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The Dark Matter Particle Explorer (DAMPE) is a space-based Cosmic Ray (CR) observatory
with the aim, among others, to study Cosmic Ray Electrons (CREs) up to 10 TeV. Due to the
low CRE rate at multi-TeV range, we aim at increasing the acceptance by selecting events outside
the fiducial volume. The complex topology of non-fiducial events require special treatment with
sophisticated analysis tools. Therefore, we propose a Convolutional Neural Network (CNN) to
identify non-fiducial CREs and reject background events, based on their interaction in DAMPE’s
calorimeter. In the following, we will present the aforementioned method in order to precisely
identify such events.
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1. Introduction9

The Dark Matter Particle Explorer (DAMPE) is a Cosmic Ray (CR) and Gamma-ray experiment10

in operation since December 2015 [1]. DAMPE aims, among others, to study Cosmic Ray Electrons11

(CREs) up to 10 TeV. It is composed of 4 sub-detectors, namely a Plastic Scintillator Detector,12

a Silicon-tungsten TracKer-converter, a Bismuth Germaniun Oxide (BGO) calorimeter [2] and a13

NeUtron Detector. The sub-detectors mentioned above ensure the precise identification of impinging14

CRs, while providing an accurate measurement of their absolute charge, energy and direction.15

Due to their light mass, CREs experience energy losses as they propagate, due to processes16

like synchrotron radiation and inverse Compton scattering. Consequently, it is anticipated that17

electrons at energies higher than a few TeV originate from nearby sources, i.e. within a distance of 118

kiloparsec (kpc) [3] or times older than ∼ 105 years [4]. In addition, the aforementioned losses lead19

to a steeper energy spectrum which, combined to the already lower CRE flux with respect to other20

species, make them relatively rare at high energies. Moreover, several dark matter models predict21

positron emission as a result of annihilation or decay [5], which could then be seen as e.g. an excess22

in the high energy CRE spectrum. In 2017, DAMPE published its first measurement of the CRE flux23

using 1.5 years of data and featuring the direct detection of a break at 0.9 TeV [6]. While impactful,24

this results was limited to 5 TeV due indeed to low CRE flux (only 11 events were detected between25

3 and 5 TeV). In order to enhance and expand our current understanding in the multi-TeV range, it26

is essential to improve the accuracy and increase the statistics. Hence, we enlarge the acceptance27

by selecting events outside of the fiducial volume, which are typically events with a large incidence28

angle (see Section 2). However, those events carry a complex topology. In [6], the authors develop29

an analytical classifier (𝜁) for proton/electron discrimination, which is based on the topology of the30

particle shower in the calorimeter. The 𝜁 variable has however lower efficiency at higher energies.31

Additionally, non-fiducial events with large incidence angle might lead to a particle shower which32

might not be well contained inside the BGO, thus making it difficult to efficiently identify electrons.33

As a result, in this paper we propose a Convolutional Neural Network (CNN) for electron/proton34

outside of DAMPE’s fiducial volume. In Section 3, we will introduce 3 CNN models and compare35

their discrimination power with respect to 𝜁 .36

2. Non-Fiducial Events37

To improve and expand the CRE flux measurement at higher energies, it is necessary to increase38

the available statistics. However, as mentioned previously due to their light mass CREs lose energy39

combined with a lower flux compared to other CR resulting difficult to extend the flux above a40

few TeV. Nonetheless, we can accomplish it by including the analysis events outside of the fiducial41

volume. In order to achieve this, we enhance the acceptance by including non-fiducial events.42

The analysis of DAMPE data involves applying a series of cleaning filters, internally known43

as "skim". These selections are based on the behavior of events observed in the BGO calorimeter.44

Furthermore they ensure that the events are well reconstructed and contained in the calorimeter:45

• rejecting events that enter from the sides.46

• rejecting events where the shower direction cannot be reconstructed.47

2



P
o
S
(
I
C
R
C
2
0
2
3
)
1
3
0

Convolutional Neural Network Measurement of
Non-Fiducial Cosmic Ray Electrons with the DAMPE Experiment Enzo Putti-Garcia

• Ensuring that the reconstructed shower direction extrapolates to the top and bottom of the48

BGO sensitive volume within a distance of 280 mm from the center, in either the X or Y49

direction.50

These cuts guarantee that the events considered are well reconstructed and contained in the51

calorimeter.52

Non-fiducial events are selected using a similar process, with the exception that we reverse the53

last cut by selecting events for which their projection of the shower vector is more than 280 mm54

away from the center in both the X and Y directions.55

The analysis chain first involves preselection cuts to reject ions, obvious protons, or poorly56

reconstructed events in a similar fashion to the 2017 results [6]. Additionally, non-fiducial events57

often exhibit a complex shower topology in the BGO, requiring more sophisticated techniques to58

distinguish electrons from protons.59

3. Classification of electrons using a Convolutional Neural Network60

Machine Learning (ML) has become an efficient tool, ranging from data-driven applications,61

computer vision to speech recognition. Hence, particle physics has also found applications from62

Monte-Carlo (MC) simulations to data analysis [7]. Successful deep learning techniques used in63

