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A cardinal question in the transport of cosmic rays and solar energetic particles is the description
of scattering in the fluctuating magnetic fields of the heliosphere. Most of the initial descriptions
assumed an isotropic scattering time. A major breakthrough in this field, the concept of quasi-
linear theory (QLT) was introduced by Jokipii in the nineteen sixties. The classic QLT considered
slab turbulence with a uniform background field with small fluctuations superimposed. Later
efforts extended the linear perturbation model to include second order effects and non-slab fields.
In this work we put forward an alternative approach: the pitch-angle of particles will be taken
relative to the actual local field (opposed to relative to the guiding field). The structure of the
fluctuations is described by three complex quantities corresponding to curvature, divergence, twist,
and shear of the field lines. We focus on the role of shear close to perpendicular pitch angles, that
has been a sore point of the QLT.
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1. Introduction

Particles in stochastic magnetic fields undergo random scattering. Of particular interest is the
scattering in the cosine of the pitch angle, 𝜇, that is described by the 𝐷𝜇𝜇 scattering coefficient.
The connection between the spectrum of irregular field and the appropriate 𝐷𝜇𝜇 was derived by
the pioneering work of [1] in a quasi linear approach. The Quasi Linear Theory (QLT) assumes
that the random field, 𝛿𝐵 is small relative to the regular background field 𝐵0, and integrates the
cumulative effect of the small random fields along unperturbed helical trajectories. The sore point
of the theory is at 𝜇 = 0, where the unperturbed trajectories stand in place. Several work has been
carried out to extend the QLT. JUST NAME A FEW.

The present work outlines an alternative approach that is based on the actual pitch-angle rather
than that relative to the mean guiding field, 𝐵0. Curvilinear coordinates will be attached to the actual
field lines instead of the rectangular frame attached to the mean field, 𝐵0. This, among others, may
allow the guiding field to turn without significantly changing the field strength. We shall introduce
coefficients describing the curvature, divergence, twist, and shear of the field lines. Of particular
attention will be paid to the effects of the shear, that is responsible for the random separation and
mixing of field lines. This is a project of the author started but not completed study decades ago
[6]. This is an effort to revitalize the project and provide an alternative look at the pitch-angle
scattering from a different angle. Results, of course should be the same as those obtained from
other approaches.

2. Triad formulation

It is convenient to use the unit vector 𝑙𝑖 = 𝐵𝑖/𝐵 pointing in the direction of the actual field, and
compose a complex unit vector 𝑚𝑖 = (𝑎𝑖 + 𝑖𝐵𝑖)/

√
2 with 𝑎𝑖 and 𝑏𝑖 being unit vectors perpendicular

to both 𝑙𝑖 and each other. Then, obviously 𝑙2 = 𝑚𝑚̄ = 1, 𝑙𝑚 = 𝑚2 = 0, and the Kronecker delta is
𝛿𝑖 𝑗 = 𝑙𝑖𝑙 𝑗 + 𝑚𝑖𝑚̄ 𝑗 + 𝑚̄𝑖𝑚 𝑗 We shall also introduce the derivations in the direction along the field
and perpendicular to it as 𝐷 = 𝑙𝑖𝜕/𝜕𝑥𝑖 , and 𝛿 = 𝑚𝑖𝜕/𝜕𝑥𝑖 , respectively. Because of the curvature
of the field lines, these derivatives will not, in general, be commutative. Double indices refer to
summation, and bars stand for complex conjugates throughout the present work.

Next we consider how the pitch angle relative to the actual field will change. The equation of
motion in a static field is

𝑤
𝑑𝜇

𝑑𝑡
=

𝑑𝑤𝑖

𝑑𝑡
𝑙𝑖 + 𝑤𝑖

𝑑𝑙𝑖

𝑑𝑡
= 𝑤𝑖𝑤 𝑗

𝜕𝑙𝑖

𝜕𝑥 𝑗

(1)

where 𝑤𝑖 and 𝑤 refer to the the velocity of the charged particle,
Since the Lorentz-force is perpendicular to the field, it does not appear directly. The effect

of the non-uniform field fluctuations will appear as inertial forces due to the change of the frame.
Projecting the derivatives to the triad of 𝑙𝑖 , 𝑚𝑖 , 𝑚̄𝑚) we obtain

