PoS - Proceedings of Science
Volume 444 - 38th International Cosmic Ray Conference (ICRC2023) - Cosmic-Ray Physics (Direct, CRD)
Convolutional Neural Network Measurement of Non-Fiducial Electrons Cosmic-Rays Using the DAMPE Experiment.
 Dampe, F. Alemanno, C. Altomare, Q. An, P. Azzarello, F.C.T. Barbato, P. Bernardini, X.J. Bi, I. Cagnoli, M.S. Cai, E. Casilli, E. Catanzani, J. Chang, D.Y. Chen, J.L. Chen, Z.F. Chen, Z.X. Chen, P. Coppin, M.Y. Cui, T.S. Cui, Y.X. Cui, I. De Mitri, F. de Palma, A. Di Giovanni, M. Di Santo, Q. Ding, T.K. Dong, Z.X. Dong, G. Donvito, D. Droz, J.L. Duan, K.K. Duan, R.R. Fan, Y.Z. Fan, F. Fang, K. Fang, C.Q. Feng, L. Feng, M. Fernandez Alonso, J.M. Frieden, P. Fusco, M. Gao, F. Gargano, E. Ghose, K. Gong, Y.Z. Gong, D.Y. Guo, J.H. Guo, S.X. Han, Y.M. Hu, G.S. Huang, X.Y. Huang, Y.Y. Huang, M. Ionica, L.Y. Jiang, W. Jiang, Y.Z. Jiang, J. Kong, A. Kotenko, D. Kyratzis, S.J. Lei, W.L. Li, W.H. Li, X. Li, X.Q. Li, Y.M. Liang, C.M. Liu, H. Liu, J. Liu, S.B. Liu, Y. Liu, F. Loparco, C.N. Luo, M. Ma, P.X. Ma, T. Ma, X.Y. Ma, G. Marsella, M.N. Mazziotta, D. Mo, X.Y. Niu, X. Pan, A. Parenti, W.X. Peng, X.Y. Peng, C. Perrina, E. Putti-Garcia*, R. Qiao, J.N. Rao, A. Ruina, Z. Shangguan, W.H. Shen, Z.Q. Shen, Z.T. Shen, L. Silveri, J.X. Song, M. Stolpovskiy, H. Su, M. Su, H.R. Sun, Z.Y. Sun, A. Surdo, X.J. Teng, A. Tykhonov, J.Z. Wang, L.G. Wang, S. Wang, X.L. Wang, Y.F. Wang, Y. Wang, Y.Z. Wang, D.M. Wei, J.J. Wei, Y.F. Wei, D. Wu, J. Wu, L.B. Wu, S.S. Wu, X. Wu, Z.Q. Xia, E.H. Xu, H.T. Xu, J. Xu, Z.H. Xu, Z.Z. Xu, Z.L. Xu, G.F. Xue, H.B. Yang, P. Yang, Y.Q. Yang, H.J. Yao, Y.H. Yu, G.W. Yuan, Q. Yuan, C. Yue, J.J. Zang, S.X. Zhang, W.Z. Zhang, Y. Zhang, Y.P. Zhang, Y. Zhang, Y.J. Zhang, Y.Q. Zhang, Y.L. Zhang, Z. Zhang, Z.Y. Zhang, C. Zhao, H.Y. Zhao, X.F. Zhao, C.Y. Zhou and Y. Zhuet al. (click to show)
Full text: pdf
Pre-published on: July 25, 2023
Published on:
Abstract
The Dark Matter Particle Explorer (DAMPE) is a space-based Cosmic Ray (CR) observatory with the aim, among others, to study Cosmic Ray Electrons (CREs) up to 10 TeV. Due to the low CRE rate at multi-TeV range, we aim at increasing the acceptance by selecting events outside the fiducial volume. The complex topology of non-fiducial events require special treatment with sophisticated analysis tools. Therefore, we propose a Convolutional Neural Network (CNN) to identify non-fiducial CREs and reject background events, based on their interaction in DAMPE's calorimeter. In the following, we will present the aforementioned method in order to precisely identify such events.
DOI: https://doi.org/10.22323/1.444.0130
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.