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Indirect dark matter search in the Galactic Centre with IceCube

1. Introduction

The search for dark matter (DM) has been one of the most captivating fields in fundamental
physics. While the existence of dark matter has been well established by multiple astrophysical
observations [1, 2], the nature of it is still an unresolved question. One popular hypothesis is
the ‘particle solution’, where dark matter is assumed to be long-lived or stable particles. This is
supported by multiple Beyond Standard Model (BSM) theories that propose a wide class of DM
candidates. In many of these models, dark matter candidates can have weak coupling to Standard
Model (SM) particles which then allows them to decay or annihilate into detectable SM particles
[3, 4].

In the indirect search for dark matter, one investigates the presence of unconventional fluxes
of Standard Model (SM) particles generated through dark matter decay or annihilation. This signal
becomes detectable when there is a substantial accumulation of dark matter, gravitationally captured
by massive astrophysical entities. The Galactic Centre (GC) stands out as a particularly promising
source for such investigations.

In this analysis, we present a search with IceCube [5] for the neutrino signal from the Galactic
Centre as secondary or primary products from dark matter decay and annihilation into Standard
Model particles. Previous studies of IceCube have performed such searches with cascades [6] and
tracks [7] only using directional information. In a recent IceCube analysis [8], both the directional
and energy distributions of the events are included from the data sample consisting mostly of cascade
events. In this work, we incorporate both track and cascade events, as well as considering both
directional and energy distributions. The analysis has also applied the latest optimized selection
criteria specifically designed for sub-TeV events. The objective is to improve the IceCube limit for
dark matter masses ranging from 5 GeV up to 8 TeV using the DeepCore data from 2012-2022.
DeepCore [9] is a subarray of IceCube, characterized by a higher concentration of digital optical
modules compared to the remaining of IceCube. The purpose of this subarray is to lower the
neutrino energy threshold to energies as low as about 10 GeV.

2. Event Selection

Since the analysis focuses mostly on sub-TeV DM masses, we use the DeepCore data with
energies ranging from 1 GeV - 1 TeV. At this energy range, the primary background originates
from atmospheric muons and neutrinos generated through interactions of cosmic rays in the upper
atmosphere. In the case of particles from the Northern hemisphere, the Earth acts as a natural shield,
effectively reducing the impact of atmospheric muons as background noise. However, for sources
in the southern sky, such as the Galactic Centre, a specific protocol of using a veto is necessary to
distinguish atmospheric muons from other signals.

In this analysis, we employ a well-established event selection known as oscNext [10], which
is tailored for precise measurements of atmospheric neutrino oscillations. This selection focuses
on the DeepCore sub-detector within IceCube while using the remaining parts of the detector as a
veto. The oscNext event selection currently encompasses DeepCore events recorded between 2012
and 2022, providing a total livetime of 9.3 years.
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In the context of the oscNext event selection, the standard oscillation analyses only select
up-going events within an energy range of up to 500 GeV to fulfill the oscillation studies. However,
in this analysis, we include all direction events because the Galactic Centre is above the horizon for
IceCube. Additionally, we have extended the energy range from 1 GeV to 1 TeV to accommodate
the investigation of ~TeV dark matter masses.

3. Dark Matter signal from the Galactic Centre

The incoming differential flux of neutrinos from dark matter self-annihilation or decay in the
Galactic Centre can be computed as

1
— {ov) dNy J for annihilation ,
dg, | 4n 2m12)M dE, (1)
de, |1 1 dn
v Y J for decay,

E mpmT dEV

with (ov) being the thermally-averaged self-annihilation cross-section, 7 being the DM decay
lifetime, and mpy being the mass of the dark matter particles. The flux also depends on the
differential number of neutrinos per DM annihilation/decay, dN, /dE,, where the assumption of
a 100% branching ratio into either primary channels of W*W~, utu~, 7517, bb, ve Ve, ViV Ve Ve
is adopted. The entity J referred to as J-factor encodes the shape of the dark matter halo. While
the neutrino spectrum dN, /dE, governs the energy dependence of the expected signal, the J-factor
impacts the spatial distribution of such flux.

