
P
o
S
(
I
C
R
C
2
0
2
3
)
1
2
9
4

Improving the sensitivity of KM3NeT to MeV-GeV
neutrinos from solar flares

Jonathan Mauro𝑎,∗ and Gwenhaël de Wasseige𝑎 on behalf of the KM3NeT
Collaboration
𝑎Centre for Cosmology, Particle Physics and Phenomenology - CP3,
Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

E-mail: jonathan.mauro@uclouvain.be, gwenhael.dewasseige.@uclouvain.be

The detection of MeV-GeV neutrinos from astronomical sources is a long-lasting challenge for
neutrino experiments. The low flux predicted for transient sources, such as solar flares, and their
low-energy signature, requires a detector with both a large instrumented volume as well as a high
density of photomultiplier tubes (PMTs). We discuss how KM3NeT can play a key role in the
search for these neutrinos. KM3NeT is a Cherenkov neutrino telescope currently under deploy-
ment, located at the bottom of the Mediterranean Sea. It consists of two arrays of Digital Optical
Modules (DOMs): KM3NeT/ORCA and KM3NeT/ARCA, which are optimised for the detection
of GeV neutrinos for oscillation studies, and higher-energy astronomical neutrinos respectively.
We exploit the multi-PMT configuration of KM3NeT’s DOMs to develop the techniques that allow
the disentangling of the MeV-GeV neutrino signature from the atmospheric and environmental
background. Comparing data with neutrino simulations we identify the variables with discrimi-
nating power, and by applying hard cuts we are able to reject a large fraction of background. We
present a graph neural network approach to classify signal from background. To further improve
the sensitivities compared to previous studies, we will make use of the Hierarchical Graph Pooling
with Structure Learning algorithm and will use graph-structured data to reproduce the hit geom-
etry on the DOM. This will allow for stronger constraints on the hits and reduce the fraction of
background that survives the selection.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:jonathan.mauro@uclouvain.be
mailto:gwenhael.dewasseige.@uclouvain.be
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
3
)
1
2
9
4

Improving the sensitivity of KM3NeT to MeV-GeV neutrinos from solar flares Jonathan Mauro

1. Introduction

KM3NeT is a neutrino telescope currently operating at the bottom of the Mediterranean Sea.
It consits of an array of Detection Units (DUs), to each of which are attached 18 Digital Optical
Modules (DOMs), which contain 31 photomultipliers tubes (PMTs) each. These are used to detect
the Cherenkov light emitted from charged particles originating from interactions of neutrinos with
the sea water [1]. KM3NeT consists of two separate blocks: KM3NeT/ORCA, which is located in
the South of France near Toulon, and is optimised to detect GeV neutrinos, and KM3NeT/ARCA,
which is close to Capo Passero in Sicily, and more sensitive to neutrinos with energies between
several tens of GeV to PeV. The detector is currently under deployment, and it is going to result
in an instrumented volume of about 1 cubic kilometre for KM3NeT/ARCA and 3.6 × 106m3 for
KM3NeT/ORCA.

Although the main objective of KM3NeT is to investigate neutrinos in the multiple-GeV to
TeV energy range, its large volume and relative high-density of instrumentation present a unique
opportunity to study transient neutrino sources, such as solar flares, at sub-GeV energies. The
current sensitivity of KM3NeT to astrophysical sources in the few-GeV energy range comes from
the modified Neutrino-Mass-Ordering (NMO) selection in KM3NeT/ORCA, which is described
in [2]. However, this selection still relies on multi-DOM coincidences, thus it’s not optimal to
investigate sub-GeV neutrinos as they are not expected to trigger multiple DOMs.

For neutrinos with energies of a few MeV, an event selection that uses coincidences at the
single-DOM level has been implemented in KM3NeT [3]. This is mainly used to investigate Core
Collapse Supernovae (CCSN), and it demonstrates the potential of KM3NeT to resolve low-energy
signatures thanks to its unique DOM design. The CCSN neutrino flux is however expected to be
high at energies well below the GeV, and the dedicated selection is then not well suited to probe
lower fluxes at higher energies.

