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The detection of line-like TeV gamma-ray features configures as a smoking gun for the discovery
of TeV-scale particle dark matter. We report the first search for dark matter spectral lines in the
Galactic Centre region up to gamma-ray energies of 100 TeV with the MAGIC telescopes (La
Palma, Canary Islands). The Galactic Centre region is expected to host the closest dark matter
halo of considerable size and is therefore well suited for this kind of searches. Observations at
large zenith angles improve sensitivity for gamma rays in the TeV regime due to the increased
telescope collection area. We present the results obtained with more than 200 hours of large-zenith
angle observations of the Galactic Centre region, which allow us to obtain competitive limits to
the dark matter annihilation cross-section at high particle masses (< 5 × 10−28 cm3 s−1 at 1 TeV
and < 1 × 10−25 cm3 s−1 at 100 TeV), improving the best current constraints above 20 TeV. In
addition, we also study the impact of an inner cored dark matter halo on probing the annihilation
cross-section. Finally, we use the derived limits to constrain super-symmetric wino models.
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1. Introduction

Observations at various scales, such as those from the galaxy rotation curves, galaxy clusters,
and the Cosmic Microwave Background (CMB), suggest that dark matter (DM) makes up a quarter
of the total mass-energy density of the universe[1–3]. DM is considered to be composed of
electrically neutral, stable particles that move non-relativistically, i.e., they are "cold" in the context
of the Λ-CDM model. Good candidates that satisfies these characteristics are Weakly Interacting
Massive Particles (WIMPs), which interact at the scale of weak interactions, and their typical mass
range is thought to be on the order of GeV to TeV. WIMPs are considered to be remnants of the
freeze-out from the thermal equilibrium state in the early universe since they stopped annihilation
due to less frequent interactions. Indirect detection, a method to observe cosmic rays produced
when DM particles annihilate, has pursued DM alongside accelerator experiments and underground
experiments. These three methods complement one another, differing in the parameters of DM
mass that they are sensitive at searching. Among them, indirect detection is good at searching
for at the GeV-TeV scale particles. Furthermore, it is sensitive to the annihilation cross-section of
DM, enabling the direct test of the thermal relic scenario and providing insights into the production
process of DM.

In promising particle models beyond the standard model, such as supersymmetric (SUSY)
particles, annihilation of DM particles with each other is predicted due to their Majorana nature,
and the produced particles from this annihilation include gamma rays. Among the various particles
produced from the annihilation of DM, gamma rays, being uncharged, are not affected by the galactic
magnetic field like charged particles are, meaning they do not lose their signal arrival direction.
Thus, it can be said that they are a direction-sensitive method of indirect DM detection. Moreover,
as they possess spectral shapes corresponding to specific particle models, it is possible to discuss
certain particle models by searching for the expected shape of the gamma-ray emission spectrum.
The differential gamma-ray flux expected from DM annihilation consists of two terms as shown in
the following equation:

𝑑Φ(ΔΩ)
𝑑𝐸

=
𝑑Φ𝑃𝑃

𝑑𝐸
× 𝐽 (ΔΩ) (1)
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∫
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∫
𝑙𝑜𝑠

𝑑𝑠 𝑑Ω 𝜌2(𝑠,Ω) (3)

The first term of Equation (1), 𝑑Φ𝑃𝑃/𝑑𝐸 , is known as the "particle physics term," which
is characterized by properties within the particle model of DM. Relevant parameters include the
mass of DM 𝑚𝐷𝑀 , the cross-section times velocity 𝜎𝑣 also called annihilation cross-section, the
branching ratio 𝐵𝑟𝑖 for each reaction 𝑖, and the gamma-ray flux 𝑑𝑁 𝑖/𝑑𝐸 , among others. Often for
simplicity in DM searches with gamma rays, the branching ratio is assumed to be 100% for one
channel and 0 for the others.