In this analysis, the neutrino spectra, dN, /dE,,, from DM annihilation/decay, are computed
with yarov [11], a framework that couples the PYTHIA simulation with the most up-to-date
electroweak correction [12] to obtain the neutrino fluxes from dark matter decay and annihilation.
These spectra are then propagated to Earth, assuming average oscillation through a very long
distance with the oscillation parameters taken from [13]. Figure 1 depicts an example of the muon
neutrino spectra with a DM mass of 500 GeV for DM annihilation into all of the considered primary
channels. The case of DM annihilates/decay directly into neutrinos (v¢Ve, v, Vy, vz V<) is usually
called the neutrino line as the spectra contain a sharp peak at E, = mpys for annihilation and
E, = mpp /2 for decay as can be seen in the figure. This monochromatic peak is expected from the
kinematic of the annihilation or decay while the low-energy tail of the spectra is due to electroweak
corrections. Since the sharp peak feature is distinctive from astrophysical backgrounds, the neutrino
line channels are expected to yield the best sensitivity for the indirect DM search with neutrino
telescopes.

The J-factor is defined as the integration of DM mass density along the line-of-sight and over
the field of view represented as a solid angle AQ:

lmax
soo= [ [T syt w) aaa, @
AQ JO

where the dark matter mass density ppy is assumed to be spherical symmetric such that the value
only depends on the distance r from the Galactic Centre, which then can be computed from W:
the opening angle to the Galactic Center and /: the distance along the line-of-sight. The upper
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Figure 1: Left: Differential number of muon neutrinos per annihilation expected at Earth for a dark matter
mass of 500 GeV. In the analysis, all neutrino flavors are used. Right: Dark matter mass density as a function
of the distance to the Galactic Centre for the NFW and Burkert profiles.

integration limit /,,,,, is determined based on the radius of the Galactic Halo. For the case of DM
annihilation @ = 2, while for DM decay a = 1, where the J-factor is now also referred to as the
D-factor.

The actual shape of the DM density profile in the halos of galaxies ppy is still subject to
controversy and significant uncertainties [14]. There are two main classes of halo shapes regarding
whether it exhibits a flat distribution near the core or an exponentially increasing concentration
towards the center. The subject is often referred to as the cores-cusp problem [15]. For this
analysis, we consider two corresponding parametric profiles: Burkert [16] and Navarro-Frenk-
White (NFW) [17]. The parameter values for these profiles in the case of the Milky Way are
adopted from [18], where they are derived based on motion data within the Galactic region. The
mass density of the two profiles is illustrated in Figure 1. The NFW profile represents the ‘cuspy’
profile with the increasing density toward the Galactic Centre and thus is expected to give more
optimistic sensitivities compared to the Burkert profile with the flat ‘core’ feature. The Clumpy
package [19] is used for computing the J-factor as a function of the open angle to the Galactic
Centre.

4. Analysis method

In this analysis, we use a binned likelihood method on two observables: the reconstructed
energy (E,qco) and the reconstructed open angle of the events (¥,..,) to the Galactic Centre. The
standard Poisson likelihood function is defined as a product of Poisson probabilities:

max

Lroisson(é) = | | Poisson(nl,,, o, s £(i36)) 3)
i=min

tot

obs

events. f(i;&) is the fraction of events in bin / with an assumed hypothesis so that nl%' f(i; &)

represents the predicted observation under a hypothesis, but normalized to the total number of

where ”Z »s 18 the observed number of events in a given bin i. n}}’ is the total number of observed

observed data. This fraction f(i; &) is assumed as followed:

fi;6) =S+ (1-6)8;, )
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with § and B being, respectively, the signal and the background probability density functions
(PDFs). The only parameter of maximization is the signal fraction &.