In its rawest form, KM3NeT data contains groups of two or more PMT-hits recorded in
coincidence of 10 ns on the same DOM. Each hit has an associated time and time-over-treshold
(ToT), where ToT is the duration of the pulse above approximately 0.3 photo-electrons, and can
loosely be interpreted as a charge measurement. This type of data is referred to as L1, it is
dominated by coincidences caused by decay of 40K, naturally present in sea water, while other
major contributions come from bioluminescent species and atmospheric muons [1].

Solar flares are extremely energetic events that occur in the solar atmosphere, they are observed
as peaks in the gamma-ray flux and/or in the X-ray flux, and they are often associated with other
interesting phenomena, such as Coronal Mass Ejections (CMEs) and production of Solar Energetic
Particles (SEPs), i.e., high-energy charged particles. These observations describe solar flares as
sites of particle acceleration, and therefore, as perfect candidates to be neutrino sources. Moreover,
there is most likely a link between gamma rays and neutrinos, as discussed in [4]: gamma-ray
observations and spectral analysis prove pion production to happen in the most energetic solar
flares, implying that flares with a strong gamma-ray flux should have an associated neutrino flux in
the MeV-GeV range, as a result of pion decay.

Estimates of the solar-flare neutrino flux can be found in the literature, we refer the interested
reader to some notable examples [4–6]. Solar-flare neutrino flux predictions are inferred by esti-
mating the accelerated proton’s energy fraction that goes into pion production. As such predictions
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(a) (b)

Figure 1: (a) DOM-graph superimposed on a picture of a KM3NeT DOM. (b) DOM-graph as represented
by NetworkX’s graphic tools.

are highly dependent on the assumptions made on the accelerated proton’s beam, and on the sun’s
density profile, there are significant differences between the proposed models. We highlight that
the optimistic prediction of Fargion’s model [6] has the expected neutrino flux almost within the
sensitivities of current neutrino telescopes, and strict constraints have already been set by IceCube
in the high energy range [7], and by Super-Kamiokande at lower energies [8]. Being able to cover a
broad energy range, KM3NeT will be the ideal instrument to further constrain neutrino production
in solar flares.

While machine learning has been largely implemented in all applications of particle physics,
recently graph neural networks (GNNs) have caught the attention of the experimental neutrino
physics community as well. The reason for this is that the architecture of the detectors, and thus the
structure of the data, can be naturally encoded into graphs by exploiting the spatial and temporal
relations between the hits recorded by multiple PMTs. In this context GNNs can be used for
regression and classification tasks, examples of which are found in [9, 10].

In this analysis we will use a simple GNN to perform classification on single-DOM events.
Since the predicted energies of solar-flare neutrinos are too low to apply classification methods that
use the large-scale structure of the detector, our aim is to disentangle the neutrino signature from
environmental and atmospheric background by looking at coincident hits on a single DOM. This
will allow to further expand the energy range probed by KM3NeT to sub-GeV level.

2. Method

The core of this analysis is to perform classification on a small-graph dataset, where our graphs
correspond to single-DOM events. These are fixed shape graphs where each node represent one of
the 31 PMTs on a DOM, while the edges connect PMTs that are physically close to each other. Most
traditional GNN classifiers architecture can be described as a combination of a graph-convolutional
model, a readout function, and a multilayer perceptron (MLP). The model that we use for this
analysis has been adapted from [11]. This model introduce the hierarchical pooling with structure
learning (HGP-SL) operator, which is used to obtain a lower dimensional representation of a graph
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preserving the original graph-structure. This algorithm has shown outstanding performances for
graph classification on a variety of small-graph benchmark datasets, which have similar features to
our MeV-GeV-neutrino dataset.

