping’ method, in which heliospheric
magnetic field structures are reconstructed by MHD simulations, trajectories of cosmic rays are
calculated in the MHD model heliosphere, and the cosmic-ray intensity distribution observed at
the Earth is mapped back onto that at the outer boundary based on Liouville’s theorem. Then,
the intensity distribution at the outer boundary is modeled by a superposition of particle flows
and interpreted in physical terms. Using the cosmic-ray anisotropy observed by the Tibet AS𝛾
experiment [1], the latest work [8] indicated that, in the interstellar medium outside the heliosphere,
the flow of cosmic rays along the interstellar magnetic field (𝐵ISM) is dominant, and that there is a
density gradient of cosmic rays in the direction of Vela, the nearest known supernova remnant at a
distance of 815 light years from the Earth. To establish a conclusive modeling, however, there are
at least two technical issues to overcome. Firstly, the previous work [8] discussed cosmic-ray flows
in the interstellar medium based on their intensity-mapping method in which 4 TeV mono-energy
protons were shot from the Earth, although the acceleration and deceleration of those protons in
the MHD model heliosphere were taken into account. Cosmic rays observed at the Earth by the
Tibet AS𝛾 experiment, however, are composed of a variety of atomic nuclei with different energies.
One needs to take into account the energy spectrum and the composition of observed cosmic rays
in the intensity-mapping process. Secondly, the 𝜒2/ndf (number of degrees of freedom) value of
the fitting between the experimental and model anisotropies was 4.5 in the previous work, which
was not sufficiently good. One needs to improve the model of the intensity distribution at the outer
boundary so that the 𝜒2/ndf value becomes approximately unity.

2. Intensity Mapping Method

The data used in this presentation was taken by the Tibet AS𝛾 experiment from November
1999 to May 2010, which corresponds to the negative polarity phase of the 23rd solar cycle. For
the pixelization of the sky we use the HEALPix algorithm [9] with 𝑁side = 16, which divides the
sky in our field of view (−20◦ < decl. < 80◦) in 2056 pixels, each of which has an approximate
size of 3.7◦ × 3.7◦.

We have performed detailed MC simulations of air-shower generation and detector response
to estimate the rigidity distribution of cosmic rays observed by the experiment. Using a model of
the energy spectrum and the cosmic-ray chemical composition based on direct measurements [10],
we generate air showers in the energy range from 0.3 TeV and 10 PeV using CORSIKA v7.4000
[11] with EPOS LHC [12] for the high-energy hadronic interaction model and FLUKA v2011.2b
[13, 14] for the low-energy hadronic interaction model. The generated air showers are fed into the
detector response simulation developed by GEANT v4.10.00 [15] and analyzed in the same way as
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in the experiment. Figure 1 shows the obtained rigidity distribution of cosmic rays detected by the
experiment for five typical declination bands.

Cosmic-ray trajectories in the MHD model heliosphere are calculated with the fourth-order
Runge-Kutta method. The Earth is set at four positions around the Sun at a distance of 1 AU on the
ecliptic plane to smooth out possible seasonal effects. The sky in the declination range from −20◦ to
80◦ is pixelized with 𝑁side = 32, and from the center of each pixel cosmic-ray particles are shot into
the MHD model heliosphere with their charges reversed and with their rigidity spectra as shown
in Figure 1. The MHD model heliosphere that we use for cosmic-ray trajectory calculation in this
presentation is identical to the one employed in the previous work [8]. After tracking the particles
in the MHD model heliosphere, their momentum directions are recorded at the boundaries defined
in Figure 2. Then we set the intensity for a particle momentum direction at the outer boundary
(𝐼ISM) to be equal to that at the Earth (𝐼E). The outermost boundary is indicated by a solid black
line, which is a surface where the deviation of the magnetic field strength (direction) from that
outside the heliosphere becomes smaller than 0.1% (0.1◦). In this presentation, the cosmic-ray
relative intensity distribution is evaluated at three boundaries at distances of 630 AU, 1580 AU and
3980 AU from the Sun as indicated by dotted lines in Figure 2.

The experimental data has the declination bias — the average intensity in each declination
band is normalized to unity, because the detection efficiency of the experiment along the declination
direction has not been calibrated absolutely. For this reason, deriving the 𝐼ISM distribution at the
outer boundary is not straightforward. We take the following steps: 1) set up a model of the
distribution of the cosmic-ray intensity at the outer boundary 𝐼ISM, 2) map 𝐼ISM to that at the Earth
𝐼E, 3) normalize the average of 𝐼E in each declination band to unity, and 4) calculate 𝜒2 between the
normalized 𝐼E and the experimental data. Repeating 1) to 4), we obtain the best-fit model of 𝐼ISM

that minimizes 𝜒2. At step 1), we assume the relative intensity distribution at the outer boundary in
a series of spherical harmonics 𝑌𝑙𝑚 as:

𝐼ISM = 1 +
𝑙max∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

𝑓𝑙𝑚𝑌𝑙𝑚 + 𝐼CG, (1)

where 𝑓𝑙𝑚’s are free fitting parameters.

3. Results and Discussions

Figure 3 shows the summary of the results. Panel (a) shows the experimental data. Panels (b),
(d) and (f) are the best-fit model relative intensity distributions at the Earth when we take the outer
boundaries at distances of 630 AU, 1580 AU and 3980 AU from the Sun, respectively. Panels (c), (e)
and (g) are the best-fit model relative intensity distributions at the outer boundaries at distances of
630 AU, 1580 AU and 3980 AU from the Sun, respectively. The maximum order 𝑙max of the spherical
harmonics 𝑌𝑙𝑚 in Eq.(1) is increased until the fitting 𝜒2/ becomes reasonably small; 𝑙max = 4 for
Panels (b)(c), 𝑙max = 8 for Panels (d)(e), and 𝑙max = 20 for Panels (f)(g), and the obtained 𝜒2/ndf
values are 0.96 (89%), 0.98 (71%) and 0.94 (95%), respectively. Panels (c), (e) and (g) in Figure 3
show that 𝑙max increases as the boundary goes farther from the Sun. We naturally assume in terms
of physics that the cosmic-ray intensity distribution outside the heliosphere has only large-scale
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Figure 1: Rigidity distribution of cosmic rays observed by the Tibet AS𝛾 experiment for five typical
declination bands, reproduced from MC simulations.
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Figure 2: Distribution of the magnetic field strength of the MHD model heliosphere employed in this work.
The black solid line and the dotted circles indicate the outer boundaries of the intensity mapping.

anisotropic features, and that the heliospheric modulation of cosmic-ray trajectories adds small-
scale anisotropic features to the intensity distribution. The tendency indicated by panels (c), (e) and
(g), however, is quite contrary to this natural assumption. Therefore, our intensity-mapping method
would need more improvement. A possible problem would be that the MHD model heliosphere
used in this presentation is a single snapshot of the positive polarity phase of a solar cycle, while
the experimental data covers ten years during the negative polarity phase of the 23rd solar cycle.
It would be necessary to have multiple snapshots of the MHD model heliosphere corresponding to
the negative polarity phase, perform the intensity-mapping for each of the snapshots and take the
average of the results.
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Figure 3: Panel (a) shows the experimental data. Panels (b), (d), (f) are the best-fit model relative intensity
distributions at the Earth when we take the outer boundaries at distances of 630 AU, 1580 AU and 3980 AU
from the Sun, respectively. Panels (c), (e), (g) are the best-fit model relative intensity distributions at the
outer boundaries at distances of 630 AU, 1580 AU and 3980 AU from the Sun, respectively.
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