To compute the signal PDF, we use the oscNext Monte Carlo (MC) sample to build a response
matrix that encodes how an event with a given true information (flavor, polarization, energy, and
open-angle) can interact, being triggered, pass the event selection, and being reconstructed. A
kernel density estimation (KDE) is also applied to construct a smooth response matrix. This matrix
is then used to convolute the true flux in Equation (1) into the expected signal event distribution.
For each combination of channels, density profile, and annihilation/decay process, we only consider
the dark matter mass range such that the median of the signal PDF is within 95% upper and lower
bound of the reconstruction energy of the MC simulation. The reason is that signal PDFs that do not
fulfill these criteria will mostly use MC regions with a lack of statistics, which leads to unreliable
PDF shapes. Additionally, these signal PDFs peak at the energy region of which most of the events
will be filtered out by the selection.

The background PDF is estimated from right-ascension scrambled data which is a widely
used method for background estimation in the neutrino telescope. In this approach, each data
event is assigned with a random right-ascension coordinate to make a pseudo-sample following the
background hypothesis. The background PDF is then estimated as an average of 100 right-ascension
scrambled pseudo-samples with the same KDE technique applied as for the case of signal PDF. The
scrambling method is valid due to a detector up-time of > 98% for the telescope and the rotation
of the Earth, which makes the background of atmospheric neutrinos and muons to be uniform in
right-ascension.

The scrambling technique is powerful such that it can account for any systematic uncertainties
that could affect the background model. Nevertheless, if there is a possible signal in the data, it
could potentially contaminate the data-scrambling estimation of the background. To correct for
that, the signal subtraction likelihood [6] is used such that the estimation of background-only PDF
reads: !

B; = q(giscrambled _ gsiscrambled) , (5)
with Sfcmmbled being the right ascension scrambled signal PDF. The final form of the hypothesis
PDF now yields:

f(i; f) — fSL + Bgcrambled _ fS;crambled ) (6)

Figure 2 illustrates these PDFs with an example of signal in the case of DM with mass 100 GeV
annihilating into W*W~, and the DM profile is assumed to be NFW. One can see that the signal
can be distinguished from the background such that it is more pronounced in the Galactic Centre
region.

5. Sensitivity and Conclusions

If the best-fit signal fraction £ is consistent with the background hypothesis, one can then derive
an upper limit on the signal fraction at 90% confidence level (CL): £g¢. In this work, we make use of
the log-likelihood interval method [20] for the computation of £gg. For each signal combination of
mass, profile (NFW/Burkert) and process (annihilation/decay), 1000 pseudo-samples are generated
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Figure 2: Two-dimensional PDFs on reconstruction energy (E,.co,) and reconstruction open angle to the
GC (Yreco) for: background from right-ascension scrambled data (left), signal of DM with mass 100 GeV
annihilating into W*W~ assuming NFW profile (middle), and the same signal but scrambled in right ascension
(right).

as the Poissonian variation of the background-only hypothesis. The median value of &g derived
from each of these samples is quoted as the 90% CL median sensitivity. As indicated in Equation
(1), the total number of signal events is proportional to the decay lifetime 7 or the velocity-averaged
cross-section (ov). Thus, the limits on signal fraction &99 can be converted into the limit on these
physics parameters.

In Figure 3, we present the sensitivity as the median upper/lower limit at the 90% CL on
velocity-averaged annihilation cross-section (ocv) and DM lifetime 7 respectively. A comparison
with other experiments and previous IceCube analyses in terms of the v, v, neutrino line channel for
annihilation and NFW profile is presented in Figure 4. One can expect an improvement compared to
the latest result on the neutrino line search with IceCube [8]. This enhancement comes from more
years of data included as well as substantial development of the data selection, which specifically
targets the low-energy region. The final official results of this work will be available soon.
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Figure 3: Sensitivities on the thermally-averaged dark matter self-annihilation cross-section {ov) (upper)

and dark matter lifetime 7 (lower) as a function of the dark matter mass for both the NFW (left) and Burkert
(right) halo profiles.
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Figure 4: Sensitivity on the thermally averaged cross-section for the v.v, channels (green and yellow
represent 1 and 20~ bands) compared to previous IceCube results [6—8], as well as Super-Kamiokande [21]

and ANTARES [22].The dotted grey line is the cross-section required to produce the observed relic abundance
from thermal freeze-out computed in [23].
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