Our dataset only comprises two classes: the MeV-GeV-neutrino signal, and background. Our
signal is made of events built from 0.1-3 GeV muon-neutrino and electron-neutrino simulations,
which reproduce the detector response. These simulations were produced using gSeaGen [12] for
event generation, and KM3Sim [13] to simulate light propagation in water. The background sample
events are instead built using the actual data recorded from the detector in absence of astrophysical
transient events. Data was randomly obtained from the KM3NeT/ORCA detector in the period
starting on 18 May 2020 at 12:00 and finishing at 18:00 of the same day.

2.1 Single-DOM Events in KM3NeT

2.1.1 Precuts

Precuts have to be applied to L1 data in order to reject the largest portion of background, which
is mostly generated by K40 decay coincidences. These cuts also make sure that the classifier avoids
training on signal events that are indistinguishable from background. The precuts are performed
during the building process of the single-DOM events, i.e., while grouping the coincident hits. For
the precuts, the following variables are considered: ToT of individual hits, time offset between hits,
and the number of coincident hits in each event. Starting from L1 data and neutrino simulation, we
first reject all of the hits with ToT below a threshold. We then look at the hits recorded on the same
DOM, and group them in the same event until the time offset between consecutive hits is larger than
a maximum time offset. Finally, we discard the events with less than a given number of hits.

In order to optimise these three cuts we study the increments in the fraction of background
and signal that is rejected. As there is a clear hierarchy in the impact that these cuts have on the
rejected fractions, we investigate them independently. The major rejection is done by constraining
the number of hits in the events. The optimal values are found to be:

• Minimum ToT per hit: 6 ns.

• Maximum time offset between hits: 30 ns.

• Minimum number of hits per events: 3.

Roughly 46% of the total (summed) ToT in our simulations survives these cuts, and we have an
average event rate of around 56 Hz per DOM in KM3NeT/ORCA at the time period considered for
this analysis.

2.1.2 DOM graphs

The graph structured data are processed to naturally reproduce the geometrical configuration
of the DOMs. The graphs are thus made of 31 nodes corresponding to the 31 PMTs of a DOM.
The edges are drawn between PMTs whose relative distance is smaller than a given threshold. This
threshold is chosen to be the smallest value that produces a connected graph for each DOM (with a
small margin to account for the inexact cylindrical symmetry of the DOMs). The resulting graphs
are shown as processed with NetworkX [14] graphical tools in Fig. 1, together with a representation
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Figure 2: Diagram of the model architecture. Figure inspired by [11].

of the same graph drawn on a DOM. The graphs have a higher density of edges around the nodes
that correspond to the lower hemisphere of the DOM, as in this region PMTs are closer together,
e.g., in Fig. 1b the node in the centre of the graph represents the lowest PMT on the DOM.

Using full-DOM graphs as opposed to only-hit graphs is fundamental to make our data repre-
sentative of the spatial distribution of the hits in the events. Each graph is completed by assigning to
each node a label corresponding to hit/no-hit, and the measured ToT. When multiple hits occur on
the same PMT, in the same event, their ToTs are summed over. Moreover, we compute the standard
deviation of the timing of the hits weighted by the corresponding ToT and use it as a graph attribute,
this variable describes the spread over time of the deposited charge.

2.2 Model Architecture

For graph classification, we use the model proposed in [11], in the configuration used for
classification on the PROTEIN dataset. The original code is provided by the authors and it is
publicly available1. The model is built on PyTorch [15] and PyTorch Geometric (PyG) [16]. It
consists of a series of three Graph Convolutional (GCN) layers, alternated with the hierarchical
pooling operator. Starting from the second iteration of convolution and pooling the adjacency
matrix of the graph is substituted by the output of the structure learning layer. A readout function is
used to combine the output of the three convolutional layers into a vector that is fed into a 3-Layers
dense MLP for label-prediction. The full model architecture is shown in Fig. 2. The GCN layers
use the GCNConv operator for message-passing, the specifics of which can be found in [17]. This
is a common choice for graph convolution, and this layer is readily available in PyG.