𝑤
𝑑𝜇

𝑑𝑡
= 𝑤𝑖𝑤 𝑗 𝑙𝑖 , 𝑗 = −2𝑅𝑒

(
𝑤2 (1 − 𝜇2)

2
𝜌 + 𝑤𝜇(𝑤𝑘𝑚̄𝑘)) 𝜅 + (𝑤𝑘𝑚̄𝑘)2𝜎

)
(2)

The change of the field appears in the derivatives of the unit vector 𝑙𝑖 , which are given by three
complex quantities:
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𝜅 = − 𝜕𝑙𝑖

𝜕𝑥 𝑗

𝑚𝑖 𝑙 𝑗 𝜌 = − 𝜕𝑙𝑖

𝜕𝑥 𝑗

𝑚𝑖 𝑚̄ 𝑗 𝜎 = − 𝜕𝑙𝑖

𝜕𝑥 𝑗

𝑚𝑖 𝑚 𝑗 (3)

Among these, the real and imaginary part of 𝜌 represent the divergence and twist of the field
lines, respectively. The divergence is directly connected with the change of field strength along
field lines. Thus this term in Eq.(2) is responsible for adiabatic focusing. Twist is connected with
helicity. The complex 𝜅 is associated with curvature, while 𝜎 describes the shear of field lines.
Shear is the sole source of the separation and mixing of field lines, so it must have an important
role in perpendicular diffusion.

Notice that the conditions above still allow the 𝑚𝑖 vector to freely rotate as we move along the
the field line. We shall fix the direction of 𝑚𝑖 by requiring 𝐷𝑚𝑖 = −(𝐷𝑙 𝑗𝑚 𝑗)𝑙𝑖 around the field line
considered

Since the perpendicular velocity 𝑤𝑖𝑚𝑖 rotates at the gyro-frequency, 𝜔, the curvature term in
Eq.(2) which is linear in (𝑊𝑚) will select the resonant wave-number, (𝜔/𝑤𝜇) while the quadratic
shear-term will select the double wave-number (2𝜔/𝑣𝜇) (REF). In a slab model, the curvature
yields the only first-order contribution in (𝛿𝐵/𝐵), the others are of second order.

The complex distance, 𝜂=𝑥 + 𝑖𝑦 between two adjacent lines varies along the field line according
to

𝐷𝜉 = 𝜌̄𝜉 + 𝜎𝜉 (4)

implying that shear is solely responsible for the random separation of originally close field lines;
without shear (𝜎 = 0) adjacent field lines would remain close to each other (not counting a possible
uniform expansion of the field). The resulting rate of separation is in accord with [7].

3. Discussion

In this section we overview the role of the four coefficients in the transport of charged particles.
In each example we show a geometry with constant coefficients and also with coefficients that
change along the field line, so that their change may resonantly interact with the charged particles
spiralling along the given field line. Here we assume that particle has small gyro-radius so that
it remains on the same field line. The three coefficients resonate with different wave-numbers in
accord with the different frequencies in the three terms.

3.1 Curvature

The classic QLT [1],[2] considered SLAB turbulence where the fluctuating field components
induce pitch-angle scattering via resonant scattering with the wave of 𝑘 = 𝜔/𝑤𝜇, where 𝜔 is the
gyro-frequency in the guiding field. Figure 1 exhibits two cases of real 𝜅 values. The left panel
shows the bare case when the curvature is constant, the right panel depicts a case of a periodically
changing curvature, which can be in resonance with the gyrating particle and leading to pitch-angle
scattering, while in a field configuration of constant 𝜅 the pitch-angle scattering would average out.

Since this term is slab. the cross-section of an initial circle at the bottom of the plot remains
circle preserving it size.
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Figure 1: Figure depicting curved field lines in a slab model. The left panel shows a basic situation when
𝜅 is real and constant along the field line. The right panel shows field lines with periodically changing their
curvature, which can resonate with particles of the proper gyro-frequency. A particle of cosine of pitch angle,
𝜇 will resonate with the wave-number 𝑘 = 𝜔/𝑤𝑤𝜇. Considering the circle at the bottom of the plot, it will
always remain a same-size circle (being slab model).

