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Reconstruction of solar modulation potential from
AMS-02 daily data for the period 2011 – 2019 and its
comparison with indirect cosmic-ray measurements
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Force-field approximation (FFA) of Parker’s solar modulation equation is a simplification widely
used for practical purposes. The wide use of FFA is motivated by the fact that the modulation
strength can be described, with reasonable accuracy, using a single variable parameter 𝜙, which is
called the solar modulation potential. While FFA does not allow us to study the solar modulation
process in detail, the one-parameter feature is useful, especially in the context of energy- and
particle-integrating detectors, such as neutron monitors and cosmogenic isotopes, which allows
for studies of solar modulation on timescales beyond the direct measurements. New daily data on
proton and helium fluxes measured by cosmic-ray experiment AMS-02 for the period from 2011
to 2019 open new opportunities in the verification of the FFA of the solar modulation equation on a
daily basis and in a systematic comparison of the solar modulation deduced from different detectors
(including energy-integrating ones). In this work, we reconstruct the solar modulation potential
from daily AMS-02 data, compare it to daily solar modulation potential values reconstructed from
NM data, and discuss the proper way to evaluate the solar modulation potential from different
detectors to make them comparable.
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1. Introduction

Galactic cosmic rays (GCRs) are charged particles accelerated in different sources in our
Galaxy. The local GCR spectrum, known as the local interstellar spectrum (LIS), is believed to be
constant before entering the heliosphere. Within the heliosphere, GCR fluxes are subject to the solar
modulation process, which alters the observed GCR flux. Parker’s transport equation [1] describes
this modulation process, incorporating convection, particle drifts, diffusion, and adiabatic energy
changes [2]. The force-field approach (FFA) [3] provides a solution to simplified Parker’s equation
using a single parameter called the solar modulation potential 𝜙. Despite its limitations [4], the
FFA is widely used, especially when detailed studies of solar modulation physics are not feasible.

The last two decades have seen exceptional advancements in GCR observations and modeling,
including also the effects of solar modulation. High-precision, time-dependent direct measurements
of GCRs have been made by the PAMELA [5–10] and AMS-02 [11–15] experiments. In the same
time Voyager spacecraft [16–18] have performed the LIS observations outside the heliosphere.
This led to significant advances it the full modeling of Parker equation (e.g., [19–21]). Prior to
2005, GCR observations were limited, with neutron monitors (NMs) being a crucial source of
information on long-tern solar modulation. NMs register secondaries produced by primary cosmic
rays in the atmosphere, providing integrated measurements of cosmic ray fluxes [22]. Neutron
monitors located worldwide with varying cutoff rigidity allow for the estimation of cosmic-ray
modulation within FFA [23, 24]. Additionally, information on GCR fluxes within FFA can be
obtained from cosmogenic isotopes (CIs) deposited in tree rings and ice cores, providing insights
into GCR variability over longer timescales [25].

Therefore, it is essential to achieve consistency between direct and indirect measurements
of GCRs to quantify solar modulation on different timescales. However, different methods of
reconstructing 𝜙 from various data sources can lead to significant uncertainties and discrepancies.
This issue has been highlighted previously in comparison between neutron monitors and cosmogenic
isotopes [26].

In this study, we address this issue by incorporating precise measurements of GCR spectra
obtained from daily data on proton fluxes by the AMS-02 experiment, reconstructing the 𝜙 value
from the data and comparing it with the recent 𝜙 reconstruction from NM data [24].

2. Force-field approach

FFA allows to "modulate" the LIS spectrum within the heliosphere using the following expres-
sion:

𝐽 (𝑇) = 𝐽LIS(𝑇 +Φ) 𝑇 (𝑇 + 2𝑀/𝐴)
(𝑇 +Φ) (𝑇 +Φ + 2𝑀/𝐴) , (1)

where 𝐽LIS is GCR spectrum (LIS) outside the heliosphere, 𝑀 represents the rest mass of GCR
particle in eV, 𝐴 is a number of nucleons and Φ = 𝑒(𝑍/𝐴)𝜙, where 𝑍 is a charge, 𝑒 an elementary
charge, and 𝜙 being modulation potential. FFA is heavily simplified in comparison to the full
solution of Parker’s modulation equation [4, 27] and does not allow capturing some features of solar
modulation. However, it is extremely useful for quantification of the GCR variability and related
solar activity over long timescales [25, 28].
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Depending on the data in use, the procedure of estimation of solar modulation potential will
be different. When working with direct GCR measurements, one can fit the data and the model,
minimizing the difference between them (however, even here some attention should be paid to
details, as we will show in this paper). In case of indirect cosmic-ray measurements performed,
e.g., by NMs and CIs, one needs to find such a value of 𝜙, which, integrated with the yield function of
a given detector (e.q., [22, 29]), will give an NM or CI response comparable with the measurements.
The difference in the energy dependence of yield functions of different detectors results in fact that
𝜙 values deduced from different indirect data should be corrected. For this purpose, the linear
relationship was shown to be sufficient [26].