The second term, 𝐽 (ΔΩ), is known as the 𝐽-factor, which is the integral of the DM density 𝜌 in
the line of sight, over the solid angle ΔΩ. This 𝐽-factor is very important to influence the sensitivity,
as it linearly affects the amount of gamma-ray flux originating from DM, as seen in Equation (1).
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The sensitivity to DM greatly varies depending on where to observe. In other words, the uncertainty
of this value directly propagates to the sensitivity, so we need to handle this value carefully. For
input to Equation (2), it is necessary to preselect which model to choose and understand what kind
of gamma-ray emission spectrum is expected from it. Roughly speaking, emission spectrum shapes
can be divided into two categories: line emission and broad spectrum. The former aims at emission
that peaks at the mass of DM. This is mainly the case when DM annihilates to produce such as
photon pairs or photons and 𝑍 bosons. Here, monochromatic gamma-ray emission is expected at
an energy 𝐸 = 𝑚𝐷𝑀 (1 − 𝑚2

𝜒/4𝑚2
𝐷𝑀

), where 𝜒 = 𝛾, Z, corresponding to the DM mass 𝑚𝐷𝑀 .
If found, this would be conclusive evidence of a DM origin signal. On the other hand, broad
spectra are produced through secondary radiation. In this case, the gamma-ray spectrum has a
cutoff at the mass of the DM [4]. The Search for line emission originating from DM annihilation
is not only about seeking the most straightforward signal, but also line emission is a good tool to
explore the interesting new particle models. Generally, for a channel (𝛾𝛾 or 𝛾𝑍) that produces
line emission from annihilation, it is generally loop-suppressed by 𝛼2. However, when the mass of
DM is sufficiently heavy (typically masses of TeV and above), an enhancement in this annihilation
cross-section is expected. This effect is called Sommerfeld enhancement and is beneficial for the
search for line emission in gamma rays [5]. In the SUSY model, Wino and Higgsino, which is the
one of Neutralinos, have become benchmark models for line emission searches because they can
explain the DM relic density very well when their masses are 3 TeV and 1 TeV, respectively [6].

2. The Galactic Centre observation with MAGIC

MAGIC (Major Atmospheric Gamma Ray Imaging Telescope) is a system for observing very-
high-energy gamma rays, consisting of two Imaging Atmospheric Cherenkov Telescopes (IACTs)
[7]. Located at the Roque de los Muchachos Observatory on the island of La Palma in the Spanish
Canary Islands (∼2200 m above sea level), the first telescope, MAGIC-I, has been operational since
2004, and the second, MAGIC-II, has been added in 2009. Observations are conducted using a
method called stereo observation with two telescopes, which have identical shapes.

The Galactic Center of the Milky Way (the GC) is one of the most promising targets for
observations searching for DM through very-high-energy gamma rays. This is because the expected
J-factor value is maximized due to the high DM density and its relatively close distance. On the
other hand, the GC requires various factors to be considered in the analysis, such as the source
extension, the foreground of diffuse gamma rays and the contamination of gamma-ray sources. In
particular, there is the uncertainty in the expected DM density close to the central region, which
is known as the core-cusp problem. The core profile models have a roughly constant DM density
toward the GC, while cuspy profile models shows a spiky DM density around the center, which is
shown in Figure 1

In the observation of the GC, due to geographical conditions for MAGIC, the observable
zenith angle tends to be large, approximately 60◦ or more. In the case of IACTs, observations are
conducted with large zenith angles. Observing Cherenkov light from air showers entering at an
angle can increase the effective detection area of primary particles. This method is referred to as the
Large Zenith Angle observation method [8]. The sensitivity gets boosted towards higher energies
than when MAGIC observes in the low zenith direction. On the other hand, a drawback of large
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zenith angle observations is that the threshold for gamma rays increases due to the lower Cherenkov
light density at ground level, as the light spreads out before it reaches the ground. However, the
energy threshold of MAGIC is still sufficiently low in case we focus on gamma-ray line emission
from TeV DM.
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Figure 1: The spatial distribution showing each DM density model as a function of distance from the galaxy
center [9].

3. Data Analysis

The dataset used in this study consists of 272.2 hours of observational data of the GC, collected
from 2013 to 2020. The zenith angle distribution ranges from 58 to 70 degrees. Not all of the
acquired data could not be used for analysis, and several quality cuts were applied. These were
mainly based on a) atmospheric transparency, b) night sky brightness, and c) quality of shower
images. The observational time after the cuts is 220 hours. The region of the interests (ROIs)
and the pointing direction in observations of the telescope, represented in galactic coordinates, are
shown in Figure 2. The offset angle varied from time to time because datasets for different physics
targets were collected for this DM search. The ROI was limited to a radius of 1.5 degrees from the
camera center of the telescope since the response of the MAGIC’s focal camera was relatively flat
(the total field of view of MAGIC is a radius of 1.75 degrees). That is, the ROIs were set so that the
offset angle plus the distance from the GC equals 1.5 degrees as shown in Fig 2.