The pooling operation is based on the concept of ‘information score’. The information score
can be interpreted as the distance between the true node representation and the prediction obtained
from its neighbours, where a node will receive a lower score if it can be well reconstructed from
its neighbours. The idea is that a node with a low score can be removed from the graph without
losing much of the information encoded in the original graph. This allows to select the subset of
most significative nodes, i.e. with the highest score, for the pooled graph. The number of nodes in
the pooled graph is specified by the ‘pooling ratio’ hyper-parameter. The pooling ratio is defined
as the fraction of the number of nodes in the pooled graph and the number of nodes in the graph
before pooling. It is set to 0.5 such that graphs halve in size each time pooling is performed.

1Code is available at https://github.com/cszhangzhen/HGP-SL
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Structure learning is the other main component of the HGP-SL operator. It is used to deal with
the problem of the highly-disconnected graphs that can arise from the pooling operation. As the
subset of nodes selected during pooling is likely composed of non-neighbouring nodes, this can
hinder the effectiveness of the following convolution. This is an artifact of the way that the pooling
is performed, but its effect can be mitigated by virtually drawing additional edges in the pooled
graph. The main goal of structure learning is to reproduce the structure of the original graph in
the pooled graph to allow for better message passing. This is done by creating a substitute to the
adjacency matrix, which is obtained by learning an optimal similarity between the nodes of the
original graph. The training process is biased to give high similarity to directly connected nodes.

The readout function implemented in this model uses a concatenation of mean pooling and
max pooling to obtain an equal-size graph-representation from the outputs of the convolutional
layers. The final representation is obtained simply by summing over the individual readouts of the
three convolutional layers.

Ultimately, the representation obtained with the readout function is fed into a softmax MLP
classifier. This is a linear model made of three dense layers with a pyramidal structure. The number
of neurons in the first layer is equal to the readout representation size and double the size of the
nodes’ hidden representations, which is set to 128. The hidden layer is half the size of the input one,
while the output layer is made of two neurons. To train our model we minimize for a cross-entropy
loss function over both classes.

2.3 Dataset and training

As mentioned in section 2.1 our dataset is composed of fixed-size graphs with 31 nodes. For
this analysis we use a balanced dataset of 1750 events, meaning that half of our graphs have been
built from neutrino simulations and labeled as signal, while the other half is built from calibrated

Figure 3: Score distribution of the test sample for the best model on validation. Here signal corresponds to
MeV-GeV neutrinos, while background is dominated by environmental noise
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L1 data and labeled as background. The reduced size of the dataset is due to the number of neutrino
simulations available at the time.

This dataset has been split into three subsets used for training, validation and testing. These
subsets correspond respectively to 50%, 10% and 40% of the full sample. this subdivision has been
chosen to allow for higher statistics in the testing sample in order to reduce statistical fluctuations
in the score distribution shown in Fig. 3.

As per common practice, the model is trained by minimizing a cross-entropy loss function on
the training dataset, where at the end of each epoch the model is tested on the validation sample,
and training is interrupted when the loss on validation stops decreasing. The best model is chosen
to be the one with the lower loss on validation, which implies that 15 more epochs have been tested
afterwards without producing better results.

3. Conclusions and prospects

We presented here a method to use KM3NeT for solar-flare neutrino searches in the MeV-GeV
energy range. We propose to use single-DOM events to identify the MeV-GeV-neutrino signature
enhancing the sensitivity of the detector to low-energies transient sources. By investigating low-
level data and neutrino simulations, and implementing hard cuts on the ToT, time coincidence, and
number of hits we are able to partially reject atmospheric and environmental background. Starting
from the hits that survive these cuts, we build a graph dataset that encodes the information on
timing, deposited charge, and geometrical distribution of coincident hits on the same DOM. We
conclude our event selection by training a GNN to perform classification on this dataset. Despite
the limiting low statistics, preliminary investigations show promising performances.

The single-DOM nature of this selection allows it to be used on both KM3NeT/ORCA, and
KM3NeT/ARCA data, making use of the full detector volume. Further investigations will focus on
including a high-energy veto using multiple DOMs coincidences, and deriving the sensitivity of
KM3NeT to solar-flare neutrinos and other transient events.
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