DAMPE for electron/positron discrimination have already been developed [8, 9] as well as tracking64

reconstruction [10]. Hence, we decided to use a pattern recognition method, known as CNN [11],65

for which the input will be an image of the deposited energy in the calorimeter [12]. The BGO is66

composed of 14 layers in a hodoscopic arrangement with each layer comprising of 22 BGO bars.67

We combined both directions to construct the input image, the size of which amounts to 14 × 2268

pixels (Figure 1). This representation of a particle shower is certainly unphysical, that said, the69

development of the shower in the calorimeter is dependent on how the particle interacts in the70

different layers which results in a correlation between the different levels of BGO. For this reason71

given separated images will result in a lack of information for the CNN and as consequence a lower72

discrimination power..73

The CNN structure is shown in Figure 2. As described in [8], to avoid a compression of74

the CNN output into a finite range, we decided, after training the network, to remove the sigmoid75

function from the CNN’s output layer. For the training we used the same number (800 thousand76

events) of simulated proton and electron events, such that we have an equal representation of both77

species at all energies. Finally for the training, simulated data was split into a 70/30 ratio for78

training/validation of the CNN model. The CNNs were trained using Tensorflow [13], using using79

Nvidia GPUs. They were trained during 100 iterations (epochs) with the Adam optimiser [14].80

3.1 Results81

We trained 3 different CNNs, to investigate in parallel the effect of different cleaning cuts.82

Specially, the CNNs used in this work can be classified as: v0, v0c and v1c. All three have the83

exact same architecture (Figure 2). Model v0c differs from the baseline model, v0, by the addition84

of a very loose cut 𝜁 < 100 mm4
1 that allows the removal of clear proton events. Model v1c further85

1This cut is 100% efficient on electrons
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(a) (b)

Figure 1: Example of input images for the CNN, for which we combined the X and Y views into one image.
Figure (a): Image of a simulated electron, with kinetic energy of 17.74 TeV. Figure (b): Image of a simulated
proton, with kinetic energy of 12.99 TeV. Each pixel represents the energy deposited in one of the BGO bars
in the calorimeter. Linear colour scale

Figure 2: Architecture of the CNN used for electron/proton discrimination. Note the absence of activation
function at the output layer, see text for details.

adds a cut to remove events with large incidence angle.86

To verify that the CNN is able to classify electrons and protons, the distribution of v0 model is87

shown as a function of energy (as seen in Figure 3), whereas both v0c and v1c have similar shapes88

therefore are not shown.89

A good separation between protons and electrons is evident at all energies while maintaining90

stable distribution shapes. Despite the good separation between background and signal distributions,91

there is clear contamination contribution from protons into the electron region. Since some events92

have similar shape in BGO (for protons/electrons), it is expected that the CNN will attribute them93

similar output values. In order to quantify the efficiency of the CNN and compare with the classical94

method, 𝜁 , we decided to plot the Receiver Operating Characteristic (ROC) curve, as seen in Figure95

4a. For an electron efficiency of 90%, the 3 models resulted in a background contamination of96

≈ 0.9 · 10−3 while the analytical method resulted in ≈ 10−2, thus improving the separation power97

by a factor 10.98

To better quantify the dependence of the performances on energy, we decided to select the99
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Figure 3: Distribution of v0’s output values for different energy bins. Top: 100- 1102 GeV, bottom: 1.1-14
TeV. Left: linear scale, Right: logarithmic scale.

(a) (b)

Figure 4: Performances of the CNN classifiers versus the classical method 𝜁 based on MC. Figure (a): ROC
curves on a selected energy range, showing background contamination versus electron efficiency. Figure
(b): Background contamination in the signal region at an efficiency of 90%, as function of the energy in the
calorimeter.
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remaining background corresponding to a signal efficiency of 90%, such that we can assess the100

CNN and 𝜁 efficiency at all energies, as shown in Figure 4b.101

An improvement of approximately one order of magnitude is evident. The 3 CNN models102

show similar behaviour at energies below 1 TeV while models v0 and v0 with 𝜁 < 100𝑚𝑚4 cut103

show better performances at the TeV scale.104

4. Conclusion105

In this work, we presented a CNN model as a tool to separate protons from electrons, on CR106

data outside the fiducial volume of DAMPE. We used the deposited energy on the calorimeter and107

combined the X-Y directions to build an 14x22 image of a particle’s shower in the BGO. We trained 3108

CNNs using the images from MC data (protons and electrons) and finally quantify the discrimination109

power of the different models and compared to the analytical method of [6]. The main motivation110

can be found at multi-TeV energies, where CREs are of prime interest for Astroparticle Physics.111

However, the light mass of electrons results in energy loss, while they propagate, due to synchrotron112

radiation and inverse Compton scattering, combined to CREs having a lower flux compare to113

other CR species. Consequently, at those energies the statistics are scarce. The improvement and114

extension of DAMPE’s electron-positron flux needs a gain of electrons candidates, which can be115

obtained by increasing the acceptance. However this leads to having events with a complex shower116

topology. We showed that a CNN can successfully recover these events with a good background117

rejection power, improving by a factor 10 upon the analytical method, at all energies.118

However, the CNNs performances were evaluated only on simulated data only. A final assess-119

ment would require evaluating the CNN on real data from our detectors, which is the immediate120

next step of the study. Nonetheless this work shows that the discriminatory power of a CNN at all121

energies could improve current DAMPE results and help extending the flux.122
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