In this study, it was focused that gamma rays originating from DM had a peak structure at
a characteristic mass in the energy spectrum. Therefore, we assumed that all other astrophysical
backgrounds followed a smooth function, starting with a power law with a sliding window. The
68 % containment range of the energy resolution (2𝜎𝐸) is used to define the range of an n energy
window, which was log-centered at 𝑚DM with width ± 4𝜎𝐸 . After determining the baseline for a
background model, we searched for the peak structure on it with the following likelihood function
Eq 4:
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𝑗=1

(𝑔𝑖 𝑓𝑔 (𝐸 ′
𝑗) + 𝜏𝑖𝑏𝑖 𝑓𝑏 (𝐸 ′

𝑗))

× T (𝜏𝑖 |𝜏obs,𝑖 , 𝜎𝜏,𝑖)

(4)

Here, 𝑔 and 𝑏 represent the estimated number of gamma-ray and background events, respec-
tively. 𝑁ON is the number of events observed within the ROIs and the sliding window. 𝑓𝑔 and 𝑓𝑏 are
the probability density functions for the signal and the background. The signal model is a 𝛿-function
smeared by the energy resolution, and the background model is obtained from the power-law fitting
within the sliding window. 𝜏 is the normalization factor for the background model.
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Figure 2: The Region Of Interests (ROIs) used for analysis and the pointing direction of the telescope [9].

The advantage of the analysis with this sliding window is that it does not lose sensitivity even
when the DM density distribution is a core distribution. A commonly used approach in previous
studies [10] involved observing the region with high DM density as the ON region and the region
distant from the center with a lower density as the OFF region. The background was assumed to be
similarly distributed. The residual after background subtraction is considered to be a contribution
from DM, and the signal is searched in this way. In this case, if the spatial DM density distribution is
a core, taking the residual would cancel out the DM component, which leads to a loss in sensitivity.
However, with the sliding window, there is no need to take the residual, and it allows us to take the
contribution of DM from all regions within the field of view into account. Therefore, it has the
advantage of keeping good sensitivity with core models’ assumption.

4. Results

After estimating systematic errors using Monte Carlo (MC) and control region data, these
values were applied to the data from the Milky Way Galactic Center region. No significant signal
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excess was obtained, so upper limits were set on the annihilation cross-section for each DM mass
at the 95% confidence level. Figure 3 shows the limit on the annihilation cross-section for 18 DM
masses ranging from 900 GeV to 100 TeV with previous results for the comparison. In the region
above (with larger annihilation cross-section values), the limit curve in the figure is excluded. In
the comparison figure, the results from this study are plotted using the Cored Zhao distribution
and the Cuspy Einasto distribution as examples for each conservative Core and reasonable Cuspy
assumption, based on Figure 1. When assuming the Einasto distribution, the result was almost
equivalent to the previous result of the H.E.S.S. telescope in the region where the mass is several
TeV, and it was able to show the best sensitivity from around 20 TeV. As a result, it was possible to
achieve the highest sensitivity in the world for the line emission search from 1 TeV to 100 TeV. The
mass range around 2.7 TeV to 3.0 TeV is most preferred because, if a Wino exists in this region, it can
explain nearly all of the current residual DM[6]. In this study, in addition to the Einasto and NFW
distributions which are cuspy, for the first time, we have reached a sensitivity to the annihilation
cross-section where SUSY-Wino could become DM when assuming a core distribution.
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5. Summary

Indirect dark matter searches with gamma-ray are complementary to other WIMP searches.
In particular, it allows us to access heavy dark matter models in TeV scale. Imaging Atmosphreic
Chrenkov Telescopes have a good sensitivity on Very-High-Energy Gamma-ray. This study presents
the results of a search for dark matter through observations of the Galactic Center of the Milky
Way using the MAGIC Telescope. We achieved the world-leading sensitivity for line emission
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searches from dark matter annihilation from 900 GeV to 100 TeV, making use of large zenith angle
observations, and constrained on SUSY-Wino with different dark matter density profiles, including
both Cuspy and Core profiles.
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