3.2 Divergence and Twist:

The real part of 𝜌 accounts for the divergence/convergence of the field lines which leads to
adiabatic mirroring or focusing. This mode describes a symmetric mode, an initial circle will
remain a circle but its size will decrease/increase as the field gets stronger/weaker.

It is important that this symmetric configuration changes the pitch angle, but preserves the
adiabatic invariant 𝑝2

⊥/𝐵, without any random scattering. The original pitch angle returns if the
field strength goes back to its original value(except for possible mirroring) . Figure 3 illustrates the
twist of field lines. This mode does not change the pitch angle, the imaginary part of 𝜌 cancels out
in Eq.(2)

3.3 Shear:

Shear is the only mode that involves deformation. It is primarily responsible for the random
separation of initially close field lines. Shear will not change the area of the initial circle but deforms
it. In a linear approximation circles become elongated ellipses. Shear is in a remarkable pairing
with 𝜌. Any compression is likely to be anisotropic. For instance, a compression in the 𝑥 direction
can be viewed as a combination of isotropic compression plus shear. On average compression and
shear tend to have equal powers.

Eq. (2) yields the variation of 𝜇 for a particle moving along a field of line. In addition to the
regular focusing/defocusing we obtan the random scattering as:
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Figure 2: Basic cases of diverging/converging field lines, described by the real part of the parameter, 𝜌. The
left panel depicts the with a constant 𝜌, the right panel shows a case where 𝜌 varies sinusoidally along the
field lines. The blue circles on the right indicate how the bottom circle develops: it always remains a circle,
but its size varies in accord with the change of field strength. The divergence will change the pitch angle, but
preserves the adiabatic invariant, so the absolute value of the original pitch angle returns if the field strength
is the same (mirroring possible).

𝐷𝜇𝜇 = 2𝑤2(1 − 𝜇2)
∫ ∞

−∞

(
𝜇2⟨𝜅(0)𝜅(𝜏)⟩𝑒𝑖𝜔𝜏 + (1 − 𝜇2) ⟨𝜎(0)𝜎(𝜏)⟩𝑒2𝑖𝜔𝜏

)
𝑑𝜏 (5)

Eq.(4) shows, after substituting 𝜏 = Δ𝑧/𝑤𝜇, that the resonant wave-number, 𝑘 , for scattering
due to curvature and shear are 𝑘1 = 𝜔/(𝑤𝜇) and 𝑘2 = 2𝜔/(𝑤𝜇), respectively. Note that the
kinematical factors are different: 𝜇2 versus (1− 𝜇2), implying that scattering due to shear becomes
increasingly important near 𝜇 = 0.

We note that almost all types of compression are anisotropic containing both compression and
deformation. For instance a transverse compression can be viewed as a combination of isotropic
compression (𝜌) and deformation (𝑠𝑖𝑔𝑚𝑎). In a statistically homogeneous field these two modes
(divergence and shear) have, on average, the same power.

4. Summary

This project is still in an initial stage, after a long inactivity. The main intention of this
contribution is to outline the formalism, that may be of interest even if do not seek final results.
Here we demonstrated that the shear of the field lines (expressed by 𝜎 ) may have an important,
perhaps dominating role near 𝜇 = 0. The full exploration of this potential role is challenging and
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Figure 3: Two basic cases of twisted field lines, that is described by the constant or sinusoidally varying
value of the imaginary part of 𝜌.

shall be addressed in future work. Shear is omnipresent, it is a part of any deformation in the fluid
carrying the field.
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Figure 4: Basic cases of shearing field lines. Shear is the mode that does not change the area of the bottom
circle but deforms it to an elliptical shape as shown in the far right of the figure. Shear is the only mode that
deforms the original circle and is sole source of the separation of originally adjacent field lines.

7


	Introduction
	Triad formulation
	Discussion
	Curvature
	Divergence and Twist:
	Shear:

	Summary