3. Solar modulation potential during 2011 – 2019 from AMS-02 daily data

For this analysis, we used the daily GCR proton flux measurements [13] performed by the
AMS-02 experiment for the period from May 2011 to December 2019. Original AMS-02 includes
only GCR fluxes, while data with possible registration of solar energetic particles are excluded (on
an energy-bin-wise basis) from the analysis. For dataset purity, we did not use daily data with
excluded energy bins.

For the reconstruction of solar modulation potential, we used a standard 𝜒2 approach which
minimizes the difference between observed and modeled data.

During the 𝜙 reconstruction, we noted several features which are important to highlight.
First, the relative flux uncertainty of proton fluxes is energy-dependent, being a function of

collected statistics and systematic uncertainties from the detector simulation, etc. Despite on clear
nature of this effect, using the uncertainty in the fitting procedure will produce additional weighting
to the fitting procedure, increasing the weight of energy bins with lower relative uncertainties.

Second, the reported AMS-02 daily proton flux energy binning is not evenly distributed in
linear nor logarithmic scale. That indirectly adds additional weight to the fitting procedure.

To illustrate these features, we considered four scenarios, which are called models (M1 – M4)
thereafter:

• M1: provided in the paper energy binning; uncertainties are taken to be 10% of flux value;

• M2: provided in the paper energy binning; uncertainties are taken as provided in the paper;

• M3: rebinned to be logarithmically uniform (using the linear interpolation for logarithmic
values); uncertainties are taken to be 10% of rebinned flux value;

• M4: rebinned to be logarithmically uniform; uncertainties are rebinned correspondingly.

Testing of models M3 and M4 is motivated by the fact that the energy binning in AMS-02 daily
proton is not logarithmically uniform. Therefore, we wanted to check what effect can introduce
different energy binning, which can be necessary for comparing direct cosmic-ray measurements
and deduced 𝜙 values, especially for cosmic-ray experiments operated in not intersected periods of
time.

We plot on Figure 1 the best-fit solutions obtained for considered scenarios. For all calculations
shown here, the fitting range was chosen to be from 1 to 30 GeV. One can see that different models
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Figure 1: Solar modulation potential values deduced for AMS-02 daily proton data for 2011 – 2019 for
models M1 – M4 described in the text. Different colors and line styles correspond to different fitting features
(models), as denoted in the legend. The lower subplot shows the difference between model M1 and other
models.

of fitting result in different 𝜙 values with clear solar-cycle dependence. However, the magnitude
of the difference is not big, changing by 3% between different models. However, we emphasize
that the comparison was performed for the solar cycle 24, which was much weaker in comparison
to previous ones [30]. For solar cycles with higher activity, the magnitude of differences can be
probably higher.

4. Testing the binning range and comparison with data from NM network

Next, we tested how different choice of the fitting range changes the obtained numerical values
of 𝜙. For that purpose, we used M1 as our reference model and created four submodels with different
starting bin of energy 𝐸low for the fitting procedure, ranging from 1 to 4 GeV. Next, we compared
obtained results with the recently updated 𝜙 reconstruction performed with the data from the data
from polar NMs [24] in the Fig. 2. NMs are energy-integrating detectors whose response is the
count rate per time unit. To model the NM response, one needs to know the spectrum of cosmic-ray
particles and the yield function, which incorporates the development of the shower of secondary
particles in the atmosphere and its registration by NM. Recently, the YF calculated by Mishev et
al. 2020 [22] calculated using Monte-Carlo simulations was validated using AMS-02 data with
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Figure 2: Comparison of 𝜙 values deduced from the AMS-02 daily data for protons considering different
choices of the first energy bin (from 1 to 4 GeV) and 𝜙 values reconstructed from the NM network [24]. The
lower subplot shows the difference between 𝜙 deduced from NM data and 𝜙 obtained from AMS-02 data.

Bartels rotation time cadence [11]. For the study of Väisänen et al. [24], this yield function was
used together with the selection of data from different NMs [31].

The comparison shows a significant difference (up to 30%) between 𝜙 values obtained with
different choices of 𝐸low, especially around the maximum of solar activity. 𝜙 values obtained from
the NM network show satisfactory agreement (within 5%) with the M1.3 model, which corresponds
to 𝐸low=3 GeV.

5. Conclusion

In this short communication, we emphasize the importance of fitting features when discussing
numerical values of solar modulation potential 𝜙 obtained from direct cosmic-ray measurements
or ground-based NMs. Additional study is needed to cover other complications, such as different
choices of LIS and also the modulation of heavier-than-helium cosmic rays. We also made a
comparison with 𝜙 values obtained from the NM network and show that they are in good agreement
with 𝜙 numerical values obtained from daily AMS-02 proton data with a choice of lower energy
boundary to be 3 GeV.
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